Search results for: IT/OT convergence
512 Efficacy of Thrust on Basilar Spheno Synchondrosis in Boxers With Ocular Convergence Deficit. Comparison of Thrust and Therapeutic Exercise: Pilot Experimental Randomized Controlled Trial Study
Authors: Andreas Aceranti, Stefano Costa
Abstract:
The aim of this study was to demonstrate that manipulative treatment combined with therapeutic exercisetherapywas more effective than isolated therapeutic exercise in the short-term treatment of eye convergence disorders in boxers. A randomized controlled trial (RCT) pilot trial was performed at our physiotherapy practices. 30 adult subjects who practice the discipline of boxing were selected after an initial skimming defined by the Convergence Insufficiency Symptom Survey (CISS) test (results greater than or equal to 10) starting from the initial sample of 50 subjects; The 30 recruits were evaluated by an orthoptist using prisms to know the diopters of each eye and were divided into 2 groups (experimental group and control group). The members of the experimental group were subjected to manipulation of the lateral strain of sphenoid from the side contralateral to the eye that had fewer diopters and were subjected to a sequence of 3 ocular motor exercises immediately after manipulation. The control group, on the other hand, received only ocular motor treatment. A secondary outcome was also drawn up that demonstrated how changes in ocular motricity also affected cervical rotation. Analysis of the data showed that the experimental treatment was in the short term superior to the control group to astatistically significant extent both in terms of the prismatic delta of the right eye (0 OT median without manipulation and 10 OT median with manipulation) and that of the left eye (0 OT median without manipulation and 5 OT median with manipulation). Cervical rotation values also showed better values in the experimental group with a median of 4° in the right rotation without manipulation and 6° with thrust; the left rotation presented a median of 2° without manipulation and 7° with thrust. From the results that emerged, the treatment was effective. It would be desirable to increase the sample number and set up a timeline to see if the net improvements obtained in the short term will also be maintained in the medium to long term.Keywords: boxing, basilar spheno synchondrosis, ocular convergence deficit, osteopathic treatment
Procedia PDF Downloads 89511 Controller Design for Active Suspension System of 1/4 Car with Unknown Mass and Time-Delay
Authors: Ali Al-Zughaibi
Abstract:
The purpose of this paper is to present a modeling and control of the quarter car active suspension system with unknown mass, unknown time-delay and road disturbance. The objective of designing the controller by deriving a control law to achieve stability of the system and convergence that can considerably improve the ride comfort and road disturbance handling. Thus is accomplished by using Routh-Herwitz criterion and based on some assumptions. A mathematical proof is given to show the ability of the designed controller to ensure stability and convergence of the active suspension system and dispersion oscillation of system with unknown mass, time-delay and road disturbances. Simulations were also performed for controlling quarter car suspension, where the results obtained from these simulations verify the validity of the proposed design.Keywords: active suspension system, time-delay, disturbance rejection, dynamic uncertainty
Procedia PDF Downloads 320510 Nonparametric Sieve Estimation with Dependent Data: Application to Deep Neural Networks
Authors: Chad Brown
Abstract:
This paper establishes general conditions for the convergence rates of nonparametric sieve estimators with dependent data. We present two key results: one for nonstationary data and another for stationary mixing data. Previous theoretical results often lack practical applicability to deep neural networks (DNNs). Using these conditions, we derive convergence rates for DNN sieve estimators in nonparametric regression settings with both nonstationary and stationary mixing data. The DNN architectures considered adhere to current industry standards, featuring fully connected feedforward networks with rectified linear unit activation functions, unbounded weights, and a width and depth that grows with sample size.Keywords: sieve extremum estimates, nonparametric estimation, deep learning, neural networks, rectified linear unit, nonstationary processes
Procedia PDF Downloads 41509 A Three-Step Iterative Process for Common Fixed Points of Three Contractive-Like Operators
Authors: Safeer Hussain Khan, H. Fukhar-ud-Din
Abstract:
The concept of quasi-contractive type operators was given by Berinde and extended by Imoru and Olatinwo. They named this new type as contractive-like operators. On the other hand, Xu and Noo introduced a three-step-one-mappings iterative process which can be seen as a generalization of Mann and Ishikawa iterative processes. Approximating common fixed points has its own importance as it has a direct link with minimization problem. Motivated by this, in this paper, we first extend the iterative process of Xu and Noor to the case of three-step-three-mappings and then prove a strong convergence result using contractive-like operators for this iterative process. In general, this generalizes corresponding results using Mann, Ishikawa and Xu-Noor iterative processes with quasi-contractive type operators. It is to be pointed out that our results can also be proved with iterative process involving error terms.Keywords: contractive-like operator, iterative process, common fixed point, strong convergence
Procedia PDF Downloads 594508 Convergence Results of Two-Dimensional Homogeneous Elastic Plates from Truncation of Potential Energy
Authors: Erick Pruchnicki, Nikhil Padhye
Abstract:
Plates are important engineering structures which have attracted extensive research since the 19th century. The subject of this work is statical analysis of a linearly elastic homogenous plate under small deformations. A 'thin plate' is a three-dimensional structure comprising of a small transverse dimension with respect to a flat mid-surface. The general aim of any plate theory is to deduce a two-dimensional model, in terms of mid-surface quantities, to approximately and accurately describe the plate's deformation in terms of mid-surface quantities. In recent decades, a common starting point for this purpose is to utilize series expansion of a displacement field across the thickness dimension in terms of the thickness parameter (h). These attempts are mathematically consistent in deriving leading-order plate theories based on certain a priori scaling between the thickness and the applied loads; for example, asymptotic methods which are aimed at generating leading-order two-dimensional variational problems by postulating formal asymptotic expansion of the displacement fields. Such methods rigorously generate a hierarchy of two-dimensional models depending on the order of magnitude of the applied load with respect to the plate-thickness. However, in practice, applied loads are external and thus not directly linked or dependent on the geometry/thickness of the plate; thus, rendering any such model (based on a priori scaling) of limited practical utility. In other words, the main limitation of these approaches is that they do not furnish a single plate model for all orders of applied loads. Following analogy of recent efforts of deploying Fourier-series expansion to study convergence of reduced models, we propose two-dimensional model(s) resulting from truncation of the potential energy and rigorously prove the convergence of these two-dimensional plate models to the parent three-dimensional linear elasticity with increasing truncation order of the potential energy.Keywords: plate theory, Fourier-series expansion, convergence result, Legendre polynomials
Procedia PDF Downloads 113507 Nonparametric Quantile Regression for Multivariate Spatial Data
Authors: S. H. Arnaud Kanga, O. Hili, S. Dabo-Niang
Abstract:
Spatial prediction is an issue appealing and attracting several fields such as agriculture, environmental sciences, ecology, econometrics, and many others. Although multiple non-parametric prediction methods exist for spatial data, those are based on the conditional expectation. This paper took a different approach by examining a non-parametric spatial predictor of the conditional quantile. The study especially observes the stationary multidimensional spatial process over a rectangular domain. Indeed, the proposed quantile is obtained by inverting the conditional distribution function. Furthermore, the proposed estimator of the conditional distribution function depends on three kernels, where one of them controls the distance between spatial locations, while the other two control the distance between observations. In addition, the almost complete convergence and the convergence in mean order q of the kernel predictor are obtained when the sample considered is alpha-mixing. Such approach of the prediction method gives the advantage of accuracy as it overcomes sensitivity to extreme and outliers values.Keywords: conditional quantile, kernel, nonparametric, stationary
Procedia PDF Downloads 154506 Numerical Investigation of Incompressible Turbulent Flows by Method of Characteristics
Authors: Ali Atashbar Orang, Carlo Massimo Casciola
Abstract:
A novel numerical approach for the steady incompressible turbulent flows is presented in this paper. The artificial compressibility method (ACM) is applied to the Reynolds Averaged Navier-Stokes (RANS) equations. A new Characteristic-Based Turbulent (CBT) scheme is developed for the convective fluxes. The well-known Spalart–Allmaras turbulence model is employed to check the effectiveness of this new scheme. Comparing the proposed scheme with previous studies, it is found that the present CBT scheme demonstrates accurate results, high stability and faster convergence. In addition, the local time stepping and implicit residual smoothing are applied as the convergence acceleration techniques. The turbulent flows past a backward facing step, circular cylinder, and NACA0012 hydrofoil are studied as benchmarks. Results compare favorably with those of other available schemes.Keywords: incompressible turbulent flow, method of characteristics, finite volume, Spalart–Allmaras turbulence model
Procedia PDF Downloads 412505 A Modified Nonlinear Conjugate Gradient Algorithm for Large Scale Unconstrained Optimization Problems
Authors: Tsegay Giday Woldu, Haibin Zhang, Xin Zhang, Yemane Hailu Fissuh
Abstract:
It is well known that nonlinear conjugate gradient method is one of the widely used first order methods to solve large scale unconstrained smooth optimization problems. Because of the low memory requirement, attractive theoretical features, practical computational efficiency and nice convergence properties, nonlinear conjugate gradient methods have a special role for solving large scale unconstrained optimization problems. Large scale optimization problems are with important applications in practical and scientific world. However, nonlinear conjugate gradient methods have restricted information about the curvature of the objective function and they are likely less efficient and robust compared to some second order algorithms. To overcome these drawbacks, the new modified nonlinear conjugate gradient method is presented. The noticeable features of our work are that the new search direction possesses the sufficient descent property independent of any line search and it belongs to a trust region. Under mild assumptions and standard Wolfe line search technique, the global convergence property of the proposed algorithm is established. Furthermore, to test the practical computational performance of our new algorithm, numerical experiments are provided and implemented on the set of some large dimensional unconstrained problems. The numerical results show that the proposed algorithm is an efficient and robust compared with other similar algorithms.Keywords: conjugate gradient method, global convergence, large scale optimization, sufficient descent property
Procedia PDF Downloads 206504 Consequences to Financial Reporting by Implementing Sri Lanka Financial Reporting Standard 13 on Measuring the Fair Value of Financial Instruments: Evidence from Three Sri Lankan Organizations
Authors: Nayoma Ranawaka
Abstract:
The demand for the high quality internationally comparable financial information has been increased than ever with the expansion of economic activities beyond its national boundaries. Thus, the necessity of converging accounting practices across the world is now continuously discussed with greater emphasis. The global convergence to International Financial Reporting Standards has been one of the main objectives of the International Accounting Standards Setting Board (IASB) since its establishment in 2001. Accordingly, Sri Lanka has adopted IFRSs in 2012. Among the other standards as a newly introduced standard by the IASB, IFRS 13 plays a pivotal role as it deals with the Fair Value Accounting (FVA). Therefore, it is valuable to obtain knowledge about the consequences of implementing IFRS 13 in Sri Lanka and compare results across nations. According to the IFRS Jurisdictional provision of Sri Lanka, Institute of Chartered Accountants of Sri Lanka has taken official steps to adopt IFRS 13 by introducing SLFRS 13 with de jure convergence. Then this study was identified the de facto convergence of the SLFRS 13 in measuring the Fair Value of Financial Instruments in the Sri Lankan context. Accordingly, the objective of this study is to explore the consequences to financial reporting by implementing SLFRS 13 on measuring the financial instruments. In order to achieve the objective of the study expert interview and in-depth interviews with the interviewees from the selected three case studies and their independent auditor were carried out using customized three different interview guides. These three cases were selected from three different industries; Banking, Manufacturing and Finance. NVivo version 10 was used to analyze the data collected through in-depth interviews. Then the content analysis was carried out and conclusions were derived based on the findings. Contribution to the knowledge by this study can be identified in different aspects. Findings of this study facilitate accounting practitioners to get an overall picture of application of fair value standard in measuring the financial instruments and to identify the challenges and barriers to the adoption process. Further, assist auditors in carrying out their audit procedures to check the level of compliance to the fair value standard in measuring the financial instruments. Moreover, this would enable foreign investors in assessing the reliability of the financial statements of their target investments as a result of SLFRS 13 in measuring the FVs of the FIs. The findings of the study could be used to open new avenues of thinking for policy formulators to provide the necessary infrastructure to eliminate disparities exists among different regulatory bodies to facilitate full convergence and thereby growth of the economy. Further, this provides insights to the dynamics of FVA implementation that are also relevant for other developing countries.Keywords: convergence, fair value, financial instruments, IFRS 13
Procedia PDF Downloads 126503 Improved Whale Algorithm Based on Information Entropy and Its Application in Truss Structure Optimization Design
Authors: Serges Mendomo Meye, Li Guowei, Shen Zhenzhong, Gan Lei, Xu Liqun
Abstract:
Given the limitations of the original whale optimization algorithm (WAO) in local optimum and low convergence accuracy in truss structure optimization problems, based on the fundamental whale algorithm, an improved whale optimization algorithm (SWAO) based on information entropy is proposed. The information entropy itself is an uncertain measure. It is used to control the range of whale searches in path selection. It can overcome the shortcomings of the basic whale optimization algorithm (WAO) and can improve the global convergence speed of the algorithm. Taking truss structure as the optimization research object, the mathematical model of truss structure optimization is established; the cross-sectional area of truss is taken as the design variable; the objective function is the weight of truss structure; and an improved whale optimization algorithm (SWAO) is used for optimization design, which provides a new idea and means for its application in large and complex engineering structure optimization design.Keywords: information entropy, structural optimization, truss structure, whale algorithm
Procedia PDF Downloads 249502 Approximations of Fractional Derivatives and Its Applications in Solving Non-Linear Fractional Variational Problems
Authors: Harendra Singh, Rajesh Pandey
Abstract:
The paper presents a numerical method based on operational matrix of integration and Ryleigh method for the solution of a class of non-linear fractional variational problems (NLFVPs). Chebyshev first kind polynomials are used for the construction of operational matrix. Using operational matrix and Ryleigh method the NLFVP is converted into a system of non-linear algebraic equations, and solving these equations we obtained approximate solution for NLFVPs. Convergence analysis of the proposed method is provided. Numerical experiment is done to show the applicability of the proposed numerical method. The obtained numerical results are compared with exact solution and solution obtained from Chebyshev third kind. Further the results are shown graphically for different fractional order involved in the problems.Keywords: non-linear fractional variational problems, Rayleigh-Ritz method, convergence analysis, error analysis
Procedia PDF Downloads 298501 Convergence of Sinc Methods Applied to Kuramoto-Sivashinsky Equation
Authors: Kamel Al-Khaled
Abstract:
A comparative study of the Sinc-Galerkin and Sinc-Collocation methods for solving the Kuramoto-Sivashinsky equation is given. Both approaches depend on using Sinc basis functions. Firstly, a numerical scheme using Sinc-Galerkin method is developed to approximate the solution of Kuramoto-Sivashinsky equation. Sinc approximations to both derivatives and indefinite integrals reduces the solution to an explicit system of algebraic equations. The error in the solution is shown to converge to the exact solution at an exponential. The convergence proof of the solution for the discrete system is given using fixed-point iteration. Secondly, a combination of a Crank-Nicolson formula in the time direction, with the Sinc-collocation in the space direction is presented, where the derivatives in the space variable are replaced by the necessary matrices to produce a system of algebraic equations. The methods are tested on two examples. The demonstrated results show that both of the presented methods more or less have the same accuracy.Keywords: Sinc-Collocation, nonlinear PDEs, numerical methods, fixed-point
