Search results for: coastal embankments
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 759

Search results for: coastal embankments

669 An Integrated Real-Time Hydrodynamic and Coastal Risk Assessment Model

Authors: M. Reza Hashemi, Chris Small, Scott Hayward

Abstract:

The Northeast Coast of the US faces damaging effects of coastal flooding and winds due to Atlantic tropical and extratropical storms each year. Historically, several large storm events have produced substantial levels of damage to the region; most notably of which were the Great Atlantic Hurricane of 1938, Hurricane Carol, Hurricane Bob, and recently Hurricane Sandy (2012). The objective of this study was to develop an integrated modeling system that could be used as a forecasting/hindcasting tool to evaluate and communicate the risk coastal communities face from these coastal storms. This modeling system utilizes the ADvanced CIRCulation (ADCIRC) model for storm surge predictions and the Simulating Waves Nearshore (SWAN) model for the wave environment. These models were coupled, passing information to each other and computing over the same unstructured domain, allowing for the most accurate representation of the physical storm processes. The coupled SWAN-ADCIRC model was validated and has been set up to perform real-time forecast simulations (as well as hindcast). Modeled storm parameters were then passed to a coastal risk assessment tool. This tool, which is generic and universally applicable, generates spatial structural damage estimate maps on an individual structure basis for an area of interest. The required inputs for the coastal risk model included a detailed information about the individual structures, inundation levels, and wave heights for the selected region. Additionally, calculation of wind damage to structures was incorporated. The integrated coastal risk assessment system was then tested and applied to Charlestown, a small vulnerable coastal town along the southern shore of Rhode Island. The modeling system was applied to Hurricane Sandy and a synthetic storm. In both storm cases, effect of natural dunes on coastal risk was investigated. The resulting damage maps for the area (Charlestown) clearly showed that the dune eroded scenarios affected more structures, and increased the estimated damage. The system was also tested in forecast mode for a large Nor’Easters: Stella (March 2017). The results showed a good performance of the coupled model in forecast mode when compared to observations. Finally, a nearshore model XBeach was then nested within this regional grid (ADCIRC-SWAN) to simulate nearshore sediment transport processes and coastal erosion. Hurricane Irene (2011) was used to validate XBeach, on the basis of a unique beach profile dataset at the region. XBeach showed a relatively good performance, being able to estimate eroded volumes along the beach transects with a mean error of 16%. The validated model was then used to analyze the effectiveness of several erosion mitigation methods that were recommended in a recent study of coastal erosion in New England: beach nourishment, coastal bank (engineered core), and submerged breakwater as well as artificial surfing reef. It was shown that beach nourishment and coastal banks perform better to mitigate shoreline retreat and coastal erosion.

Keywords: ADCIRC, coastal flooding, storm surge, coastal risk assessment, living shorelines

Procedia PDF Downloads 117
668 Phylogeography and Evolutionary History of Whiting (Merlangius merlangus) along the Turkish Coastal Waters with Comparisons to the Atlantic

Authors: Aslı Şalcıoğlu, Grigorous Krey, Raşit Bilgin

Abstract:

In this study, the effect of the Turkish Straits System (TSS), comprising a biogeographical boundary that forms the connection between the Mediterranean and the Black Sea, on the evolutionary history, phylogeography and intraspecific gene flow of the whiting (Merlangius merlangus) a demersal fish species, was investigated. For these purposes, the mitochondrial DNA (CO1, cyt-b) genes were used. In addition, genetic comparisons samples from other regions (Greece, France, Atlantic) obtained from GenBank and Barcode of Life Database were made to better understand the phylogeographic history of the species at a larger geographic scale. Within this study, high level of genetic differentiation was observed along the Turkish coastal waters based on cyt-b gene, suggesting that TSS is a barrier to dispersal. Two different sub-species were also observed based on mitochondrial DNA, one found in Turkish coastal waters and Greece (M.m euxinus) and other (M.m. merlangus) in Atlantic, France.

Keywords: genetic, phylogeography, TSS, whiting

Procedia PDF Downloads 311
667 Integrated Risk Assessment of Storm Surge and Climate Change for the Coastal Infrastructure

Authors: Sergey V. Vinogradov

Abstract:

Coastal communities are presently facing increased vulnerabilities due to rising sea levels and shifts in global climate patterns, a trend expected to escalate in the long run. To address the needs of government entities, the public sector, and private enterprises, there is an urgent need to thoroughly investigate, assess, and manage the present and projected risks associated with coastal flooding, including storm surges, sea level rise, and nuisance flooding. In response to these challenges, a practical approach to evaluating storm surge inundation risks has been developed. This methodology offers an integrated assessment of potential flood risk in targeted coastal areas. The physical modeling framework involves simulating synthetic storms and utilizing hydrodynamic models that align with projected future climate and ocean conditions. Both publicly available and site-specific data form the basis for a risk assessment methodology designed to translate inundation model outputs into statistically significant projections of expected financial and operational consequences. This integrated approach produces measurable indicators of impacts stemming from floods, encompassing economic and other dimensions. By establishing connections between the frequency of modeled flood events and their consequences across a spectrum of potential future climate conditions, our methodology generates probabilistic risk assessments. These assessments not only account for future uncertainty but also yield comparable metrics, such as expected annual losses for each inundation event. These metrics furnish stakeholders with a dependable dataset to guide strategic planning and inform investments in mitigation. Importantly, the model's adaptability ensures its relevance across diverse coastal environments, even in instances where site-specific data for analysis may be limited.

