Search results for: femur fracture
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 654

Search results for: femur fracture

564 Long Standing Orbital Floor Fracture Repair: Case Report

Authors: Hisham A. Hashem, Sameh Galal, Bassem M. Moeshed

Abstract:

A 36 years old male patient presented to our unit with a history of motor-car accident from 7 months complaining of disfigurement and double vision. On examination and investigations, there was an orbital floor fracture in the left eye with inferior rectus muscle entrapment causing diplopia, dystopia and enophthalmos. Under general anesthesia, a sub-ciliary incision was performed, and the orbital floor fracture was repaired with a double layer Medpor sheet (30x50x15) with removing and freeing fibrosis that was present and freeing of the inferior rectus muscle. Remarkable improvement of the dystopia was noticed, however, there was a residual diplopia in upgaze and enophthalmos. He was then referred to a strabismologist, which upon examination found left hypotropia of 8 ΔD corrected by 8 ΔD base up prism and positive forced duction test on elevation and pseudoptosis. Under local anesthesia, a limbal incision approach with hangback 4mm recession of inferior rectus muscle was performed after identifying an inferior rectus muscle structure. Improvement was noted shortly postoperative with correction of both diplopia and pseudoptosis. Follow up after 1, 4 and 8 months was done showing a stable condition. Delayed surgery in cases of orbital floor fracture may still hold good results provided proper assessment of the case with management of each sign separately.

Keywords: diplopia, dystopia, late surgery, orbital floor fracture

Procedia PDF Downloads 227
563 Effect of Multi-Stage Fractured Patterns on Production Improvement of Horizontal Wells

Authors: Armin Shirbazo, Mohammad Vahab, Hamed Lamei Ramandi, Jalal Fahimpour

Abstract:

One of the most effective ways for increasing production in wells that are faced with problems such as pressure depletion and low rate is hydraulic fracturing. Hydraulic fracturing is creating a high permeable path through the reservoir and simulated area around the wellbore. This is very important for low permeability reservoirs, which their production is uneconomical. In this study, the influence of the fracturing pattern in multi-stage fractured horizontal wells is analyzed for a tight, heavy oil reservoir to explore the impact of fracturing patterns on improving oil recovery. The horizontal well has five transverse fractures with the same fracture length, width, height, and conductivity properties. The fracture patterns are divided into four distinct shapes: uniform shape, diamond shape, U shape, and W shape. The results show that different fracturing patterns produce various cumulative production after ten years, and the best pattern can be selected based on the most cumulative production. The result also illustrates that optimum design in fracturing can boost the production up to 3% through the permeability distribution around the wellbore and reservoir.

Keywords: multi-stage fracturing, horizontal well, fracture patterns, fracture length, number of stages

Procedia PDF Downloads 222
562 Investigation of Mode II Fracture Toughness in Orthotropic Materials

Authors: Mahdi Fakoor, Nabi Mehri Khansari, Ahmadreza Farokhi

Abstract:

Evaluation of mode II fracture toughness (KIIC) in composite materials is very hard problem to be solved, since it can be affected by many mechanisms of dissipation. Furthermore, non-linearity in its behavior can offer an extra difficulty to obtain accuracy in the results. Different reported values for KIIC in various references can prove the mentioned assertion. In this research, some solutions proposed based on the form of necessary corrections that should be executed on the common test fixtures. Due to the fact that the common test fixtures are not able to active toughening mechanisms in pure Mode II correctly, we have employed some structural modifications on common fixtures. Particularly, the Iosipescu test is used as start point. The tests are applied on graphite/epoxy; PMMA and Western White Pine Wood. Also, mixed mode I/II fracture limit curves are used to indicate the scattering in test results are really relevant to the creation of Fracture Process Zone (FPZ). In the present paper, shear load consideration applied at the predicted shear zone by considering some significant structural amendments that can active mode II toughening mechanisms. Indeed, the employed empirical method causes significant developing in repeatability and reproducibility as well. Moreover, a 3D Finite Element (FE) is performed for verification of the obtained results. Eventually, it is figured out that, a remarkable precision can be obtained in common test fixture in comparison with the previous one.

Keywords: FPZ, shear test fixture, mode II fracture toughness, composite material, FEM

Procedia PDF Downloads 361
561 Dissimilar Cu/Al Friction Stir Welding: Sensitivity of the Tool Offset

Authors: Tran Hung Tra, Hao Dinh Duong, Masakazu Okazaki

Abstract:

Copper 1100 and aluminum 1050 plates with a thickness of 5.0 mm are butt-joint using friction stir welding. The tool offset is linearly varied along the welding path. Two welding regimes, using the same linear tool offset but in opposite directions, are applied for fabricating two Cu/Al plates. The material flow is dominated by both tool offset and offset history. The intermetallic compounds layer and interface morphology in each welded plate are formed in a different manner. As a result, the bonding strength and fracture behavior between two welded plates are significantly distinct. The role of interface morphology on fracture behavior is analyzed by the finite element method.

Keywords: Cu/Al dissimilar welding, offset history, interface morphology, intermetallic compounds, strength and fracture

Procedia PDF Downloads 76
560 Delamination Fracture Toughness Benefits of Inter-Woven Plies in Composite Laminates Produced through Automated Fibre Placement

Authors: Jayden Levy, Garth M. K. Pearce

Abstract:

An automated fibre placement method has been developed to build through-thickness reinforcement into carbon fibre reinforced plastic laminates during their production, with the goal of increasing delamination fracture toughness while circumventing the additional costs and defects imposed by post-layup stitching and z-pinning. Termed ‘inter-weaving’, the method uses custom placement sequences of thermoset prepreg tows to distribute regular fibre link regions in traditionally clean ply interfaces. Inter-weaving’s impact on mode I delamination fracture toughness was evaluated experimentally through double cantilever beam tests (ASTM standard D5528-13) on [±15°]9 laminates made from Park Electrochemical Corp. E-752-LT 1/4” carbon fibre prepreg tape. Unwoven and inter-woven automated fibre placement samples were compared to those of traditional laminates produced from standard uni-directional plies of the same material system. Unwoven automated fibre placement laminates were found to suffer a mostly constant 3.5% decrease in mode I delamination fracture toughness compared to flat uni-directional plies. Inter-weaving caused significant local fracture toughness increases (up to 50%), though these were offset by a matching overall reduction. These positive and negative behaviours of inter-woven laminates were respectively found to be caused by fibre breakage and matrix deformation at inter-weave sites, and the 3D layering of inter-woven ply interfaces providing numerous paths of least resistance for crack propagation.