Procedia PDF Downloads 471500 Improving Research Collaborations in Medical Device Development in Korea from an SMEs’ Perspective
Authors: Yoon Chung Kim
Abstract:
In this coming aging society, medical device industry is expected to become one of the major industries. Since developing medical devices usually requires technology convergence, research collaboration is important, especially for some small and medium enterprises (SMEs) that do not have enough R&D resources in each related field. Collaboration in medical device development has some unique properties. Since it requires convergence technology, collaboration with different fields, and different types of people are often required. Since it requires clinical test, the development process usually takes longer and collaboration with hospitals is also required. However, despite these importance and uniqueness, collaboration in medical device development has not yet been widely studied. Thus, our research focuses on investigating collaborations in medical device development. For our research, we conducted surveys and interviews, especially with SMEs’ perspective in Korea. The result and discussion will be presented with a major impact factors for collaboration result, as well as future strategies that will improve and strengthen collaboration process in medical devices.Keywords: medical device, SME, research collaboration, development, clinical
Procedia PDF Downloads 329499 A Dynamic Software Product Line Approach to Self-Adaptive Genetic Algorithms
Authors: Abdelghani Alidra, Mohamed Tahar Kimour
Abstract:
Genetic algorithm must adapt themselves at design time to cope with the search problem specific requirements and at runtime to balance exploration and convergence objectives. In a previous article, we have shown that modeling and implementing Genetic Algorithms (GA) using the software product line (SPL) paradigm is very appreciable because they constitute a product family sharing a common base of code. In the present article we propose to extend the use of the feature model of the genetic algorithms family to model the potential states of the GA in what is called a Dynamic Software Product Line. The objective of this paper is the systematic generation of a reconfigurable architecture that supports the dynamic of the GA and which is easily deduced from the feature model. The resultant GA is able to perform dynamic reconfiguration autonomously to fasten the convergence process while producing better solutions. Another important advantage of our approach is the exploitation of recent advances in the domain of dynamic SPLs to enhance the performance of the GAs.Keywords: self-adaptive genetic algorithms, software engineering, dynamic software product lines, reconfigurable architecture
Procedia PDF Downloads 285498 Financial Reporting Quality and International Financial Reporting
Authors: Matthias Nnadi
Abstract:
Using samples of 250 large listed firms by market capitalization in China and Hong Kong, we conducted empirical test to determine the impact of regulatory environment on reporting quality following IFRS convergence using three financial reporting measures; earning management, timely loss recognition and value relevance. Our results indicate that accounting data are more value relevant for Hong Kong listed firms than the Chinese A-share firms. The empirical results for timely loss recognition further reveal that there is a larger coefficient estimate on bad news earnings, which suggests that Chines A-share firms are more likely to report losses in a timely manner. The results support the evidence that substantial convergence of IFRS can improve financial reporting quality in a regulated environment such as China. This further supports the expectation that IFRS are relevant to China and has positive effect on its accounting practice and quality.Keywords: reporting, quality, earning, loss, relevance, financial, China, Hong Kong
Procedia PDF Downloads 465497 Multi-Objective Random Drift Particle Swarm Optimization Algorithm Based on RDPSO and Crowding Distance Sorting
Authors: Yiqiong Yuan, Jun Sun, Dongmei Zhou, Jianan Sun
Abstract:
In this paper, we presented a Multi-Objective Random Drift Particle Swarm Optimization algorithm (MORDPSO-CD) based on RDPSO and crowding distance sorting to improve the convergence and distribution with less computation cost. MORDPSO-CD makes the most of RDPSO to approach the true Pareto optimal solutions fast. We adopt the crowding distance sorting technique to update and maintain the archived optimal solutions. Introducing the crowding distance technique into MORDPSO can make the leader particles find the true Pareto solution ultimately. The simulation results reveal that the proposed algorithm has better convergence and distributionKeywords: multi-objective optimization, random drift particle swarm optimization, crowding distance sorting, pareto optimal solution
Procedia PDF Downloads 255496 An Exponential Field Path Planning Method for Mobile Robots Integrated with Visual Perception
Authors: Magdy Roman, Mostafa Shoeib, Mostafa Rostom
Abstract:
Global vision, whether provided by overhead fixed cameras, on-board aerial vehicle cameras, or satellite images can always provide detailed information on the environment around mobile robots. In this paper, an intelligent vision-based method of path planning and obstacle avoidance for mobile robots is presented. The method integrates visual perception with a new proposed field-based path-planning method to overcome common path-planning problems such as local minima, unreachable destination and unnecessary lengthy paths around obstacles. The method proposes an exponential angle deviation field around each obstacle that affects the orientation of a close robot. As the robot directs toward, the goal point obstacles are classified into right and left groups, and a deviation angle is exponentially added or subtracted to the orientation of the robot. Exponential field parameters are chosen based on Lyapunov stability criterion to guarantee robot convergence to the destination. The proposed method uses obstacles' shape and location, extracted from global vision system, through a collision prediction mechanism to decide whether to activate or deactivate obstacles field. In addition, a search mechanism is developed in case of robot or goal point is trapped among obstacles to find suitable exit or entrance. The proposed algorithm is validated both in simulation and through experiments. The algorithm shows effectiveness in obstacles' avoidance and destination convergence, overcoming common path planning problems found in classical methods.Keywords: path planning, collision avoidance, convergence, computer vision, mobile robots
Procedia PDF Downloads 194495 Application of Heuristic Integration Ant Colony Optimization in Path Planning
Authors: Zeyu Zhang, Guisheng Yin, Ziying Zhang, Liguo Zhang
Abstract:
This paper mainly studies the path planning method based on ant colony optimization (ACO), and proposes heuristic integration ant colony optimization (HIACO). This paper not only analyzes and optimizes the principle, but also simulates and analyzes the parameters related to the application of HIACO in path planning. Compared with the original algorithm, the improved algorithm optimizes probability formula, tabu table mechanism and updating mechanism, and introduces more reasonable heuristic factors. The optimized HIACO not only draws on the excellent ideas of the original algorithm, but also solves the problems of premature convergence, convergence to the sub optimal solution and improper exploration to some extent. HIACO can be used to achieve better simulation results and achieve the desired optimization. Combined with the probability formula and update formula, several parameters of HIACO are tested. This paper proves the principle of the HIACO and gives the best parameter range in the research of path planning.Keywords: ant colony optimization, heuristic integration, path planning, probability formula
Procedia PDF Downloads 251494 A Novel Guided Search Based Multi-Objective Evolutionary Algorithm
Authors: A. Baviskar, C. Sandeep, K. Shankar
Abstract:
Solving Multi-objective Optimization Problems requires faster convergence and better spread. Though existing Evolutionary Algorithms (EA's) are able to achieve this, the computation effort can further be reduced by hybridizing them with innovative strategies. This study is focuses on converging to the pareto front faster while adapting the advantages of Strength Pareto Evolutionary Algorithm-II (SPEA-II) for a better spread. Two different approaches based on optimizing the objective functions independently are implemented. In the first method, the decision variables corresponding to the optima of individual objective functions are strategically used to guide the search towards the pareto front. In the second method, boundary points of the pareto front are calculated and their decision variables are seeded to the initial population. Both the methods are applied to different constrained and unconstrained multi-objective test functions. It is observed that proposed guided search based algorithm gives better convergence and diversity than several well-known existing algorithms (such as NSGA-II and SPEA-II) in considerably less number of iterations.Keywords: boundary points, evolutionary algorithms (EA's), guided search, strength pareto evolutionary algorithm-II (SPEA-II)
Procedia PDF Downloads 277493 Efficiency of the Strain Based Approach Formulation for Plate Bending Analysis
Authors: Djamal Hamadi, Sifeddine Abderrahmani, Toufik Maalem, Oussama Temami
Abstract:
In recent years many finite elements have been developed for plate bending analysis. The formulated elements are based on the strain based approach. This approach leads to the representation of the displacements by higher order polynomial terms without the need for the introduction of additional internal and unnecessary degrees of freedom. Good convergence can also be obtained when the results are compared with those obtained from the corresponding displacement based elements, having the same total number of degrees of freedom. Furthermore, the plate bending elements are free from any shear locking since they converge to the Kirchhoff solution for thin plates contrarily for the corresponding displacement based elements. In this paper the efficiency of the strain based approach compared to well known displacement formulation is presented. The results obtained by a new formulated plate bending element based on the strain approach and Kirchhoff theory are compared with some others elements. The good convergence of the new formulated element is confirmed.Keywords: displacement fields, finite elements, plate bending, Kirchhoff theory, strain based approach
Procedia PDF Downloads 297492 Effect of Atmospheric Pressure on the Flow at the Outlet of a Propellant Nozzle
Authors: R. Haoui
Abstract:
The purpose of this work is to simulate the flow at the exit of Vulcan 1 engine of European launcher Ariane 5. The geometry of the propellant nozzle is already determined using the characteristics method. The pressure in the outlet section of the nozzle is less than atmospheric pressure on the ground, causing the existence of oblique and normal shock waves at the exit. During the rise of the launcher, the atmospheric pressure decreases and the shock wave disappears. The code allows the capture of shock wave at exit of nozzle. The numerical technique uses the Flux Vector Splitting method of Van Leer to ensure convergence and avoid the calculation instabilities. The Courant, Friedrichs and Lewy coefficient (CFL) and mesh size level are selected to ensure the numerical convergence. The nonlinear partial derivative equations system which governs this flow is solved by an explicit unsteady numerical scheme by the finite volume method. The accuracy of the solution depends on the size of the mesh and also the step of time used in the discretized equations. We have chosen in this study the mesh that gives us a stationary solution with good accuracy.Keywords: finite volume, lunchers, nozzles, shock wave