Keywords: climate, coastal, surge, risk

Procedia PDF Downloads 57
666 The Phenomenon of the Seawater Intrusion with Fresh Groundwater in the Arab Region

Authors: Kassem Natouf, Ihab Jnad

Abstract:

In coastal aquifers, the interface between fresh groundwater and salty seawater may shift inland, reaching coastal wells and causing an increase in the salinity of the water they pump, putting them out of service. Many Arab coastal sites suffer from this phenomenon due to the increased pumping of coastal groundwater. This research aims to prepare a comprehensive study describing the common characteristics of the phenomenon of seawater intrusion with coastal freshwater aquifers in the Arab region, its general and specific causes and negative effects, in a way that contributes to overcoming this phenomenon, and to exchanging expertise between Arab countries in studying and analyzing it, leading to overcoming it. This research also aims to build geographical and relational databases for data, information and studies available in Arab countries about seawater intrusion with freshwater so as to provide the data and information necessary for managing groundwater resources on Arab coasts, including studying the effects of climate change on these resources and helping decision-makers in developing executive programs to overcome the seawater intrusion with groundwater. The research relied on the methodology of analysis and comparison, where the available information and data about the phenomenon in the Arab region were collected. After that, the information and data collected were studied and analyzed, and the causes of the phenomenon in each case, its results, and solutions for prevention were stated. Finally, the different cases were compared, and the common causes, results, and methods of treatment between them were deduced, and a technical report summarizing that was prepared. To overcome the phenomenon of seawater intrusion with fresh groundwater: (1) It is necessary to develop efforts to monitor the quantity and quality of groundwater on the coasts and to develop mathematical models to predict the impact of climate change, sea level rise, and human activities on coastal groundwater. (2) Over-pumping of coastal aquifers is an important cause of seawater intrusion. To mitigate this problem, Arab countries should reduce groundwater pumping and promote rainwater harvesting, surface irrigation, and water recycling practices. (3) Artificial recharge of coastal groundwater with various forms of water, whether fresh or treated, is a promising technology to mitigate the effects of seawater intrusion.

Keywords: coastal aquifers, seawater intrusion, fresh groundwater, salinity increase, Arab region, groundwater management, climate change effects, sustainable water practices, over-pumping, artificial recharge, monitoring and modeling, data databases, groundwater resources, negative effects, comparative analysis, technical report, water scarcity, groundwater quality, decision-making, environmental impact, agricultural practices

Procedia PDF Downloads 38
665 Water Quality Assessment Based on Operational Indicator in West Coastal Water of Malaysia

Authors: Seyedeh Belin Tavakoly Sany, H. Rosli, R. Majid, S. Aishah

Abstract:

In this study, water monitoring was performed from Nov. 2012 to Oct. 2013 to assess water quality and evaluate the spatial and temporal distribution of physicochemical and biological variables in water. Water samples were collected from 10 coastal water stations of West Port. In the case of water-quality assessment, multi-metric indices and operational indicators have been proposed to classify the trophic status at different stations. The trophic level of West Port coastal water ranges from eutrophic to hypertrophic. Chl-a concentration was used to estimate the biological response of phytoplankton biomass and indicated eutrophic conditions in West Port and mesotrophic conditions at the control site. During the study period, no eutrophication events or secondary symptoms occurred, which may be related to hydrodynamic turbulence and water exchange, which prevent the development of eutrophic conditions in the West Port.

Keywords: water quality, multi-metric indices, operational indicator, Malaysia, West Port

Procedia PDF Downloads 296
664 Coastal Water Characteristics along the Saudi Arabian Coastline

Authors: Yasser O. Abualnaja1, Alexandra Pavlidou2, Taha Boksmati3, Ahmad Alharbi3, Hammad Alsulmi3, Saleh Omar Maghrabi3, Hassan Mowalad3, Rayan Mutwalli3, James H. Churchill4, Afroditi Androni2, Dionysios Ballas2, Ioannis Hatzianestis2, Harilaos Kontoyiannis2, Angeliki Konstantinopoulou2, Georgios Krokkos1, 5, Georgios Pappas2, Vassilis P. Papadopoulos2, Konstantinos Parinos2, Elvira Plakidi2, Eleni Rousselaki2, Dimitris Velaoras2, Panagiota Zachioti2, Theodore Zoulias2, Ibrahim Hoteit5.

Abstract:

The coastal areas along the Kingdom of Saudi Arabia on both the Red Sea and Arabian Gulf have been witnessing in the past decades an unprecedented economic growth and a rapid increase in anthropogenic activities. Therefore, the Saudi Arabian government has decided to frame a strategy for sustainable development of the coastal and marine environments, which comes in the context of the Vision 2030, aimed at providing the first comprehensive ‘Status Quo Assessment’ of the Kingdom’s coastal and marine environments. This strategy will serve as a baseline assessment for future monitoring activities; this baseline is relied on scientific evidence of the drivers, pressures, and their impact on the environments of the Red Sea and Arabian Gulf. A key element of the assessment was the cumulative pressures of the hotspots analysis, which was developed following the principles of the Driver-Pressure-State-Impact-Response (DPSIR) framework and using the cumulative pressure and impact assessment methodology. Ten hotspot sites were identified, eight in the Red Sea and two in the Arabian Gulf. Thus, multidisciplinary research cruises were conducted throughout the Red Sea and the Arabian Gulf coastal and marine environments in June/July 2021 and September 2021, respectively, in order to understand the relative impact of hydrography and the various pressures on the quality of seawater and sediments. The main objective was to record the physical and biogeochemical parameters along the coastal waters of the Kingdom, tracing the dispersion of contaminants related to specific pressures. The assessment revealed the effect of hydrography on the trophic status of the southern marine coastal areas of the Red Sea. Jeddah Lagoon system seems to face significant eutrophication and pollution challenges, whereas sediments are enriched in some heavy metals in many areas of the Red Sea and the Arabian Gulf. This multidisciplinary research in the Red Sea and the Arabian Gulf coastal waters will pave the way for future detailed environmental monitoring strategies for the Saudi Arabian marine environment.

Keywords: arabian gulf, contaminants, hotspot, red sea

Procedia PDF Downloads 113
663 Application of Shore Protective Structures in Optimum Land Using of Defense Sites Located in Coastal Cities

Authors: Mir Ahmad Lashteh Neshaei, Hamed Afsoos Biria, Ata Ghabraei, Mir Abdolhamid Mehrdad

Abstract:

Awareness of effective land using issues in coastal area including protection of natural ecosystems and coastal environment due to the increasing of human life along the coast is of great importance. There are numerous valuable structures and heritages which are located in defence sites and waterfront area. Marine structures such as groins, sea walls and detached breakwaters are constructed in coast to improve the coast stability against bed erosion due to changing wave and climate pattern. Marine mechanisms and interaction with the shore protection structures need to be intensively studied. Groins are one of the most prominent structures that are used in shore protection to create a safe environment for coastal area by maintaining the land against progressive coastal erosion. The main structural function of a groin is to control the long shore current and littoral sediment transport. This structure can be submerged and provide the necessary beach protection without negative environmental impact. However, for submerged structures adopted for beach protection, the shoreline response to these structures is not well understood at present. Nowadays, modelling and computer simulation are used to assess beach morphology in the vicinity of marine structures to reduce their environmental impact. The objective of this study is to predict the beach morphology in the vicinity of submerged groins and comparison with non-submerged groins with focus on a part of the coast located in Dahane sar Sefidrood, Guilan province, Iran where serious coast erosion has occurred recently. The simulations were obtained using a one-line model which can be used as a first approximation of shoreline prediction in the vicinity of groins. The results of the proposed model are compared with field measurements to determine the shape of the coast. Finally, the results of the present study show that using submerged groins can have a good efficiency to control the beach erosion without causing severe environmental impact to the coast. The important outcome from this study can be employed in optimum designing of defence sites in the coastal cities to improve their efficiency in terms of re-using the heritage lands.