Keywords: AFP, automated fibre placement, delamination, fracture toughness, inter-weaving

Procedia PDF Downloads 184
559 An Experimental Investigation on Mechanical Behaviour of Fiber Reinforced Polymer (FRP) Composite Laminates Used for Pipe Applications

Authors: Tasnim Kallel, Rim Taktak

Abstract:

In this experimental work, fiber reinforced polymer (FRP) composite laminates were manufactured using hand lay-up technique. The unsaturated polyester (UP) and vinylester (VE) were considered as resins reinforced with different woven fabrics (bidirectional and quadriaxial rovings). The mechanical behaviour of the resulting composites was studied and then compared. A focus was essentially done on the evaluation of the effect of E-Glass fiber and ply orientation on the mechanical properties such as tensile strength, flexural strength, and hardness of the studied composite laminates. Also, crack paths and fracture surfaces were examined, and failure mechanisms were analyzed. From the main results, it was found that the quadriaxial composite laminates (QA/VE and QA/UP) with stacking sequences of [0°, +45°, 90°, -45°] present a very ductile tensile behaviour. The other laminate samples (R500/VE, RM/VE, R500/UP and RM/UP) show a very brittle behaviour whatever the used resin. The intrinsic toughness KIC of QA/VE laminate, obtained in fracture tests, are found more important than that of RM/VE composite. Thus, the QA/VE samples, as multidirectional laminate, presents the highest interlaminar fracture resistance.

Keywords: crack growth, fiber orientation, fracture behavior, e-glass fiber fabric, laminate composite, mechanical behavior

Procedia PDF Downloads 250
558 Coupled Hydro-Geomechanical Modeling of Oil Reservoir Considering Non-Newtonian Fluid through a Fracture

Authors: Juan Huang, Hugo Ninanya

Abstract:

Oil has been used as a source of energy and supply to make materials, such as asphalt or rubber for many years. This is the reason why new technologies have been implemented through time. However, research still needs to continue increasing due to new challenges engineers face every day, just like unconventional reservoirs. Various numerical methodologies have been applied in petroleum engineering as tools in order to optimize the production of reservoirs before drilling a wellbore, although not all of these have the same efficiency when talking about studying fracture propagation. Analytical methods like those based on linear elastic fractures mechanics fail to give a reasonable prediction when simulating fracture propagation in ductile materials whereas numerical methods based on the cohesive zone method (CZM) allow to represent the elastoplastic behavior in a reservoir based on a constitutive model; therefore, predictions in terms of displacements and pressure will be more reliable. In this work, a hydro-geomechanical coupled model of horizontal wells in fractured rock was developed using ABAQUS; both extended element method and cohesive elements were used to represent predefined fractures in a model (2-D). A power law for representing the rheological behavior of fluid (shear-thinning, power index <1) through fractures and leak-off rate permeating to the matrix was considered. Results have been showed in terms of aperture and length of the fracture, pressure within fracture and fluid loss. It was showed a high infiltration rate to the matrix as power index decreases. A sensitivity analysis is conclusively performed to identify the most influential factor of fluid loss.

Keywords: fracture, hydro-geomechanical model, non-Newtonian fluid, numerical analysis, sensitivity analysis

Procedia PDF Downloads 205
557 The Multiaxial Load Proportionality Effect on the Fracture Surface Topography of Forged Magnesium Alloys

Authors: Andrew Gryguć, Seyed Behzad Behravesh, Hamid Jahed, Mary Wells, Wojciech Macek, Bruce Williams

Abstract:

This extended abstract investigates the influence of the multiaxial loading on the fatigue behavior of forged magnesium through quantitative analysis of its fracture surface topography and mesoscopic cracking orientation. Fatigue tests were performed on hollow tubular sample geometries extracted from closed-die forged AZ80 Mg components, with three different multiaxial strain paths (axial/shear), proportional, 45° out of phase, and 90° out of phase. Regardless of the strain path, fatigue cracks are initiated at the outer surface of the specimen where the combined stress state is largest. Depending on the salient mode of deformation, distinctive features in the fracture surface manifested themselves with different topographic amplitudes, surface roughness, and mesoscopic cracking orientation in the vicinity of the initiation site. The dominant crack propagation path was in the circumferential direction of the hollow tubular specimen (i.e., cracking transverse to the sample axis, with little to no branching), which is congruent with previous findings of low to moderate shear strain energy density (SED) multiaxial loading. For proportional loading, the initiation zone surface morphology was largely flat and striated, whereas, at phase angles of 45° and 90°, the initiation surface became more faceted and inclined. Overall, both a qualitative and quantitative link was developed between the fracture surface morphology and the level of non-proportionality in the loading providing useful insight into the fracture mechanics of forged magnesium as a relevant focus for future study.