Procedia PDF Downloads 289491 The Application of Creative Economy in National R&D Programs of Health Technology (HT) Area in Korea
Authors: Hong Bum Kim
Abstract:
Health technology (HT) area have high growth potential because of global trends such as ageing and economical development. For its high employment effect and capability for creating new business, HT is being considered as one of the major next-generation growth power. Particularly, convergence technologies which are emerged by fusion of HT and other technological area is emphasized for new industry creation in Korea, as a part of Creative Economy. In this study, current status of HT area in Korea is analyzed. The aspect of transition in emphasized technological area of HT-related national R&D enterprise is statistically reviewed. Current level of HT-related technologies such as BT, IT and NT is investigated in this context. Existing research system for HT-convergence technology development such as establishment of research center is also analyzed. Finally, proposed research support system such as system of legislation for developing HT area as one of the main component of Creative Economy in Korea will be analyzed. Analysis of technology trend and policy will help to draw a new direction in progression of R&D enterprise in HT area. Improvement of policy such as legal system reorganization and measure of social agreement for burden of expense could be deduced based on these results.Keywords: HT, creative economy, policy, national R&D programs
Procedia PDF Downloads 387490 Smartphone Photography in Urban China
Authors: Wen Zhang
Abstract:
The smartphone plays a significant role in media convergence, and smartphone photography is reconstructing the way we communicate and think. This article aims to explore the smartphone photography practices of urban Chinese smartphone users and images produced by smartphones from a techno-cultural perspective. The analysis consists of two types of data: One is a semi-structured interview of 21 participants, and the other consists of the images created by the participants. The findings are organised in two parts. The first part summarises the current tendencies of capturing, editing, sharing and archiving digital images via smartphones. The second part shows that food and selfie/anti-selfie are the preferred subjects of smartphone photographic images from a technical and multi-purpose perspective and demonstrates that screenshots and image texts are new genres of non-photographic images that are frequently made by smartphones, which contributes to improving operational efficiency, disseminating information and sharing knowledge. The analyses illustrate the positive impacts between smartphones and photography enthusiasm and practices based on the diffusion of innovation theory, which also makes us rethink the value of photographs and the practice of ‘photographic seeing’ from the screen itself.Keywords: digital photography, image-text, media convergence, photographic- seeing, selfie/anti-selfie, smartphone, technological innovation
Procedia PDF Downloads 354489 Modelling of Structures by Advanced Finites Elements Based on the Strain Approach
Authors: Sifeddine Abderrahmani, Sonia Bouafia
Abstract:
The finite element method is the most practical tool for the analysis of structures, whatever the geometrical shape and behavior. It is extensively used in many high-tech industries, such as civil or military engineering, for the modeling of bridges, motor bodies, fuselages, and airplane wings. Additionally, experience demonstrates that engineers like modeling their structures using the most basic finite elements. Numerous models of finite elements may be utilized in the numerical analysis depending on the interpolation field that is selected, and it is generally known that convergence to the proper value will occur considerably more quickly with a good displacement pattern than with a poor pattern, saving computation time. The method for creating finite elements using the strain approach (S.B.A.) is presented in this presentation. When the results are compared with those provided by equivalent displacement-based elements, having the same total number of degrees of freedom, an excellent convergence can be obtained through some application and validation tests using recently developed membrane elements, plate bending elements, and flat shell elements. The effectiveness and performance of the strain-based finite elements in modeling structures are proven by the findings for deflections and stresses.Keywords: finite elements, plate bending, strain approach, displacement formulation, shell element
Procedia PDF Downloads 99488 Particle Filter State Estimation Algorithm Based on Improved Artificial Bee Colony Algorithm
Authors: Guangyuan Zhao, Nan Huang, Xuesong Han, Xu Huang
Abstract:
In order to solve the problem of sample dilution in the traditional particle filter algorithm and achieve accurate state estimation in a nonlinear system, a particle filter method based on an improved artificial bee colony (ABC) algorithm was proposed. The algorithm simulated the process of bee foraging and optimization and made the high likelihood region of the backward probability of particles moving to improve the rationality of particle distribution. The opposition-based learning (OBL) strategy is introduced to optimize the initial population of the artificial bee colony algorithm. The convergence factor is introduced into the neighborhood search strategy to limit the search range and improve the convergence speed. Finally, the crossover and mutation operations of the genetic algorithm are introduced into the search mechanism of the following bee, which makes the algorithm jump out of the local extreme value quickly and continue to search the global extreme value to improve its optimization ability. The simulation results show that the improved method can improve the estimation accuracy of particle filters, ensure the diversity of particles, and improve the rationality of particle distribution.Keywords: particle filter, impoverishment, state estimation, artificial bee colony algorithm
Procedia PDF Downloads 152487 The Role of Metaheuristic Approaches in Engineering Problems
Authors: Ferzat Anka
Abstract:
Many types of problems can be solved using traditional analytical methods. However, these methods take a long time and cause inefficient use of resources. In particular, different approaches may be required in solving complex and global engineering problems that we frequently encounter in real life. The bigger and more complex a problem, the harder it is to solve. Such problems are called Nondeterministic Polynomial time (NP-hard) in the literature. The main reasons for recommending different metaheuristic algorithms for various problems are the use of simple concepts, the use of simple mathematical equations and structures, the use of non-derivative mechanisms, the avoidance of local optima, and their fast convergence. They are also flexible, as they can be applied to different problems without very specific modifications. Thanks to these features, it can be easily embedded even in many hardware devices. Accordingly, this approach can also be used in trend application areas such as IoT, big data, and parallel structures. Indeed, the metaheuristic approaches are algorithms that return near-optimal results for solving large-scale optimization problems. This study is focused on the new metaheuristic method that has been merged with the chaotic approach. It is based on the chaos theorem and helps relevant algorithms to improve the diversity of the population and fast convergence. This approach is based on Chimp Optimization Algorithm (ChOA), that is a recently introduced metaheuristic algorithm inspired by nature. This algorithm identified four types of chimpanzee groups: attacker, barrier, chaser, and driver, and proposed a suitable mathematical model for them based on the various intelligence and sexual motivations of chimpanzees. However, this algorithm is not more successful in the convergence rate and escaping of the local optimum trap in solving high-dimensional problems. Although it and some of its variants use some strategies to overcome these problems, it is observed that it is not sufficient. Therefore, in this study, a newly expanded variant is described. In the algorithm called Ex-ChOA, hybrid models are proposed for position updates of search agents, and a dynamic switching mechanism is provided for transition phases. This flexible structure solves the slow convergence problem of ChOA and improves its accuracy in multidimensional problems. Therefore, it tries to achieve success in solving global, complex, and constrained problems. The main contribution of this study is 1) It improves the accuracy and solves the slow convergence problem of the ChOA. 2) It proposes new hybrid movement strategy models for position updates of search agents. 3) It provides success in solving global, complex, and constrained problems. 4) It provides a dynamic switching mechanism between phases. The performance of the Ex-ChOA algorithm is analyzed on a total of 8 benchmark functions, as well as a total of 2 classical and constrained engineering problems. The proposed algorithm is compared with the ChoA, and several well-known variants (Weighted-ChoA, Enhanced-ChoA) are used. In addition, an Improved algorithm from the Grey Wolf Optimizer (I-GWO) method is chosen for comparison since the working model is similar. The obtained results depict that the proposed algorithm performs better or equivalently to the compared algorithms.Keywords: optimization, metaheuristic, chimp optimization algorithm, engineering constrained problems
Procedia PDF Downloads 77486 Federated Knowledge Distillation with Collaborative Model Compression for Privacy-Preserving Distributed Learning
Authors: Shayan Mohajer Hamidi
Abstract:
Federated learning has emerged as a promising approach for distributed model training while preserving data privacy. However, the challenges of communication overhead, limited network resources, and slow convergence hinder its widespread adoption. On the other hand, knowledge distillation has shown great potential in compressing large models into smaller ones without significant loss in performance. In this paper, we propose an innovative framework that combines federated learning and knowledge distillation to address these challenges and enhance the efficiency of distributed learning. Our approach, called Federated Knowledge Distillation (FKD), enables multiple clients in a federated learning setting to collaboratively distill knowledge from a teacher model. By leveraging the collaborative nature of federated learning, FKD aims to improve model compression while maintaining privacy. The proposed framework utilizes a coded teacher model that acts as a reference for distilling knowledge to the client models. To demonstrate the effectiveness of FKD, we conduct extensive experiments on various datasets and models. We compare FKD with baseline federated learning methods and standalone knowledge distillation techniques. The results show that FKD achieves superior model compression, faster convergence, and improved performance compared to traditional federated learning approaches. Furthermore, FKD effectively preserves privacy by ensuring that sensitive data remains on the client devices and only distilled knowledge is shared during the training process. In our experiments, we explore different knowledge transfer methods within the FKD framework, including Fine-Tuning (FT), FitNet, Correlation Congruence (CC), Similarity-Preserving (SP), and Relational Knowledge Distillation (RKD). We analyze the impact of these methods on model compression and convergence speed, shedding light on the trade-offs between size reduction and performance. Moreover, we address the challenges of communication efficiency and network resource utilization in federated learning by leveraging the knowledge distillation process. FKD reduces the amount of data transmitted across the network, minimizing communication overhead and improving resource utilization. This makes FKD particularly suitable for resource-constrained environments such as edge computing and IoT devices. The proposed FKD framework opens up new avenues for collaborative and privacy-preserving distributed learning. By combining the strengths of federated learning and knowledge distillation, it offers an efficient solution for model compression and convergence speed enhancement. Future research can explore further extensions and optimizations of FKD, as well as its applications in domains such as healthcare, finance, and smart cities, where privacy and distributed learning are of paramount importance.Keywords: federated learning, knowledge distillation, knowledge transfer, deep learning