Keywords: submerged structures, groin, shore protective structures, coastal cities

Procedia PDF Downloads 318
662 Research on Land Use Pattern and Employment-Housing Space of Coastal Industrial Town Based on the Investigation of Liaoning Province, China

Authors: Fei Chen, Wei Lu, Jun Cai

Abstract:

During the Twelve Five period, China promulgated industrial policies promoting the relocation of energy-intensive industries to coastal areas in order to utilize marine shipping resources. Consequently, some major state-owned steel and gas enterprises have relocated and resulted in a large-scale coastal area development. However, some land may have been over-exploited with seamless coastline projects. To balance between employment and housing, new industrial coastal towns were constructed to support the industrial-led development. In this paper, we adopt a case-study approach to closely examine the development of several new industrial coastal towns of Liaoning Province situated in the Bohai Bay area, which is currently under rapid economic growth. Our investigations reflect the common phenomenon of long distance commuting and a massive amount of vacant residences. More specifically, large plant relocation caused hundreds of kilometers of daily commute and enterprises had to provide housing subsidies and education incentives to motivate employees to relocate to coastal areas. Nonetheless, many employees still refuse to relocate due to job stability, diverse needs of family members and access to convenient services. These employees averaged 4 hours of commute daily and some who lived further had to reside in temporary industrial housing units and subject to long-term family separation. As a result, only a small portion of employees purchase new coastal residences but mostly for investment and retirement purposes, leading to massive vacancy and ghost-town phenomenon. In contrast to the low demand, coastal areas tend to develop large amount of residences prior to industrial relocation, which may be directly related to local government finances. Some local governments have sold residential land to developers to general revenue to support the subsequent industrial development. Subject to the strong preference of ocean-view, residential housing developers tend to select coast-line land to construct new residential towns, which further reduces the access of marine resources for major industrial enterprises. This violates the original intent of developing industrial coastal towns and drastically limits the availability of marine resources. Lastly, we analyze the co-existence of over-exploiting residential areas and massive vacancies in reference to the demand and supply of land, as well as the demand of residential housing units with the choice criteria of enterprise employees.

Keywords: coastal industry town, commuter traffic, employment-housing space, outer suburb industrial area

Procedia PDF Downloads 222
661 Climate Change and Its Impacts: The Case of Coastal Fishing Communities of the Meghna River in South-Central Bangladesh

Authors: Md. Royhanur Islam, Thomas Cansse, Md. Sahidul Islam, Atiqur Rahman Sunny

Abstract:

The geographical location of Bangladesh makes it one of the most vulnerable countries to climate change. Climate-induced phenomena mainly affect the south-central region of Bangladesh (Laxmipur district) where they have begun to occur more frequently. The aim of the study was to identify the hydro-climatic factors that lead to weather-related disasters in the coastal areas and analyse the consequences of these factors on coastal livelihoods, with possible adaptation options using participatory rural appraisal (PRA) tools. The present study showed several disasters such as land erosion, depressions and cyclones, coastal flooding, storm surge, and precipitation. The frequency of these disasters is of a noticeable rate. Surveys have also discovered that land erosion is ongoing. Tidal water is being introduced directly into the mainland, and as a result of the salt intrusion, production capacity is declining. The coastal belt is an important area for fishing activities, but due to changed fishing times and a lack of Alternative Income Generating Activities (AIGAs), people have been forced to search for alternative livelihood options by taking both short-term and long-term adaptation options. Therefore, in order to increase awareness and minimize the losses, vulnerable communities must be fully incorporated into disaster response strategies. The government as well as national and international donor organizations should come forward and resolve the present situation of these vulnerable groups since otherwise, they will have to endure endless and miserable suffering due to the effects of climate change ahead in their lives.

Keywords: adaptation, community, fishery development, livelihood

Procedia PDF Downloads 123
660 Assessment of Soil Salinity through Remote Sensing Technique in the Coastal Region of Bangladesh

Authors: B. Hossen, Y. Helmut

Abstract:

Soil salinity is a major problem for the coastal region of Bangladesh, which has been increasing for the last four decades. Determination of soil salinity is essential for proper land use planning for agricultural crop production. The aim of the research is to estimate and monitor the soil salinity in the study area. Remote sensing can be an effective tool for detecting soil salinity in data-scarce conditions. In the research, Landsat 8 is used, which required atmospheric and radiometric correction, and nine soil salinity indices are applied to develop a soil salinity map. Ground soil salinity data, i.e., EC value, is collected as a printed map which is then scanned and digitized to develop a point shapefile. Linear regression is made between satellite-based generated map and ground soil salinity data, i.e., EC value. The results show that maximum R² value is found for salinity index SI 7 = G*R/B representing 0.022. This minimal R² value refers that there is a negligible relationship between ground EC value and salinity index generated value. Hence, these indices are not appropriate to assess soil salinity though many studies used those soil salinity indices successfully. Therefore, further research is necessary to formulate a model for determining the soil salinity in the coastal of Bangladesh.