Keywords: fatigue, fracture, magnesium, forging, fractography, anisotropy, strain energy density, asymmetry, multiaxial fatigue

Procedia PDF Downloads 80
556 Simulation of Hydraulic Fracturing Fluid Cleanup for Partially Degraded Fracturing Fluids in Unconventional Gas Reservoirs

Authors: Regina A. Tayong, Reza Barati

Abstract:

A stable, fast and robust three-phase, 2D IMPES simulator has been developed for assessing the influence of; breaker concentration on yield stress of filter cake and broken gel viscosity, varying polymer concentration/yield stress along the fracture face, fracture conductivity, fracture length, capillary pressure changes and formation damage on fracturing fluid cleanup in tight gas reservoirs. This model has been validated as against field data reported in the literature for the same reservoir. A 2-D, two-phase (gas/water) fracture propagation model is used to model our invasion zone and create the initial conditions for our clean-up model by distributing 200 bbls of water around the fracture. A 2-D, three-phase IMPES simulator, incorporating a yield-power-law-rheology has been developed in MATLAB to characterize fluid flow through a hydraulically fractured grid. The variation in polymer concentration along the fracture is computed from a material balance equation relating the initial polymer concentration to total volume of injected fluid and fracture volume. All governing equations and the methods employed have been adequately reported to permit easy replication of results. The effect of increasing capillary pressure in the formation simulated in this study resulted in a 10.4% decrease in cumulative production after 100 days of fluid recovery. Increasing the breaker concentration from 5-15 gal/Mgal on the yield stress and fluid viscosity of a 200 lb/Mgal guar fluid resulted in a 10.83% increase in cumulative gas production. For tight gas formations (k=0.05 md), fluid recovery increases with increasing shut-in time, increasing fracture conductivity and fracture length, irrespective of the yield stress of the fracturing fluid. Mechanical induced formation damage combined with hydraulic damage tends to be the most significant. Several correlations have been developed relating pressure distribution and polymer concentration to distance along the fracture face and average polymer concentration variation with injection time. The gradient in yield stress distribution along the fracture face becomes steeper with increasing polymer concentration. The rate at which the yield stress (τ_o) is increasing is found to be proportional to the square of the volume of fluid lost to the formation. Finally, an improvement on previous results was achieved through simulating yield stress variation along the fracture face rather than assuming constant values because fluid loss to the formation and the polymer concentration distribution along the fracture face decreases as we move away from the injection well. The novelty of this three-phase flow model lies in its ability to (i) Simulate yield stress variation with fluid loss volume along the fracture face for different initial guar concentrations. (ii) Simulate increasing breaker activity on yield stress and broken gel viscosity and the effect of (i) and (ii) on cumulative gas production within reasonable computational time.

Keywords: formation damage, hydraulic fracturing, polymer cleanup, multiphase flow numerical simulation

Procedia PDF Downloads 130
555 Designing and Analyzing Sensor and Actuator of a Nano/Micro-System for Fatigue and Fracture Characterization of Nanomaterials

Authors: Mohammad Reza Zamani Kouhpanji

Abstract:

This paper presents a MEMS/NEMS device for fatigue and fracture characterization of nanomaterials. This device can apply static loads, cyclic loads, and their combinations in nanomechanical experiments. It is based on the electromagnetic force induced between paired parallel wires carrying electrical currents. Using this concept, the actuator and sensor parts of the device were designed and analyzed while considering the practical limitations. Since the PWCC device only uses two wires for actuation part and sensing part, its fabrication process is extremely easier than the available MEMS/NEMS devices. The total gain and phase shift of the MEMS/NEMS device were calculated and investigated. Furthermore, the maximum gain and sensitivity of the MEMS/NEMS device were studied to demonstrate the capability and usability of the device for wide range of nanomaterials samples. This device can be readily integrated into SEM/TEM instruments to provide real time study of the mechanical behaviors of nanomaterials as well as their fatigue and fracture properties, softening or hardening behaviors, and initiation and propagation of nanocracks.

Keywords: sensors and actuators, MEMS/NEMS devices, fatigue and fracture nanomechanical testing device, static and cyclic nanomechanical testing device

Procedia PDF Downloads 297
554 Fracture Mechanics Modeling of a Shear-Cracked RC Beams Shear-Strengthened with FRP Sheets

Authors: Shahriar Shahbazpanahi, Alaleh Kamgar

Abstract:

So far, the conventional experimental and theoretical analysis in fracture mechanics have been applied to study concrete flexural- cracked beams, which are strengthened using fiber reinforced polymer (FRP) composite sheets. However, there is still little knowledge about the shear capacity of a side face FRP- strengthened shear-cracked beam. A numerical analysis is herein presented to model the fracture mechanics of a four-point RC beam, with two inclined initial notch on the supports, which is strengthened with side face FRP sheets. In the present study, the shear crack is forced to conduct by using an initial notch in supports. The ABAQUS software is used to model crack propagation by conventional cohesive elements. It is observed that the FRP sheets play important roles in preventing the propagation of shear cracks.

Keywords: crack, FRP, shear, strengthening

Procedia PDF Downloads 550
553 The Application of Patterned Injuries in Reconstruction of Motorcycle Accidents

Authors: Chun-Liang Wu, Kai-Ping Shaw, Cheng-Ping Yu, Wu-Chien Chien, Hsiao-Ting Chen, Shao-Huang Wu

Abstract:

Objective: This study analyzed three criminal judicial cases. We applied the patterned injuries of the rider to demonstrate the facts of each accident, reconstruct the scenes, and pursue the truth. Methods: Case analysis, a method that collects evidence and reasons the results in judicial procedures, then the importance of the pattern of injury as evidence will be compared and evaluated. The patterned injuries analysis method is to compare the collision situation between an object and human body injuries to determine whether the characteristics can reproduce the unique pattern of injury. Result: Case 1: Two motorcycles, A and B, head-on collided; rider A dead, and rider B was accused. During the prosecutor’s investigation, the defendant learned that rider A had an 80 mm open wound on his neck. During the court trial, the defendant requested copies of the case file and found out that rider A had a large contusion on his chest wall, and the cause of death was traumatic hemothorax and abdominal wall contusion. The defendant compared all the evidence at the scene and determined that the injury was obviously not caused by the collision of the body or the motorcycle of rider B but that rider was out of control and injured himself when he crossed the double yellow line. In this case, the defendant was innocent in the High Court judgment in April 2022. Case 2: Motorcycles C and D head-on crashed, and rider C died of massive abdominal bleeding. The prosecutor decided that rider C was driving under the influence (DUI), but rider D was negligent and sued rider D. The defendant requested the copies’ file and found the special phenomenon that the front wheel of motorcycle C was turned left. The defendant’s injuries were a left facial bone fracture, a left femur fracture, and other injuries on the left side. The injuries were of human-vehicle separation and human-vehicle collision, which proved that rider C suddenly turned left when the two motorcycles approached, knocked down motorcycle D, and the defendant flew forward. Case 3: Motorcycle E and F’s rear end collided, the front rider E was sentenced to 3 months, and the rear rider F sued rider E for more than 7 million N.T. The defendant found in the copies’ file that the injury of rider F was the left tibial platform fracture, etc., and then proved that rider F made the collision with his left knee, causing motorcycle E to fall out of control. This evidence was accepted by the court and is still on trial. Conclusion: The application of patterned injuries in the reconstruction of a motorcycle accident could discover the truth and provide the basis for judicial justice. The cases and methods could be the reference for the policy of preventing traffic accident casualties.