Procedia PDF Downloads 75485 Convergence and Stability in Federated Learning with Adaptive Differential Privacy Preservation
Authors: Rizwan Rizwan
Abstract:
This paper provides an overview of Federated Learning (FL) and its application in enhancing data security, privacy, and efficiency. FL utilizes three distinct architectures to ensure privacy is never compromised. It involves training individual edge devices and aggregating their models on a server without sharing raw data. This approach not only provides secure models without data sharing but also offers a highly efficient privacy--preserving solution with improved security and data access. Also we discusses various frameworks used in FL and its integration with machine learning, deep learning, and data mining. In order to address the challenges of multi--party collaborative modeling scenarios, a brief review FL scheme combined with an adaptive gradient descent strategy and differential privacy mechanism. The adaptive learning rate algorithm adjusts the gradient descent process to avoid issues such as model overfitting and fluctuations, thereby enhancing modeling efficiency and performance in multi-party computation scenarios. Additionally, to cater to ultra-large-scale distributed secure computing, the research introduces a differential privacy mechanism that defends against various background knowledge attacks.Keywords: federated learning, differential privacy, gradient descent strategy, convergence, stability, threats
Procedia PDF Downloads 30484 The Association of Southeast Asian Nations (ASEAN) and the Dynamics of Resistance to Sovereignty Violation: The Case of East Timor (1975-1999)
Authors: Laura Southgate
Abstract:
The Association of Southeast Asian Nations (ASEAN), as well as much of the scholarship on the organisation, celebrates its ability to uphold the principle of regional autonomy, understood as upholding the norm of non-intervention by external powers in regional affairs. Yet, in practice, this has been repeatedly violated. This dichotomy between rhetoric and practice suggests an interesting avenue for further study. The East Timor crisis (1975-1999) has been selected as a case-study to test the dynamics of ASEAN state resistance to sovereignty violation in two distinct timeframes: Indonesia’s initial invasion of the territory in 1975, and the ensuing humanitarian crisis in 1999 which resulted in a UN-mandated, Australian-led peacekeeping intervention force. These time-periods demonstrate variation on the dependent variable. It is necessary to observe covariation in order to derive observations in support of a causal theory. To establish covariation, my independent variable is therefore a continuous variable characterised by variation in convergence of interest. Change of this variable should change the value of the dependent variable, thus establishing causal direction. This paper investigates the history of ASEAN’s relationship to the norm of non-intervention. It offers an alternative understanding of ASEAN’s history, written in terms of the relationship between a key ASEAN state, which I call a ‘vanguard state’, and selected external powers. This paper will consider when ASEAN resistance to sovereignty violation has succeeded, and when it has failed. It will contend that variation in outcomes associated with vanguard state resistance to sovereignty violation can be best explained by levels of interest convergence between the ASEAN vanguard state and designated external actors. Evidence will be provided to support the hypothesis that in 1999, ASEAN’s failure to resist violations to the sovereignty of Indonesia was a consequence of low interest convergence between Indonesia and the external powers. Conversely, in 1975, ASEAN’s ability to resist violations to the sovereignty of Indonesia was a consequence of high interest convergence between Indonesia and the external powers. As the vanguard state, Indonesia was able to apply pressure on the ASEAN states and obtain unanimous support for Indonesia’s East Timor policy in 1975 and 1999. However, the key factor explaining the variance in outcomes in both time periods resides in the critical role played by external actors. This view represents a serious challenge to much of the existing scholarship that emphasises ASEAN’s ability to defend regional autonomy. As these cases attempt to show, ASEAN autonomy is much more contingent than portrayed in the existing literature.Keywords: ASEAN, east timor, intervention, sovereignty
Procedia PDF Downloads 358483 Algorithms for Computing of Optimization Problems with a Common Minimum-Norm Fixed Point with Applications
Authors: Apirak Sombat, Teerapol Saleewong, Poom Kumam, Parin Chaipunya, Wiyada Kumam, Anantachai Padcharoen, Yeol Je Cho, Thana Sutthibutpong
Abstract:
This research is aimed to study a two-step iteration process defined over a finite family of σ-asymptotically quasi-nonexpansive nonself-mappings. The strong convergence is guaranteed under the framework of Banach spaces with some additional structural properties including strict and uniform convexity, reflexivity, and smoothness assumptions. With similar projection technique for nonself-mapping in Hilbert spaces, we hereby use the generalized projection to construct a point within the corresponding domain. Moreover, we have to introduce the use of duality mapping and its inverse to overcome the unavailability of duality representation that is exploit by Hilbert space theorists. We then apply our results for σ-asymptotically quasi-nonexpansive nonself-mappings to solve for ideal efficiency of vector optimization problems composed of finitely many objective functions. We also showed that the obtained solution from our process is the closest to the origin. Moreover, we also give an illustrative numerical example to support our results.Keywords: asymptotically quasi-nonexpansive nonself-mapping, strong convergence, fixed point, uniformly convex and uniformly smooth Banach space
Procedia PDF Downloads 260