Keywords: soil salinity, EC, Landsat 8, salinity indices, linear regression, remote sensing

Procedia PDF Downloads 345
659 Coastalization and Urban Sprawl in the Mediterranean: Using High-Resolution Multi-Temporal Data to Identify Typologies of Spatial Development

Authors: Apostolos Lagarias, Anastasia Stratigea

Abstract:

Coastal urbanization is heavily affecting the Mediterranean, taking the form of linear urban sprawl along the coastal zone. This process is posing extreme pressure on ecosystems, leading to an unsustainable model of growth. The aim of this research is to analyze coastal urbanization patterns in the Mediterranean using High-resolution multi-temporal data provided by the Global Human Settlement Layer (GHSL) database. Methodology involves the estimation of a set of spatial metrics characterizing the density, aggregation/clustering and dispersion of built-up areas. As case study areas, the Spanish Coast and the Adriatic Italian Coast are examined. Coastalization profiles are examined and selected sub-areas massively affected by tourism development and suburbanization trends (Costa Blanca/Murcia, Costa del Sol, Puglia, Emilia-Romagna Coast) are analyzed and compared. Results show that there are considerable differences between the Spanish and the Italian typologies of spatial development, related to the land use structure and planning policies applied in each case. Monitoring and analyzing spatial patterns could inform integrated Mediterranean strategies for coastal areas and redirect spatial/environmental policies towards a more sustainable model of growth

Keywords: coastalization, Mediterranean, multi-temporal, urban sprawl, spatial metrics

Procedia PDF Downloads 140
658 Evaluating Radiative Feedback Mechanisms in Coastal West Africa Using Regional Climate Models

Authors: Akinnubi Rufus Temidayo

Abstract:

Coastal West Africa is highly sensitive to climate variability, driven by complex ocean-atmosphere interactions that shape temperature, precipitation, and extreme weather. Radiative feedback mechanisms—such as water vapor feedback, cloud-radiation interactions, and surface albedo—play a critical role in modulating these patterns. Yet, limited research addresses these feedbacks in climate models specific to West Africa’s coastal zones, creating challenges for accurate climate projections and adaptive planning. This study aims to evaluate the influence of radiative feedbacks on the coastal climate of West Africa by quantifying the effects of water vapor, cloud cover, and sea surface temperature (SST) on the region’s radiative balance. The study uses a regional climate model (RCM) to simulate feedbacks over a 20-year period (2005-2025) with high-resolution data from CORDEX and satellite observations. Key mechanisms investigated include (1) Water Vapor Feedback—the amplifying effect of humidity on warming, (2) Cloud-Radiation Interactions—the impact of cloud cover on radiation balance, especially during the West African Monsoon, and (3) Surface Albedo and Land-Use Changes—effects of urbanization and vegetation on the radiation budget. Preliminary results indicate that radiative feedbacks strongly influence seasonal climate variability in coastal West Africa. Water vapor feedback amplifies dry-season warming, cloud-radiation interactions moderate surface temperatures during monsoon seasons, and SST variations in the Atlantic affect the frequency and intensity of extreme rainfall events. The findings suggest that incorporating these feedbacks into climate planning can strengthen resilience to climate impacts in West African coastal communities. Further research should refine regional models to capture anthropogenic influences like greenhouse gas emissions, guiding sustainable urban and resource planning to mitigate climate risks.

Keywords: west africa, radiative, climate, resilence, anthropogenic

Procedia PDF Downloads 13
657 Investigating the Socio-ecological Impacts of Sea Level Rise on Coastal Rural Communities in Ghana

Authors: Benjamin Ankomah-Asare, Richard Adade

Abstract:

Sea level rise (SLR) poses a significant threat to coastal communities globally. Ghana has over the years implemented protective measures such as the construction of groynes and revetment to serve as barriers to sea waves in major cities and towns to prevent sea erosion and flooding. For vulnerable rural coastal communities, the planned retreat is often proposed; however, relocation costs are often underestimated as losses of future social and cultural value are not always adequately taken into account. Through a mixed-methods approach combining qualitative interviews, surveys, and spatial analysis, the study examined the experiences of coastal rural communities in Ghana and assess the effectiveness of relocation strategies in addressing the socio-economic and environmental challenges posed by sea level rise. The study revealed the devastating consequences of sea level rise on these communities, including increased flooding, erosion, and saltwater intrusion into freshwater sources. Moreover, it highlights the adaptive capacities within these communities and how factors such as infrastructure, economic activities, cultural heritage, and governance structures shape their resilience in the face of environmental change. While relocation can be an effective strategy in reducing the risks associated with sea level rise, the study recommends that proper implementation of this adaptation strategy can be achieved when coupled with community-led planning, participatory decision-making, and targeted support for vulnerable groups.

Keywords: sea level rise, relocation, socio-ecological impacts, rural communities

Procedia PDF Downloads 54
656 Integrated Coastal Management for the Sustainable Development of Coastal Cities: The Case of El-Mina, Tripoli, Lebanon

Authors: G. Ghamrawi, Y. Abunnasr, M. Fawaz, S. Yazigi

Abstract:

Coastal cities are constantly exposed to environmental degradation and economic regression fueled by rapid and uncontrolled urban growth as well as continuous resource depletion. This is the case of the City of Mina in Tripoli (Lebanon), where lack of awareness to preserve social, ecological, and historical assets, coupled with the increasing development pressures, are threatening the socioeconomic status of the city residents, the quality of life and accessibility to the coast. To address these challenges, a holistic coastal urban design and planning approach was developed to analyze the environmental, political, legal, and socioeconomic context of the city. This approach aims to investigate the potential of balancing urban development with the protection and enhancement of cultural, ecological, and environmental assets under an integrated coastal zone management approach (ICZM). The analysis of Mina's different sectors adopted several tools that include direct field observation, interviews with stakeholders, analysis of available data, historical maps, and previously proposed projects. The findings from the analysis were mapped and graphically represented, allowing the recognition of character zones that become the design intervention units. Consequently, the thesis proposes an urban, city-scale intervention that identifies 6 different character zones (the historical fishing port, Abdul Wahab island, the abandoned Port Said, Hammam el Makloub, the sand beach, and the new developable area) and proposes context-specific design interventions that capitalize on the main characteristics of each zone. Moreover, the intervention builds on the institutional framework of ICZM as well as other studies previously conducted for the coast and adopts nature-based solutions with hybrid systems for providing better environmental design solutions for developing the coast. This enables the realization of an all-inclusive, well-connected shoreline with easy and free access towards the sea; a developed shoreline with an active local economy, and an improved urban environment.

Keywords: blue green infrastructure, coastal cities, hybrid solutions, integrated coastal zone management, sustainable development, urban planning

Procedia PDF Downloads 157
655 Beggar-Thy-Neighbor's Beach: Pricing Adaptation to Sea-Level Rise

Authors: Arlan Zandro Brucal, John Lynham

Abstract:

With the accelerated sea-level rise (SLR) increasingly becoming a concern, demand for coastal management and protection is expected to grow. Among the coastal management and protection methods, building seawalls are among the most controversial due to the negative externalities they impose on beachgoers and neighboring properties. This paper provides estimates of the external cost associated with building seawalls on the island of Oahu in Hawaii. Using hedonic pricing approach on real properties sold between 1980-2010 and aerial photographs of seawalls in 1995, the paper finds that (1) while seawalls do increase the value of protected properties, the share of armored properties appear to be negatively correlated with property sale prices, suggesting that the positive effect of seawalls tend to decline as more and more rely on this coastal management method; and (2) the value of beachfront properties tend to decline as they get approach seawalls. Results suggest that policymakers should devise a policy that would internalize the externalities associated with private-sector adaptation to climate change.