Keywords: judicial evidence, patterned injuries analysis, accident reconstruction, fatal motorcycle injuries

Procedia PDF Downloads 84
552 Application of the Experimental Planning Design to the Notched Precracked Tensile Fracture of Composite

Authors: N. Mahmoudi, B. Guedim

Abstract:

Composite materials have important assets compared to traditional materials. They bring many functional advantages: lightness, mechanical resistance and chemical, etc. In the present study we examine the effect of a circular central notch and a precrack on the tensile fracture of two woven composite materials. The tensile tests were applied to a standardized specimen, notched and a precracked (orientation of the crack 0°, 45°, and 90°). These tensile tests were elaborated according to an experimental planning design of the type 23.31 requiring 24 experiments with three repetitions. By the analysis of regression, we obtained a mathematical model describing the maximum load according to the influential parameters (hole diameter, precrack length, angle of a precrack orientation). The specimens precracked at 90° have a better behavior than those having a precrack at 45° and still better than those having of the precracks oriented at 0°. In addition the maximum load is inversely proportional to the notch size.

Keywords: polymer matrix, glasses, fracture, precracks

Procedia PDF Downloads 342
551 Fracture Properties Investigation of Artocarpus odoratissimus Composite with Polypropylene (PP)

Authors: M. Kamal M. Shah, Al Fareez Bin Aslie, O. Irma Wani, J. Sahari

Abstract:

Wood plastic composites (WPC) were made using matrix of polypropylene (PP) thermoplastic resin with wood fiber from Artocarpus Odoratissimus as filler. The purpose of this project is to investigate the fracture properties of Artocarpus odoratissimus composite with PP. The WPC were manufactured by hot-press technique with varying formulations which are 10:0 (100% pure PP), 50:50 (40 g of wood fiber and 40 g of PP) and 60:40 (48 g of wood fiber and 32 g of PP). The mechanical properties were investigated. Tensile and flexural were carried out according to ASTM D 638 and ASTM D 790. The results were analysed to calculate the tensile strength. Tensile strength at break is ranged from 13.2 N/mm2 to 21.7 N/mm2 while, the flexural strength obtained is varying from 14.7 N/mm2 to 31.1 N/mm2. The results of the experiment showed that tensile and flexural properties of the composite were increased with the adding of wood fiber material. Finally, the Scanning Electron Microscope (SEM), have been done to study the fracture behavior of the WPC specimens.

Keywords: Artocarpus odoratissimus, polypropylene thermoplastic, wood fiber, WPC

Procedia PDF Downloads 400
550 Fracture Toughness Characterizations of Single Edge Notch (SENB) Testing Using DIC System

Authors: Amr Mohamadien, Ali Imanpour, Sylvester Agbo, Nader Yoosef-Ghodsi, Samer Adeeb

Abstract:

The fracture toughness resistance curve (e.g., J-R curve and crack tip opening displacement (CTOD) or δ-R curve) is important in facilitating strain-based design and integrity assessment of oil and gas pipelines. This paper aims to present laboratory experimental data to characterize the fracture behavior of pipeline steel. The influential parameters associated with the fracture of API 5L X52 pipeline steel, including different initial crack sizes, were experimentally investigated for a single notch edge bend (SENB). A total of 9 small-scale specimens with different crack length to specimen depth ratios were conducted and tested using single edge notch bending (SENB). ASTM E1820 and BS7448 provide testing procedures to construct the fracture resistance curve (Load-CTOD, CTOD-R, or J-R) from test results. However, these procedures are limited by standard specimens’ dimensions, displacement gauges, and calibration curves. To overcome these limitations, this paper presents the use of small-scale specimens and a 3D-digital image correlation (DIC) system to extract the parameters required for fracture toughness estimation. Fracture resistance curve parameters in terms of crack mouth open displacement (CMOD), crack tip opening displacement (CTOD), and crack growth length (∆a) were carried out from test results by utilizing the DIC system, and an improved regression fitting resistance function (CTOD Vs. crack growth), or (J-integral Vs. crack growth) that is dependent on a variety of initial crack sizes was constructed and presented. The obtained results were compared to the available results of the classical physical measurement techniques, and acceptable matchings were observed. Moreover, a case study was implemented to estimate the maximum strain value that initiates the stable crack growth. This might be of interest to developing more accurate strain-based damage models. The results of laboratory testing in this study offer a valuable database to develop and validate damage models that are able to predict crack propagation of pipeline steel, accounting for the influential parameters associated with fracture toughness.