Keywords: private sector climate change adaptation, externalities, sea-level rise, hedonic pricing

Procedia PDF Downloads 288
654 Revitalizing Coastal Ecosystems: Evaluating the Costs and Benefits of Restoring Clam Gardens for Indigenous Communities in British Columbia

Authors: Daniel Chen, Chengyi Li, Naifu Xu, Shangxuan Yang

Abstract:

Climate change has led to substantial changes in coastal ecosystems, including elevated ocean temperatures, increased acidity, and disrupted marine habitats. These environmental impacts have also resulted in the decline of traditional Indigenous food sources on the coast of British Columbia, including clams and salmon, which have been essential to the diet and cultural practices of the coastal Indigenous communities. This research evaluates and analyzes the costs and benefits of restoring and building clam gardens, an ancestral Indigenous mariculture technique in the Pacific Northwest. Clam gardens, which involve the construction of intertidal rock walls to enhance clam production, have been shown to more than triple clam yields compared to non-walled beaches. This research analyzes the costs and benefits to Indigenous individuals, including factors such as travel, equipment, time, food supply, and cultural engagement; then it discusses the potential of clam gardens as a significant food resource with additional environmental co-benefits, given the prevalence of clam gardens and coastlines in British Columbia. Moreover, the study concludes with policy recommendations to support the restoration and preservation of clam gardens, highlighting their potential to provide sustainable seafood production, environmental co-benefits, and social-environmental educational opportunities for Indigenous communities and the wider public.

Keywords: British Columbia coastline, clam garden, coastal resource management, Indigenous communities

Procedia PDF Downloads 23
653 Physical and Morphological Response to Land Reclamation Projects in a Wave-Dominated Bay

Authors: Florian Monetti, Brett Beamsley, Peter McComb, Simon Weppe

Abstract:

Land reclamation from the ocean has considerably increased over past decades to support worldwide rapid urban growth. Reshaping the coastline, however, inevitably affects coastal systems. One of the main challenges for coastal oceanographers is to predict the physical and morphological responses for nearshore systems to man-made changes over multiple time-scales. Fully-coupled numerical models are powerful tools for simulating the wide range of interactions between flow field and bedform morphology. Restricted and inconsistent measurements, combined with limited computational resources, typically make this exercise complex and uncertain. In the present study, we investigate the impact of proposed land reclamation within a wave-dominated bay in New Zealand. For this purpose, we first calibrated our morphological model based on the long-term evolution of the bay resulting from land reclamation carried out in the 1950s. This included the application of sedimentological spin-up and reduction techniques based on historical bathymetry datasets. The updated bathymetry, including the proposed modifications of the bay, was then used to predict the effect of the proposed land reclamation on the wave climate and morphology of the bay after one decade. We show that reshaping the bay induces a distinct symmetrical response of the shoreline which likely will modify the nearshore wave patterns and consequently recreational activities in the area.

Keywords: coastal waves, impact of land reclamation, long-term coastal evolution, morphodynamic modeling

Procedia PDF Downloads 176
652 Potential Contribution of Combined High-Resolution and Fluorescence Remote Sensing to Coastal Ecosystem Service Assessments

Authors: Yaner Yan, Ning Li, Yajun Qiao, Shuqing An

Abstract:

Although most studies have focused on assessing and mapping terrestrial ecosystem services, there is still a knowledge gap on coastal ecosystem services and an urgent need to assess them. Lau (2013) clearly defined five types of costal ecosystem services: carbon sequestration, shoreline protection, fish nursery, biodiversity, and water quality. While high-resolution remote sensing can provide the more direct, spatially estimates of biophysical parameters, such as species distribution relating to biodiversity service, and Fluorescence information derived from remote sensing direct relate to photosynthesis, availing in estimation of carbon sequestration and the response to environmental changes in coastal wetland. Here, we review the capabilities of high-resolution and fluorescence remote sesing for describing biodiversity, vegetation condition, ecological processes and highlight how these prodicts may contribute to costal ecosystem service assessment. In so doing, we anticipate rapid progress to combine the high-resolution and fluorescence remote sesing to estimate the spatial pattern of costal ecosystem services.

Keywords: ecosystem services, high resolution, remote sensing, chlorophyll fluorescence

Procedia PDF Downloads 507
651 Genome Analyses of Pseudomonas Fluorescens b29b from Coastal Kerala

Authors: Wael Ali Mohammed Hadi

Abstract:

Pseudomonas fluorescens B29B, which has asparaginase enzymatic activity, was isolated from the surface coastal seawater of Trivandrum, India. We report the complete Pseudomonas fluorescens B29B genome sequenced, identified, and annotated from a marine source. We find the genome at most minuscule a 7,331,508 bp single circular chromosome with a GC content of 62.19% and 6883 protein-coding genes. Three hundred forty subsystems were identified, including two predicted asparaginases from the genome analysis of P. fluorescens B29B for further investigation. This genome data will help further industrial biotechnology applications of proteins in general and asparaginase as a target.

Keywords: pseudomonas, marine, asparaginases, Kerala, whole-genome

Procedia PDF Downloads 215
650 Land Subsidence Monitoring in Semarang and Demak Coastal Area Using Persistent Scatterer Interferometric Synthetic Aperture Radar

Authors: Reyhan Azeriansyah, Yudo Prasetyo, Bambang Darmo Yuwono

Abstract:

Land subsidence is one of the problems that occur in the coastal areas of Java Island, one of which is the Semarang and Demak areas located in the northern region of Central Java. The impact of sea erosion, rising sea levels, soil structure vulnerable and economic development activities led to both these areas often occurs on land subsidence. To know how much land subsidence that occurred in the region needs to do the monitoring carried out by remote sensing methods such as PS-InSAR method. PS-InSAR is a remote sensing technique that is the development of the DInSAR method that can monitor the movement of the ground surface that allows users to perform regular measurements and monitoring of fixed objects on the surface of the earth. PS InSAR processing is done using Standford Method of Persistent Scatterers (StaMPS). Same as the recent analysis technique, Persistent Scatterer (PS) InSAR addresses both the decorrelation and atmospheric problems of conventional InSAR. StaMPS identify and extract the deformation signal even in the absence of bright scatterers. StaMPS is also applicable in areas undergoing non-steady deformation, with no prior knowledge of the variations in deformation rate. In addition, this method can also cover a large area so that the decline in the face of the land can cover all coastal areas of Semarang and Demak. From the PS-InSAR method can be known the impact on the existing area in Semarang and Demak region per year. The PS-InSAR results will also be compared with the GPS monitoring data to determine the difference in land decline that occurs between the two methods. By utilizing remote sensing methods such as PS-InSAR method, it is hoped that the PS-InSAR method can be utilized in monitoring the land subsidence and can assist other survey methods such as GPS surveys and the results can be used in policy determination in the affected coastal areas of Semarang and Demak.

Keywords: coastal area, Demak, land subsidence, PS-InSAR, Semarang, StaMPS

Procedia PDF Downloads 267
649 Insights on the Social-Economic Implications of the Blue Economy Concept on Coastal Tourism in Tonga

Authors: Amelia Faotusia

Abstract:

The blue economy concept was coined by Pacific nations in recognition of the importance of sustainably managing their extensive marine territories. This is especially important for major ocean-based economic sectors of Pacific economies, such as coastal tourism. There is an absence of research, however, on the key ways in which the blue economy concept has emerged in discourse and public policy in Pacific countries, as well as how it articulates with coastal tourism. This research helps to fill such a gap with a specific focus on Tonga through the application of a post-positivist research approach to conduct a desktop study of relevant national documents and qualitative interviews with relevant government staff, civil society organizations, and tourism operators. The findings of the research reflect the importance of institutional integration and partnerships for a successful blue economy transition and are presented in the form of two case studies corresponding to two sub-sectors of Tonga’s coastal tourism sector: (i) the whale-watching and swimming industry, and (ii) beach resorts and restaurants. A thematic analysis applied to the interview data of both cases then enabled the identification of key areas and issues for socio-economic policy intervention and recommendations in support of blue economy transitions in Tonga’s coastal tourism sector. Examples of the relevant areas and issues that emerged included the importance of foreign direct investment, local market access, community-based special management areas, as well as the need to address the anthropogenic impacts of tropical cyclones, whale tourism, plastic litter on coastal assets, and ecosystems. Policy and practical interventions in support of addressing such issues include a proposed restructuring of the whale-watching and swimming licensing system; integration of climate resilience, adaptation, and capacity building as priorities of local blue economy interventions; as well as strengthening of the economic sustainability dimension of blue economy policies. Finally, this research also revealed the need for further specificity and research on the influence and value of local Tongan culture and traditional knowledge, particularly within existing customary marine tenure systems, on Tonga’s national and sectoral blue economy policies and transitions.

Keywords: blue economy, coastal tourism, integrated ocean management, ecosystem resilience

Procedia PDF Downloads 93
648 Comparison of Salt-Water Intrusion into Eastern and Western Coastal Aquifers of Urmia Lake thru Over-Exploration of Groundwater Resources

Authors: Saman Javadi, Mohammad Hassan Mahmoudi, Fatemeh Jafari, Aminreza Neshat

Abstract:

Urmia Lake’s water level has been dropped during the past decade. Although the most common reason in studies was declared climate change, but observation of adjacent lake (like Van in Turkey) is not the same as the common reason. Most of studies were focused on climate and land use change, but groundwater resource as one of the most important element is negligible. Due to population and agriculture activities growth, exploration of groundwater resource has been increased. In as much as continued decline of water levels can lead to saltwater intrusion, reduce stream discharge near outcrop regions and threaten groundwater quality, aquifers of this region were affected by saltwater intrusion of Urmia Lake. In this research comparison of saltwater intrusion into eastern and western coastal aquifer was studied. In conclusion eastern aquifers are in a critical situation; vice versa the western ones are in a better situation. Thus applying management of groundwater operation would be necessary for eastern aquifers.

Keywords: coastal aquifer, groundwater over-exploration, saltwater intrusion, Urmia Lake

Procedia PDF Downloads 539
647 Wind Wave Modeling Using MIKE 21 SW Spectral Model

Authors: Pouya Molana, Zeinab Alimohammadi

Abstract:

Determining wind wave characteristics is essential for implementing projects related to Coastal and Marine engineering such as designing coastal and marine structures, estimating sediment transport rates and coastal erosion rates in order to predict significant wave height (H_s), this study applies the third generation spectral wave model, Mike 21 SW, along with CEM model. For SW model calibration and verification, two data sets of meteorology and wave spectroscopy are used. The model was exposed to time-varying wind power and the results showed that difference ratio mean, standard deviation of difference ratio and correlation coefficient in SW model for H_s parameter are 1.102, 0.279 and 0.983, respectively. Whereas, the difference ratio mean, standard deviation and correlation coefficient in The Choice Experiment Method (CEM) for the same parameter are 0.869, 1.317 and 0.8359, respectively. Comparing these expected results it is revealed that the Choice Experiment Method CEM has more errors in comparison to MIKE 21 SW third generation spectral wave model and higher correlation coefficient does not necessarily mean higher accuracy.

Keywords: MIKE 21 SW, CEM method, significant wave height, difference ratio

Procedia PDF Downloads 404
646 Heavy Metals Concentration in Sediments Along the Ports, Samoa

Authors: T. Imo, F. Latū, S. Aloi, J. Leung-Wai, V. Vaurasi, P. Amosa, M. A. Sheikh

Abstract:

Contamination of heavy metals in coral reefs and coastal areas is a serious ecotoxicological and environmental problem due to direct runoff from anthropogenic wastes, commercial vessels, and discharge from industrial effluents. In Samoa, the information on the ecotoxicological impact of heavy metals on sediments is limited. This study presents baseline data on the concentration and distribution of heavy metals in sediments collected along the commercial and fishing ports in Samoa. Surface sediment samples were collected within the months of August-October 2013 from the 5 sites along the 2 ports. Sieved sample fractions were used for the evaluation of sediment physicochemical parameters namely pH, conductivity, organic matter, and bicarbonates of calcium. Heavy metal (Cu, Pb) analysis was achieved by flame atomic absorption spectrometry. Two heavy metals (Cu, Pb) were detected from each port with some concentration below the WHO permissible maximum concentration of environment quality standard. The results obtained from this study advocate for further studies regarding emerging threats of heavy metals on the vital marine resources which have significant importance to the livelihood of coastal societies, particularly Small Island States including Samoa.