Keywords: fracture toughness, crack propagation in pipeline steels, CTOD-R, strain-based damage model

Procedia PDF Downloads 63
549 Evaluation of Fracture Resistance and Moisture Damage of Hot Mix Asphalt Using Plastic Coated Aggregates

Authors: Malleshappa Japagal, Srinivas Chitragar

Abstract:

The use of waste plastic in pavement is becoming important alternative worldwide for disposal of plastic as well as to improve the stability of pavement and to meet out environmental issues. However, there are still concerns on fatigue and fracture resistance of Hot Mix Asphalt with the addition of plastic waste, (HMA-Plastic mixes) and moisture damage potential. The present study was undertaken to evaluate fracture resistance of HMA-Plastic mixes using semi-circular bending (SCB) test and moisture damage potential by Indirect Tensile strength (ITS) test using retained tensile strength (TSR). In this study, a dense graded asphalt mix with 19 mm nominal maximum aggregate size was designed in the laboratory using Marshall Mix design method. Aggregates were coated with different percentages of waste plastic (0%, 2%, 3% and 4%) by weight of aggregate and performance evaluation of fracture resistance and Moisture damage was carried out. The following parameters were estimated for the mixes: J-Integral or Jc, strain energy at failure, peak load at failure, and deformation at failure. It was found that the strain energy and peak load of all the mixes decrease with an increase in notch depth, indicating that increased percentage of plastic waste gave better fracture resistance. The moisture damage potential was evaluated by Tensile strength ratio (TSR). The experimental results shown increased TRS value up to 3% addition of waste plastic in HMA mix which gives better performance hence the use of waste plastic in road construction is favorable.

Keywords: hot mix asphalt, semi circular bending, marshall mix design, tensile strength ratio

Procedia PDF Downloads 306
548 The Crack Propagation on Glass in Laser Thermal Cleavage

Authors: Jehnming Lin

Abstract:

In the laser cleavage of glass, the laser is mostly adopted as a heat source to generate a thermal stress state on the substrates. The crack propagation of the soda-lime glass in the laser thermal cleavage with the straight-turning paths was investigated in this study experimentally and numerically. The crack propagation was visualized by a high speed camera with the off-line examination on the micro-crack propagation. The temperature and stress distributions induced by the laser heat source were calculated by ANSYS software based on the finite element method (FEM). With the cutting paths in various turning directions, the experimental and numerical results were in comparison and verified. The fracture modes due to the normal and shear stresses were verified at the turning point of the laser cleavage path. It shows a significant variation of the stress profiles along the straight-turning paths and causes a change on the fracture modes.

Keywords: laser cleavage, glass, fracture, stress analysis

Procedia PDF Downloads 229
547 An Investigation of the Fracture Behavior of Model MgO-C Refractories Using the Discrete Element Method

Authors: Júlia Cristina Bonaldo, Christophe L. Martin, Martiniano Piccico, Keith Beale, Roop Kishore, Severine Romero-Baivier

Abstract:

Refractory composite materials employed in steel casting applications are prone to cracking and material damage because of the very high operating temperature (thermal shock) and mismatched properties of the constituent phases. The fracture behavior of a model MgO-C composite refractory is investigated to quantify and characterize its thermal shock resistance, employing a cold crushing test and Brazilian test with fractographic analysis. The discrete element method (DEM) is used to generate numerical refractory composites. The composite in DEM is represented by an assembly of bonded particle clusters forming perfectly spherical aggregates and single spherical particles. For the stresses to converge with a low standard deviation and a minimum number of particles to allow reasonable CPU calculation time, representative volume element (RVE) numerical packings are created with various numbers of particles. Key microscopic properties are calibrated sequentially by comparing stress-strain curves from crushing experimental data. Comparing simulations with experiments also allows for the evaluation of crack propagation, fracture energy, and strength. The crack propagation during Brazilian experimental tests is monitored with digital image correlation (DIC). Simulations and experiments reveal three distinct types of fracture. The crack may spread throughout the aggregate, at the aggregate-matrix interface, or throughout the matrix.

Keywords: refractory composite, fracture mechanics, crack propagation, DEM

Procedia PDF Downloads 80
546 Numerical Simulation of Hydraulic Fracture Propagation in Marine-continental Transitional Tight Sandstone Reservoirs by Boundary Element Method: A Case Study of Shanxi Formation in China

Authors: Jiujie Cai, Fengxia LI, Haibo Wang

Abstract:

After years of research, offshore oil and gas development now are shifted to unconventional reservoirs, where multi-stage hydraulic fracturing technology has been widely used. However, the simulation of complex hydraulic fractures in tight reservoirs is faced with geological and engineering difficulties, such as large burial depths, sand-shale interbeds, and complex stress barriers. The objective of this work is to simulate the hydraulic fracture propagation in the tight sandstone matrix of the marine-continental transitional reservoirs, where the Shanxi Formation in Tianhuan syncline of the Dongsheng gas field was used as the research target. The characteristic parameters of the vertical rock samples with rich beddings were clarified through rock mechanics experiments. The influence of rock mechanical parameters, vertical stress difference of pay-zone and bedding layer, and fracturing parameters (such as injection rates, fracturing fluid viscosity, and number of perforation clusters within single stage) on fracture initiation and propagation were investigated. In this paper, a 3-D fracture propagation model was built to investigate the complex fracture propagation morphology by boundary element method, considering the strength of bonding surface between layers, vertical stress difference and fracturing parameters (such as injection rates, fluid volume and viscosity). The research results indicate that on the condition of vertical stress difference (3 MPa), the fracture height can break through and enter the upper interlayer when the thickness of the overlying bedding layer is 6-9 m, considering effect of the weak bonding surface between layers. The fracture propagates within the pay zone when overlying interlayer is greater than 13 m. Difference in fluid volume distribution between clusters could be more than 20% when the stress difference of each cluster in the segment exceeds 2MPa. Fracture cluster in high stress zones cannot initiate when the stress difference in the segment exceeds 5MPa. The simulation results of fracture height are much higher if the effect of weak bonding surface between layers is not involved. By increasing the injection rates, increasing fracturing fluid viscosity, and reducing the number of clusters within single stage can promote the fracture height propagation through layers. Optimizing the perforation position and reducing the number of perforations can promote the uniform expansion of fractures. Typical curves of fracture height estimation were established for the tight sandstone of the Lower Permian Shanxi Formation. The model results have good consistency with micro-seismic monitoring results of hydraulic fracturing in Well 1HF.