Keywords: coastal environment, heavy metals, pollution, sediments

Procedia PDF Downloads 330
645 Adaptive Approach Towards Comprehensive Urban Development Simulation in Coastal Regions: Case Study of New Alamein City, Egypt

Authors: Nada Mohamed, Abdel Aziz Mohamed

Abstract:

Climate change in coastal areas is a global issue that can be felt on local scale and will be around for decades and centuries to come to an end; it also has critical risks on the city’s economy, communities, and the natural environment. One of these changes that cause a huge risk on coastal cities is the sea level rise (SLR). SLR is a result of scarcity and reduction in global environmental system. The main cause of climate change and global warming is the countries with high development index (HDI) as Japan and Germany while the medium and low HDI countries as Egypt does not have enough awareness and advanced tactics to adapt with this changes that destroy urban areas and cause loss in land and economy. This is why Climate Resilience is one of the UN sustainable development goals 2030, which is calling for actions to strengthen climate change resilience through mitigation and adaptation. For many reasons, adaptation has received less attention than mitigation and it is only recently that adaptation has become a focal global point of attention. This adaption can be achieved through some actions such as upgrading the use and the design of the land, adjusting business and activities of people, and increasing community understanding of climate risks. To reach the adaption goals, and we have to apply a strategic pathway to Climate Resilience, which is the Urban Bioregionalism Paradigm. Resiliency has been framed as persistence, adaptation, and transformation. Climate Resilience decision support system includes a visualization platform where ecological, social, and economic information can be viewed alongside with specific geographies that's why Urban Bioregionalism is a socio-ecological system which is defined as a paradigm that has potential to help move social attitudes toward environmental understanding and deepen human-environment connections within ecological development. The research aim is to achieve an adaptive integrated urban development model throughout the analyses of tactics and strategies that can be used to adapt urban areas and coastal communities to the challenges of climate changes especially SLR and also simulation model using advanced technological software for a coastal city corridor to elaborates the suitable strategy to apply.

Keywords: climate resilience, sea level rise, SLR, coastal resilience, adaptive development simulation

Procedia PDF Downloads 139
644 A Sharp Interface Model for Simulating Seawater Intrusion in the Coastal Aquifer of Wadi Nador (Algeria)

Authors: Abdelkader Hachemi, Boualem Remini

Abstract:

Seawater intrusion is a significant challenge faced by coastal aquifers in the Mediterranean basin. This study aims to determine the position of the sharp interface between seawater and freshwater in the aquifer of Wadi Nador, located in the Wilaya of Tipaza, Algeria. A numerical areal sharp interface model using the finite element method is developed to investigate the spatial and temporal behavior of seawater intrusion. The aquifer is assumed to be homogeneous and isotropic. The simulation results are compared with geophysical prospection data obtained through electrical methods in 2011 to validate the model. The simulation results demonstrate a good agreement with the geophysical prospection data, confirming the accuracy of the sharp interface model. The position of the sharp interface in the aquifer is found to be approximately 1617 meters from the sea. Two scenarios are proposed to predict the interface position for the year 2024: one without pumping and the other with pumping. The results indicate a noticeable retreat of the sharp interface position in the first scenario, while a slight decline is observed in the second scenario. The findings of this study provide valuable insights into the dynamics of seawater intrusion in the Wadi Nador aquifer. The predicted changes in the sharp interface position highlight the potential impact of pumping activities on the aquifer's vulnerability to seawater intrusion. This study emphasizes the importance of implementing measures to manage and mitigate seawater intrusion in coastal aquifers. The sharp interface model developed in this research can serve as a valuable tool for assessing and monitoring the vulnerability of aquifers to seawater intrusion.

Keywords: seawater intrusion, sharp interface, coastal aquifer, algeria

Procedia PDF Downloads 121
643 NEOM Coast from Intertidal to Sabkha Systems: A Geological Overview

Authors: Mohamed Abouelresh, Subhajit Kumar, Lamidi Babalola, Septriandi Chan, Ali Al Musabeh A., Thadickal V. Joydas, Bruno Pulido

Abstract:

Neom has a relatively long coastline on the Red Sea and the Gulf of Aqaba, which is about 300 kilometres long, in addition to many naturally formed bays along the Red Sea coast. Undoubtedly, these coasts provide an excellent opportunity for tourism and other activities; however, these coastal areas host a wide range of salinity-dependent ecosystems that need to be protected. The main objective of the study was to identify the coastal features, including tidal flats and salt flats, along the NEOM coast. A base map of the study area generated from the satellite images contained the main landform features and, in particular, the boundaries of the inland and coastal sabkhas. A field survey was conducted to map and characterize the intertidal and sabkha landforms. The coastal and inner coastal areas of NEOM are mainly covered by the quaternary sediments, which include gravel sheets, terraces, raised reef limestone, evaporite successions, eolian dunes, and undifferentiated sand/gravel deposits (alluvium, alluvial outwash, wind-blown sand beach). There are different landforms that characterizes the NEOM coast, including rocky coast, tidal zone, and sabkha. Sabkha area ranges between a few to tens of square kilometers. Coastal sabkha extended across the shoreline of NEOM, specifically at Gayal and Sharma areas, while the continental sabkha only existed at Gayal Town. The inland Sabkha at Gayal is mainly composed of a thin (15-25 cm) evaporite crust composed of a dark brown, cavernous, rugged, pitted, colloidal salty sand layer with salt-tolerant vegetation. The inland Sabkha is considered a groundwater-driven sedimentary system as indicated by syndepositional intra-sediment capillary evaporites, which precipitate in both marine and continental salt flats. Gayal coastal Sabkha is made up of tidal inlets, tidal creeks, and lagoons followed in a landward direction with well-developed sabkha layers. The surface sediments of the coastal Sabkha are composed of unlithified calcareous, gypsiferous, coarse to medium sands, and silt with bioclastic fragments underlain by several organic-rich layers. The coastal flat is graded landward into widespread, flat vegetated Sabkhas dissected by tributaries of the fluvial system, which debouches to the Red Sea. The coast from Gayal to Magna through Ras El-Sheikh Humaid is continuously subjected to tidal flows, which create an intertidal depositional system. The intertidal flats at NEOM are extensive, nearly horizontal land forming a very dynamic system in which several physical, chemical, geomorphological, and biological processes are acting simultaneously. The current work provides a field-based identification of the coastal sabkha and intertidal sites at NEOM. However, the mutual interaction between tidal flows and sabkha development, particularly at Gayal, needs to be well understood through comprehensive field and lab analysis.