Keywords: fracture propagation, boundary element method, fracture height, offshore oil and gas, marine-continental transitional reservoirs, rock mechanics experiment

Procedia PDF Downloads 127
545 Interface Fracture of Sandwich Composite Influenced by Multiwalled Carbon Nanotube

Authors: Alak Kumar Patra, Nilanjan Mitra

Abstract:

Higher strength to weight ratio is the main advantage of sandwich composite structures. Interfacial delamination between the face sheet and core is a major problem in these structures. Many research works are devoted to improve the interfacial fracture toughness of composites majorities of which are on nano and laminated composites. Work on influence of multiwalled carbon nano-tubes (MWCNT) dispersed resin system on interface fracture of glass-epoxy PVC core sandwich composite is extremely limited. Finite element study is followed by experimental investigation on interface fracture toughness of glass-epoxy (G/E) PVC core sandwich composite with and without MWCNT. Results demonstrate an improvement in interface fracture toughness values (Gc) of samples with a certain percentages of MWCNT. In addition, dispersion of MWCNT in epoxy resin through sonication followed by mixing of hardener and vacuum resin infusion (VRI) technology used in this study is an easy and cost effective methodology in comparison to previously adopted other methods limited to laminated composites. The study also identifies the optimum weight percentage of MWCNT addition in the resin system for maximum performance gain in interfacial fracture toughness. The results agree with finite element study, high-resolution transmission electron microscope (HRTEM) analysis and fracture micrograph of field emission scanning electron microscope (FESEM) investigation. Interface fracture toughness (GC) of the DCB sandwich samples is calculated using the compliance calibration (CC) method considering the modification due to shear. Compliance (C) vs. crack length (a) data of modified sandwich DCB specimen is fitted to a power function of crack length. The calculated mean value of the exponent n from the plots of experimental results is 2.22 and is different from the value (n=3) prescribed in ASTM D5528-01for mode 1 fracture toughness of laminate composites (which is the basis for modified compliance calibration method). Differentiating C with respect to crack length (a) and substituting it in the expression GC provides its value. The research demonstrates improvement of 14.4% in peak load carrying capacity and 34.34% in interface fracture toughness GC for samples with 1.5 wt% MWCNT (weight % being taken with respect to weight of resin) in comparison to samples without MWCNT. The paper focuses on significant improvement in experimentally determined interface fracture toughness of sandwich samples with MWCNT over the samples without MWCNT using much simpler method of sonication. Good dispersion of MWCNT was observed in HRTEM with 1.5 wt% MWCNT addition in comparison to other percentages of MWCNT. FESEM studies have also demonstrated good dispersion and fiber bridging of MWCNT in resin system. Ductility is also observed to be higher for samples with MWCNT in comparison to samples without.

Keywords: carbon nanotube, epoxy resin, foam, glass fibers, interfacial fracture, sandwich composite

Procedia PDF Downloads 303
544 Sport-Related Hand and Wrist Injuries Treatment

Authors: Sergei Kosarev

Abstract:

Wrong treatment tactics for hand and wrist sport-related injuries can lead to the inability to play sports in the future. It is especially important for professional athletes. The members of the Russian Olympic Team are treated in our hospital -Federal Clinical Research Center (Moscow). For their treatment, we use minimally invasive methods such as wrist arthroscopy and also orthobiologics procedures. In 2022 we had cases with scaphoid fracture and TFCC injuries. In all the cases, we were using the arthroscopy technic for treatment. The scaphoid fracture was fixed by K-wires with free bone grafting. For TFCC injures we used transossal sutures. Rehabilitation started the next day after surgery. Rehabilitation included hand therapy and physiotherapy. All athletes returned to the sport after 8-12 weeks after surgery. One of them had pain in the wrist after 12 weeks after surgery, not more than 4 point VAS. Pain syndrome was blocked after 2 PRP injections in the ulnar side of the wrist.

Keywords: sport trauma, wrist arthroscopy, wrist pain, scaphoid fracture

Procedia PDF Downloads 99
543 The Influence of Fiber Fillers on the Bonding Safety of Structural Adhesives: A Fracture Analytical Evaluation

Authors: Brandtner-Hafner Martin

Abstract:

Adhesives have established themselves as an innovative joining technology in the industry. Their strengths lie in joining different materials, avoiding structural weakening as in welding or screwing, and enabling lightweight construction methods. Now there are a variety of ways to improve the efficiency and effectiveness of bonded joints. One way is to add fiber fillers. This leads to an improvement in adhesion and cohesion (structural integrity). In this study, the effectiveness of fiber-modified adhesives for bonding different construction materials is reviewed. A series of experimental tests were performed using the fracture analytical GF principle to study the adhesive bonding safety and performance of the joint. Three different structural adhesive systems based on epoxy, CA/A hybrid, and PUR were modified with different fiber materials on different substrates. The results show that significant performance improvements can be achieved and that bonding reliability can be sustainably increased.

Keywords: fiber-modified adhesives, bonding safety, GF-principle, fracture analysis

Procedia PDF Downloads 172
542 An Integrated Approach to the Carbonate Reservoir Modeling: Case Study of the Eastern Siberia Field

Authors: Yana Snegireva

Abstract:

Carbonate reservoirs are known for their heterogeneity, resulting from various geological processes such as diagenesis and fracturing. These complexities may cause great challenges in understanding fluid flow behavior and predicting the production performance of naturally fractured reservoirs. The investigation of carbonate reservoirs is crucial, as many petroleum reservoirs are naturally fractured, which can be difficult due to the complexity of their fracture networks. This can lead to geological uncertainties, which are important for global petroleum reserves. The problem outlines the key challenges in carbonate reservoir modeling, including the accurate representation of fractures and their connectivity, as well as capturing the impact of fractures on fluid flow and production. Traditional reservoir modeling techniques often oversimplify fracture networks, leading to inaccurate predictions. Therefore, there is a need for a modern approach that can capture the complexities of carbonate reservoirs and provide reliable predictions for effective reservoir management and production optimization. The modern approach to carbonate reservoir modeling involves the utilization of the hybrid fracture modeling approach, including the discrete fracture network (DFN) method and implicit fracture network, which offer enhanced accuracy and reliability in characterizing complex fracture systems within these reservoirs. This study focuses on the application of the hybrid method in the Nepsko-Botuobinskaya anticline of the Eastern Siberia field, aiming to prove the appropriateness of this method in these geological conditions. The DFN method is adopted to model the fracture network within the carbonate reservoir. This method considers fractures as discrete entities, capturing their geometry, orientation, and connectivity. But the method has significant disadvantages since the number of fractures in the field can be very high. Due to limitations in the amount of main memory, it is very difficult to represent these fractures explicitly. By integrating data from image logs (formation micro imager), core data, and fracture density logs, a discrete fracture network (DFN) model can be constructed to represent fracture characteristics for hydraulically relevant fractures. The results obtained from the DFN modeling approaches provide valuable insights into the East Siberia field's carbonate reservoir behavior. The DFN model accurately captures the fracture system, allowing for a better understanding of fluid flow pathways, connectivity, and potential production zones. The analysis of simulation results enables the identification of zones of increased fracturing and optimization opportunities for reservoir development with the potential application of enhanced oil recovery techniques, which were considered in further simulations on the dual porosity and dual permeability models. This approach considers fractures as separate, interconnected flow paths within the reservoir matrix, allowing for the characterization of dual-porosity media. The case study of the East Siberia field demonstrates the effectiveness of the hybrid model method in accurately representing fracture systems and predicting reservoir behavior. The findings from this study contribute to improved reservoir management and production optimization in carbonate reservoirs with the use of enhanced and improved oil recovery methods.

Keywords: carbonate reservoir, discrete fracture network, fracture modeling, dual porosity, enhanced oil recovery, implicit fracture model, hybrid fracture model

Procedia PDF Downloads 75
541 Seismic Data Analysis of Intensity, Orientation and Distribution of Fractures in Basement Rocks for Reservoir Characterization

Authors: Mohit Kumar

Abstract:

Natural fractures are classified in two broad categories of joints and faults on the basis of shear movement in the deposited strata. Natural fracture always has high structural relationship with extensional or non-extensional tectonics and sometimes the result is seen in the form of micro cracks. Geological evidences suggest that both large and small-scale fractures help in to analyze the seismic anisotropy which essentially contribute into characterization of petro physical properties behavior associated with directional migration of fluid. We generally question why basement study is much needed as historically it is being treated as non-productive and geoscientist had no interest in exploration of these basement rocks. Basement rock goes under high pressure and temperature, and seems to be highly fractured because of the tectonic stresses that are applied to the formation along with the other geological factors such as depositional trend, internal stress of the rock body, rock rheology, pore fluid and capillary pressure. Sometimes carbonate rocks also plays the role of basement and igneous body e.g basalt deposited over the carbonate rocks and fluid migrate from carbonate to igneous rock due to buoyancy force and adequate permeability generated by fracturing. So in order to analyze the complete petroleum system, FMC (Fluid Migration Characterization) is necessary through fractured media including fracture intensity, orientation and distribution both in basement rock and county rock. Thus good understanding of fractures can lead to project the correct wellbore trajectory or path which passes through potential permeable zone generated through intensified P-T and tectonic stress condition. This paper deals with the analysis of these fracture property such as intensity, orientation and distribution in basement rock as large scale fracture can be interpreted on seismic section, however, small scale fractures show ambiguity in interpretation because fracture in basement rock lies below the seismic wavelength and hence shows erroneous result in identification. Seismic attribute technique also helps us to delineate the seismic fracture and subtle changes in fracture zone and these can be inferred from azimuthal anisotropy in velocity and amplitude and spectral decomposition. Seismic azimuthal anisotropy derives fracture intensity and orientation from compressional wave and converted wave data and based on variation of amplitude or velocity with azimuth. Still detailed analysis of fractured basement required full isotropic and anisotropic analysis of fracture matrix and surrounding rock matrix in order to characterize the spatial variability of basement fracture which support the migration of fluid from basement to overlying rock.

Keywords: basement rock, natural fracture, reservoir characterization, seismic attribute

Procedia PDF Downloads 197
540 The Effect of Nylon and Kevlar Stitching on the Mode I Fracture of Carbon/Epoxy Composites

Authors: Nisrin R. Abdelal, Steven L. Donaldson

Abstract:

Composite materials are widely used in aviation industry due to their superior properties; however, they are susceptible to delamination. Through-thickness stitching is one of the techniques to alleviate delamination. Kevlar is one of the most common stitching materials; in contrast, it is expensive and presents stitching fabrication challenges. Therefore, this study compares the performance of Kevlar with an inexpensive and easy-to-use nylon fiber in stitching to alleviate delamination. Three laminates of unidirectional carbon fiber-epoxy composites were manufactured using vacuum assisted resin transfer molding process. One panel was stitched with Kevlar, one with nylon, and one unstitched. Mode I interlaminar fracture tests were carried out on specimens from the three composite laminates, and the results were compared. Fractographic analysis using optical and scanning electron microscope were conducted to reveal the differences between stitching with Kevlar and nylon on the internal microstructure of the composite with respect to the interlaminar fracture toughness values.