Keywords: coast, intertidal, deposition, sabkha

Procedia PDF Downloads 84
642 Impact of Climate Change on Sea Level Rise along the Coastline of Mumbai City, India

Authors: Chakraborty Sudipta, A. R. Kambekar, Sarma Arnab

Abstract:

Sea-level rise being one of the most important impacts of anthropogenic induced climate change resulting from global warming and melting of icebergs at Arctic and Antarctic, the investigations done by various researchers both on Indian Coast and elsewhere during the last decade has been reviewed in this paper. The paper aims to ascertain the propensity of consistency of different suggested methods to predict the near-accurate future sea level rise along the coast of Mumbai. Case studies at East Coast, Southern Tip and West and South West coast of India have been reviewed. Coastal Vulnerability Index of several important international places has been compared, which matched with Intergovernmental Panel on Climate Change forecasts. The application of Geographic Information System mapping, use of remote sensing technology, both Multi Spectral Scanner and Thematic Mapping data from Landsat classified through Iterative Self-Organizing Data Analysis Technique for arriving at high, moderate and low Coastal Vulnerability Index at various important coastal cities have been observed. Instead of data driven, hindcast based forecast for Significant Wave Height, additional impact of sea level rise has been suggested. Efficacy and limitations of numerical methods vis-à-vis Artificial Neural Network has been assessed, importance of Root Mean Square error on numerical results is mentioned. Comparing between various computerized methods on forecast results obtained from MIKE 21 has been opined to be more reliable than Delft 3D model.

Keywords: climate change, Coastal Vulnerability Index, global warming, sea level rise

Procedia PDF Downloads 132
641 Coastal Cliff Protection in Beit Yanai, Israel: Examination of Alternatives and Public Preference Analysis

Authors: Tzipi Eshet

Abstract:

The primary objectives of this work are the examination of public preferences and attributed importance to different characteristics of coastal cliff protection alternatives, and drawing conclusions about the applicable alternative in Beit-Yanai beach. Erosion of coastal cliffs is a natural phenomenon that occurs in many places in the world. This creates problems along the coastlines, which are densely populated areas with highly developed economic activity. In recent years, various aspects of the aeolianite cliffs along the Israeli coast have been studied extensively. There is a consensus among researchers regarding a general trend of cliff retreat. This affects civilian infrastructure, wildlife habitats and heritage values, as well as Increases the risk to human life. The Israeli government, committed to the integrated coastal zones management approach, decided on a policy and guidelines to deal with cliff erosion, which includes establishing physical protection on land and in the sea, sand nourishment and runoff drainage. Physical protection solutions to reduce the rate of retreat of the cliffs are considerably important both for planning authorities and visitors to the beach. Direct costs of different protection alternatives, as well as external costs and benefits, may vary, thus affecting consumer preferences. Planning and execution of sustainable coastal cliff protection alternatives must take into account the different characteristics and their impact on aspects of economics, environment and leisure. The rocky shore of Beit-Yanai Beach was chosen as a case study to examine the nature of the influence of various protective solutions on consumer preferences. This beach is located in the center of Israel's coastline, and acts as a focus of attraction for recreation, land and sea sports, and educational activities as well. If no action will be taken, cliff retreat will continue. A survey was conducted to reveal the importance of coastal protection alternatives characteristics and the visual preferences to visitors at beach Beit-Yanai and residents living on the cliff (N=287). Preferences and willingness-to-pay were explored using Contingent-Ranking and Choice-Experiments techniques. Results show that visitors’ and residents’ willingness-to-pay for coastal cliff protection alternatives is affected both by financial and environmental aspects, as well as leisure. They prefer coastal cliff protection alternatives that are not visible and do not need constant maintenance, do not affect the quality of seawater or the habitats of wildlife and do not lower the security level of the swimmers. No significant difference was found comparing willingness-to-pay among local and non-local users. Additionally, they mostly prefer a protection solution which is integrated in the coastal landscape and maintains the natural appearance of the beach. Of the possible protection alternatives proposed for the protection of the cliff in Beit Yanai beach are two techniques that meet public preferences: rock revetments and submerged detached breakwaters. Results indicate that the visiting public prefer the implementation of these protection alternatives and will be willing to pay for them. Future actions to reduce retreat rate in Beit-Yanai have to consider implications on the economic, environmental and social conditions, along with weighting public interest against the interest of the individual.

Keywords: contingent-ranking, choice-experiments, coastal cliff protection, erosion of coastal cliffs, environment

Procedia PDF Downloads 307
640 Next Generation UK Storm Surge Model for the Insurance Market: The London Case

Authors: Iacopo Carnacina, Mohammad Keshtpoor, Richard Yablonsky

Abstract:

Non-structural protection measures against flooding are becoming increasingly popular flood risk mitigation strategies. In particular, coastal flood insurance impacts not only private citizens but also insurance and reinsurance companies, who may require it to retain solvency and better understand the risks they face from a catastrophic coastal flood event. In this context, a framework is presented here to assess the risk for coastal flooding across the UK. The area has a long history of catastrophic flood events, including the Great Flood of 1953 and the 2013 Cyclone Xaver storm, both of which led to significant loss of life and property. The current framework will leverage a technology based on a hydrodynamic model (Delft3D Flexible Mesh). This flexible mesh technology, coupled with a calibration technique, allows for better utilisation of computational resources, leading to higher resolution and more detailed results. The generation of a stochastic set of extra tropical cyclone (ETC) events supports the evaluation of the financial losses for the whole area, also accounting for correlations between different locations in different scenarios. Finally, the solution shows a detailed analysis for the Thames River, leveraging the information available on flood barriers and levees. Two realistic disaster scenarios for the Greater London area are simulated: In the first scenario, the storm surge intensity is not high enough to fail London’s flood defences, but in the second scenario, London’s flood defences fail, highlighting the potential losses from a catastrophic coastal flood event.

Keywords: storm surge, stochastic model, levee failure, Thames River

Procedia PDF Downloads 232