Keywords: carbon, delamination, Kevlar, mode I, nylon, stitching

Procedia PDF Downloads 287
539 Numerical Modelling of 3-D Fracture Propagation and Damage Evolution of an Isotropic Heterogeneous Rock with a Pre-Existing Surface Flaw under Uniaxial Compression

Authors: S. Mondal, L. M. Olsen-Kettle, L. Gross

Abstract:

Fracture propagation and damage evolution are extremely important for many industrial applications including mining industry, composite materials, earthquake simulations, hydraulic fracturing. The influence of pre-existing flaws and rock heterogeneity on the processes and mechanisms of rock fracture has important ramifications in many mining and reservoir engineering applications. We simulate the damage evolution and fracture propagation in an isotropic sandstone specimen containing a pre-existing 3-D surface flaw in different configurations under uniaxial compression. We apply a damage model based on the unified strength theory and solve the solid deformation and damage evolution equations using the Finite Element Method (FEM) with tetrahedron elements on unstructured meshes through the simulation software, eScript. Unstructured meshes provide higher geometrical flexibility and allow a more accurate way to model the varying flaw depth, angle, and length through locally adapted FEM meshes. The heterogeneity of rock is considered by initializing material properties using a Weibull distribution sampled over a cubic grid. In our model, we introduce a length scale related to the rock heterogeneity which is independent of the mesh size. We investigate the effect of parameters including the heterogeneity of the elastic moduli and geometry of the single flaw in the stress strain response. The generation of three typical surface cracking patterns, called wing cracks, anti-wing cracks and far-field cracks were identified, and these depend on the geometry of the pre-existing surface flaw. This model results help to advance our understanding of fracture and damage growth in heterogeneous rock with the aim to develop fracture simulators for different industry applications.

Keywords: finite element method, heterogeneity, isotropic damage, uniaxial compression

Procedia PDF Downloads 218
538 Discrete Crack Modeling of Side Face FRP-Strengthened Concrete Beam

Authors: Shahriar Shahbazpanahi, Mohammad Hemen Jannaty, Alaleh Kamgar

Abstract:

Shear strengthening can be carried out in concrete structures by external fibre reinforced polymer (FRP). In the present investigation, a new fracture mechanics model is developed to model side face of strengthened concrete beam by external FRP. Discrete crack is simulated by a spring element with softening behavior ahead of the crack tip to model the cohesive zone in concrete. A truss element is used, parallel to the spring element, to simulate the energy dissipation rate by the FRP. The strain energy release rate is calculated directly by using a virtual crack closure technique and then, the crack propagation criterion is presented. The results are found acceptable when compared to previous experimental results and ABAQUS software data. It is observed that the length of the fracture process zone (FPZ) increases with the application of FRP in side face at the same load in comparison with that of the control beam.

Keywords: FPZ, fracture, FRP, shear

Procedia PDF Downloads 534
537 A Case Study of Meningoencephalitis following Le Fort I Osteotomy

Authors: Ryan Goh, Nicholas Beech

Abstract:

Introduction: Le Fort I Osteotomies, although are common procedures in Oral and Maxillofacial Surgery, carry a degree of risk of unfavourable propagation of the down-fracture of the maxilla. This may be the first reported case in the literature for meningoencephalitis to occur following a Le Fort I Osteotomy. Case: A 32-year-old female was brought into the Emergency Department four days after a Le Fort I Osteotomy, with a Glasgow Coma Scale (GCS) of 8 (E3V1M4). A Computed Tomography (CT) Head showed a skull base fracture at the right sphenoid sinus. Lumbar puncture was completed, and Klebsiella oxytoca was found in the Cerebrospinal Fluid (CSF). She was treated with Meropenem, and rapidly improved thereafter. CSF rhinorrhoea was identified when she was extubated, which was successfully managed via a continuous lumbar drain. She was discharged on day 14 without any neurological deficits. Conclusion: The most likely aspect of the Le Fort I Osteotomy to obtain a skull base fracture is during the pterygomaxillary disjunction. Care should always be taken to avoid significant risks of skull base fractures, CSF rhinorrhoea, meningitis and encephalitis.

Keywords: meningitis, orthognathic surgery, post-operative complication, skull base, rhinorrhea

Procedia PDF Downloads 125
536 Extracting the Failure Criterion to Evaluate the Strength of Cracked Drills under Torque Caused by Drilling

Authors: A. Falsafi, M. Dadkhah, S. Shahidi

Abstract:

The destruction and defeat of drill pipes and drill rigs in oil wells often combined with a combination of shear modulus II and III. In such a situation, the strength and load bearing capacity of the drill are evaluated based on the principles of fracture mechanics and crack growth criteria. In this paper, using the three-dimensional stress equations around the Turkish frontier, the relations of the tense-tense criterion (MTS) are extracted for the loading of the combined II and III modulus. It is shown that in crisp deflection under loading of combination II and III, the level of fracture is characterized by two different angles: the longitudinal angle of deflection θ and the angle of the deflection of the alpha. Based on the relationships obtained from the MTS criterion, the failure criteria, the longitudinal angle of the theta failure and the lateral angle of the failure of the alpha are presented. Also, the role of Poisson's coefficient on these parameters is investigated in these graphs.

Keywords: most tangential tension criterion, longitudinal angle of failure, side angle of fracture, drills crack

Procedia PDF Downloads 132
535 Micromechanical Analysis of Interface Properties Effects on Transverse Tensile Response of Fiber-Reinforced Composites

Authors: M. Naderi, N. Iyyer, K. Goel, N. Phan

Abstract:

A micromechanical analysis of the influence of fiber-matrix interface fracture properties on the transverse tensile response of fiber-reinforced composite is investigated. Augmented finite element method (AFEM) is used to provide high-fidelity damage initiation and propagation along the micromechanical analysis. Effects of fiber volume fraction and fiber shapes are also studies in representative volume elements (RVE) to capture the stochastic behavior of the composite under loading. In addition, defects and voids influence on the composite response are investigated in micromechanical analysis. The results reveal that the response of RVE with constant interface properties overestimates the composite transverse strength. It is also seen that the damage initiation and propagation locations are controlled by the distributions of fracture properties, fibers’ shapes, and defects.

Keywords: cohesive model, fracture, computational mechanics, micromechanics

Procedia PDF Downloads 291