Search results for: Hidden Markov Model (HMM)
17059 The Cost of Non-Communicable Diseases in the European Union: A Projection towards the Future
Authors: Desiree Vandenberghe, Johan Albrecht
Abstract:
Non-communicable diseases (NCDs) are responsible for the vast majority of deaths in the European Union (EU) and represent a large share of total health care spending. A future increase in this health and financial burden is likely to be driven by population ageing, lifestyle changes and technological advances in medicine. Without adequate prevention measures, this burden can severely threaten population health and economic development. To tackle this challenge, a correct assessment of the current burden of NCDs is required, as well as a projection of potential increases of this burden. The contribution of this paper is to offer perspective on the evolution of the NCD burden towards the future and to give an indication of the potential of prevention policy. A Non-Homogenous, Semi-Markov model for the EU was constructed, which allowed for a projection of the cost burden for the four main NCDs (cancer, cardiovascular disease, chronic respiratory disease and diabetes mellitus) towards 2030 and 2050. This simulation is done based on multiple baseline scenarios that vary in demand and supply factors such as health status, population structure, and technological advances. Finally, in order to assess the potential of preventive measures to curb the cost explosion of NCDs, a simulation is executed which includes increased efforts for preventive health care measures. According to the Markov model, by 2030 and 2050, total costs (direct and indirect costs) in the EU could increase by 30.1% and 44.1% respectively, compared to 2015 levels. An ambitious prevention policy framework for NCDs will be required if the EU wants to meet this challenge of rising costs. To conclude, significant cost increases due to Non-Communicable Diseases are likely to occur due to demographic and lifestyle changes. Nevertheless, an ambitious prevention program throughout the EU can aid in making this cost burden manageable for future generations.Keywords: non-communicable diseases, preventive health care, health policy, Markov model, scenario analysis
Procedia PDF Downloads 14017058 Optimal Bayesian Control of the Proportion of Defectives in a Manufacturing Process
Authors: Viliam Makis, Farnoosh Naderkhani, Leila Jafari
Abstract:
In this paper, we present a model and an algorithm for the calculation of the optimal control limit, average cost, sample size, and the sampling interval for an optimal Bayesian chart to control the proportion of defective items produced using a semi-Markov decision process approach. Traditional p-chart has been widely used for controlling the proportion of defectives in various kinds of production processes for many years. It is well known that traditional non-Bayesian charts are not optimal, but very few optimal Bayesian control charts have been developed in the literature, mostly considering finite horizon. The objective of this paper is to develop a fast computational algorithm to obtain the optimal parameters of a Bayesian p-chart. The decision problem is formulated in the partially observable framework and the developed algorithm is illustrated by a numerical example.Keywords: Bayesian control chart, semi-Markov decision process, quality control, partially observable process
Procedia PDF Downloads 31917057 Persistent Homology of Convection Cycles in Network Flows
Authors: Minh Quang Le, Dane Taylor
Abstract:
Convection is a well-studied topic in fluid dynamics, yet it is less understood in the context of networks flows. Here, we incorporate techniques from topological data analysis (namely, persistent homology) to automate the detection and characterization of convective/cyclic/chiral flows over networks, particularly those that arise for irreversible Markov chains (MCs). As two applications, we study convection cycles arising under the PageRank algorithm, and we investigate chiral edges flows for a stochastic model of a bi-monomer's configuration dynamics. Our experiments highlight how system parameters---e.g., the teleportation rate for PageRank and the transition rates of external and internal state changes for a monomer---can act as homology regularizers of convection, which we summarize with persistence barcodes and homological bifurcation diagrams. Our approach establishes a new connection between the study of convection cycles and homology, the branch of mathematics that formally studies cycles, which has diverse potential applications throughout the sciences and engineering.Keywords: homology, persistent homolgy, markov chains, convection cycles, filtration
Procedia PDF Downloads 13617056 Optimal Maintenance Policy for a Three-Unit System
Authors: A. Abbou, V. Makis, N. Salari
Abstract:
We study the condition-based maintenance (CBM) problem of a system subject to stochastic deterioration. The system is composed of three units (or modules): (i) Module 1 deterioration follows a Markov process with two operational states and one failure state. The operational states are partially observable through periodic condition monitoring. (ii) Module 2 deterioration follows a Gamma process with a known failure threshold. The deterioration level of this module is fully observable through periodic inspections. (iii) Only the operating age information is available of Module 3. The lifetime of this module has a general distribution. A CBM policy prescribes when to initiate a maintenance intervention and which modules to repair during intervention. Our objective is to determine the optimal CBM policy minimizing the long-run expected average cost of operating the system. This is achieved by formulating a Markov decision process (MDP) and developing the value iteration algorithm for solving the MDP. We provide numerical examples illustrating the cost-effectiveness of the optimal CBM policy through a comparison with heuristic policies commonly found in the literature.Keywords: reliability, maintenance optimization, Markov decision process, heuristics
Procedia PDF Downloads 21917055 Hand Motion Trajectory Analysis for Dynamic Hand Gestures Used in Indian Sign Language
Authors: Daleesha M. Viswanathan, Sumam Mary Idicula
Abstract:
Dynamic hand gestures are an intrinsic component in sign language communication. Extracting spatial temporal features of the hand gesture trajectory plays an important role in a dynamic gesture recognition system. Finding a discrete feature descriptor for the motion trajectory based on the orientation feature is the main concern of this paper. Kalman filter algorithm and Hidden Markov Models (HMM) models are incorporated with this recognition system for hand trajectory tracking and for spatial temporal classification, respectively.Keywords: orientation features, discrete feature vector, HMM., Indian sign language
Procedia PDF Downloads 37117054 Unsupervised Feature Learning by Pre-Route Simulation of Auto-Encoder Behavior Model
Authors: Youngjae Jin, Daeshik Kim
Abstract:
This paper describes a cycle accurate simulation results of weight values learned by an auto-encoder behavior model in terms of pre-route simulation. Given the results we visualized the first layer representations with natural images. Many common deep learning threads have focused on learning high-level abstraction of unlabeled raw data by unsupervised feature learning. However, in the process of handling such a huge amount of data, the learning method’s computation complexity and time limited advanced research. These limitations came from the fact these algorithms were computed by using only single core CPUs. For this reason, parallel-based hardware, FPGAs, was seen as a possible solution to overcome these limitations. We adopted and simulated the ready-made auto-encoder to design a behavior model in Verilog HDL before designing hardware. With the auto-encoder behavior model pre-route simulation, we obtained the cycle accurate results of the parameter of each hidden layer by using MODELSIM. The cycle accurate results are very important factor in designing a parallel-based digital hardware. Finally this paper shows an appropriate operation of behavior model based pre-route simulation. Moreover, we visualized learning latent representations of the first hidden layer with Kyoto natural image dataset.Keywords: auto-encoder, behavior model simulation, digital hardware design, pre-route simulation, Unsupervised feature learning
Procedia PDF Downloads 44617053 Auditory Function in MP3 Users and Association with Hidden Hearing Loss
Authors: Nana Saralidze, Nino Sharashenidze, Zurab Kevanishvili
Abstract:
Hidden hearing loss may occur in humans exposed to prolonged high-level sound. It is the loss of ability to hear high-level background noise while having normal hearing in quiet. We compared the hearing of people who regularly listen 3 hours and more to personal music players and those who do not. Forty participants aged 18-30 years were divided into two groups: regular users of music players and people who had never used them. And the third group – elders aged 50-55 years, had 15 participants. Pure-tone audiometry (125-16000 Hz), auditory brainstem response (ABR) (70dB SPL), and ability to identify speech in noise (4-talker babble with a 65-dB signal-to-noise ratio at 80 dB) were measured in all participants. All participants had normal pure-tone audiometry (all thresholds < 25 dB HL). A significant difference between groups was observed in that regular users of personal audio systems correctly identified 53% of words, whereas the non-users identified 74% and the elder group – 63%. This contributes evidence supporting the presence of a hidden hearing loss in humans and demonstrates that speech-in-noise audiometry is an effective method and can be considered as the GOLD standard for detecting hidden hearing loss.Keywords: mp3 player, hidden hearing loss, speech audiometry, pure tone audiometry
Procedia PDF Downloads 7417052 Reliability Analysis of a Fuel Supply System in Automobile Engine
Authors: Chitaranjan Sharma
Abstract:
The present paper deals with the analysis of a fuel supply system in an automobile engine of a four wheeler which is having both the option of fuel i.e. PETROL and CNG. Since CNG is cheaper than petrol so the priority is given to consume CNG as compared to petrol. An automatic switch is used to start petrol supply at the time of failure of CNG supply. Using regenerative point technique with Markov renewal process, the reliability characteristics which are useful to system designers are obtained.Keywords: reliability, redundancy, repair time, transition, probability, regenerative points, markov renewal, process
Procedia PDF Downloads 55117051 On-Farm Diversification in Vietnam: Determinants and Trends
Authors: Diep Thanh Tung, Joachim Aurbacher
Abstract:
This study aims to measure the level of on-farm diversification in Vietnam. The empirical results of the research carried out reflect regional differences in terms of on-farm diversification and its determinants. Households in the northern regions have adapted to the fragmented and small-sized parcels of land held by diversifying their on-farm activities. In contrast, the Mekong delta region in the south of Vietnam is characterized by larger agricultural parcels and a specialization in rice production. Land use fragmentation, as reflected by a large number of plots in a given area, is one of the most important reasons for the high levels of on-farm diversification seen, while the higher share of non-farm income in total income is the reason of lower levels of on-farm diversification. Households have reacted to natural and economic shocks by diversifying their on-farm activities. The non-stationary Markov chain model used here shows various diversification scenarios and trends. In most cases, on-farm diversification generally tends to reduce over the next few years.Keywords: diversification, simpson index, fixed effects, non-stationary markov chain
Procedia PDF Downloads 48517050 Data Hiding in Gray Image Using ASCII Value and Scanning Technique
Authors: R. K. Pateriya, Jyoti Bharti
Abstract:
This paper presents an approach for data hiding methods which provides a secret communication between sender and receiver. The data is hidden in gray-scale images and the boundary of gray-scale image is used to store the mapping information. In this an approach data is in ASCII format and the mapping is in between ASCII value of hidden message and pixel value of cover image, since pixel value of an image as well as ASCII value is in range of 0 to 255 and this mapping information is occupying only 1 bit per character of hidden message as compared to 8 bit per character thus maintaining good quality of stego image.Keywords: ASCII value, cover image, PSNR, pixel value, stego image, secret message
Procedia PDF Downloads 41517049 Modelling Patient Condition-Based Demand for Managing Hospital Inventory
Authors: Esha Saha, Pradip Kumar Ray
Abstract:
A hospital inventory comprises of a large number and great variety of items for the proper treatment and care of patients, such as pharmaceuticals, medical equipment, surgical items, etc. Improper management of these items, i.e. stockouts, may lead to delay in treatment or other fatal consequences, even death of the patient. So, generally the hospitals tend to overstock items to avoid the risk of stockout which leads to unnecessary investment of money, difficulty in storing, more expiration and wastage, etc. Thus, in such challenging environment, it is necessary for hospitals to follow an inventory policy considering the stochasticity of demand in a hospital. Statistical analysis captures the correlation of patient condition based on bed occupancy with the patient demand which changes stochastically. Due to the dependency on bed occupancy, the markov model is developed that helps to map the changes in demand of hospital inventory based on the changes in the patient condition represented by the movements of bed occupancy states (acute care state, rehabilitative state and long-care state) during the length-of-stay of patient in a hospital. An inventory policy is developed for a hospital based on the fulfillment of patient demand with the objective of minimizing the frequency and quantity of placement of orders of inventoried items. The analytical structure of the model based on probability calculation is provided to show the optimal inventory-related decisions. A case-study is illustrated in this paper for the development of hospital inventory model based on patient demand for multiple inpatient pharmaceutical items. A sensitivity analysis is conducted to investigate the impact of inventory-related parameters on the developed optimal inventory policy. Therefore, the developed model and solution approach may help the hospital managers and pharmacists in managing the hospital inventory in case of stochastic demand of inpatient pharmaceutical items.Keywords: bed occupancy, hospital inventory, markov model, patient condition, pharmaceutical items
Procedia PDF Downloads 32317048 Macroeconomic Determinants of Cyclical Variations in Value, Size, and Momentum Premium in the UK
Authors: G. Sarwar, C. Mateus, N. Todorovic
Abstract:
The paper examines the asymmetries in size, value and momentum premium over the economic cycles in the UK and their macroeconomic determinants. Using Markov switching approach we find clear evidence of cyclical variations of the three premiums, most noticeably variations in size premium. We associate Markov switching regime 1 with economic upturn and regime 2 with economic downturn as per OECD’s Composite Leading Indicator. The macroeconomic indicators prompting such cyclicality the most are interest rates, term structure and credit spread. The role of GDP growth, money supply and inflation is less pronounced in our sample.Keywords: macroeconomic determinants, Markorv Switching, size, value
Procedia PDF Downloads 48617047 An Estimating Parameter of the Mean in Normal Distribution by Maximum Likelihood, Bayes, and Markov Chain Monte Carlo Methods
Authors: Autcha Araveeporn
Abstract:
This paper is to compare the parameter estimation of the mean in normal distribution by Maximum Likelihood (ML), Bayes, and Markov Chain Monte Carlo (MCMC) methods. The ML estimator is estimated by the average of data, the Bayes method is considered from the prior distribution to estimate Bayes estimator, and MCMC estimator is approximated by Gibbs sampling from posterior distribution. These methods are also to estimate a parameter then the hypothesis testing is used to check a robustness of the estimators. Data are simulated from normal distribution with the true parameter of mean 2, and variance 4, 9, and 16 when the sample sizes is set as 10, 20, 30, and 50. From the results, it can be seen that the estimation of MLE, and MCMC are perceivably different from the true parameter when the sample size is 10 and 20 with variance 16. Furthermore, the Bayes estimator is estimated from the prior distribution when mean is 1, and variance is 12 which showed the significant difference in mean with variance 9 at the sample size 10 and 20.Keywords: Bayes method, Markov chain Monte Carlo method, maximum likelihood method, normal distribution
Procedia PDF Downloads 35617046 Nondestructive Evaluation of Hidden Delamination in Glass Fiber Composite Using Terahertz Spectroscopy
Authors: Chung-Hyeon Ryu, Do-Hyoung Kim, Hak-Sung Kim
Abstract:
As the use of the composites was increased, the detecting method of hidden damages which have an effect on performance of the composite was important. Terahertz (THz) spectroscopy was assessed as one of the new powerful nondestructive evaluation (NDE) techniques for fiber reinforced composite structures because it has many advantages which can overcome the limitations of conventional NDE techniques such as x-rays or ultrasound. The THz wave offers noninvasive, noncontact and nonionizing methods evaluating composite damages, also it gives a broad range of information about the material properties. In additions, it enables to detect the multiple-delaminations of various nonmetallic materials. In this study, the pulse type THz spectroscopy imaging system was devised and used for detecting and evaluating the hidden delamination in the glass fiber reinforced plastic (GFRP) composite laminates. The interaction between THz and the GFRP composite was analyzed respect to the type of delamination, including their thickness, size and numbers of overlaps among multiple-delaminations in through-thickness direction. Both of transmission and reflection configurations were used for evaluation of hidden delaminations and THz wave propagations through the delaminations were also discussed. From these results, various hidden delaminations inside of the GFRP composite were successfully detected using time-domain THz spectroscopy imaging system and also compared to the results of C-scan inspection. It is expected that THz NDE technique will be widely used to evaluate the reliability of composite structures.Keywords: terahertz, delamination, glass fiber reinforced plastic composites, terahertz spectroscopy
Procedia PDF Downloads 59217045 Forecasting Models for Steel Demand Uncertainty Using Bayesian Methods
Authors: Watcharin Sangma, Onsiri Chanmuang, Pitsanu Tongkhow
Abstract:
A forecasting model for steel demand uncertainty in Thailand is proposed. It consists of trend, autocorrelation, and outliers in a hierarchical Bayesian frame work. The proposed model uses a cumulative Weibull distribution function, latent first-order autocorrelation, and binary selection, to account for trend, time-varying autocorrelation, and outliers, respectively. The Gibbs sampling Markov Chain Monte Carlo (MCMC) is used for parameter estimation. The proposed model is applied to steel demand index data in Thailand. The root mean square error (RMSE), mean absolute percentage error (MAPE), and mean absolute error (MAE) criteria are used for model comparison. The study reveals that the proposed model is more appropriate than the exponential smoothing method.Keywords: forecasting model, steel demand uncertainty, hierarchical Bayesian framework, exponential smoothing method
Procedia PDF Downloads 35017044 Dynamics Pattern of Land Use and Land Cover Change and Its Driving Factors Based on a Cellular Automata Markov Model: A Case Study at Ibb Governorate, Yemen
Authors: Abdulkarem Qasem Dammag, Basema Qasim Dammag, Jian Dai
Abstract:
Change in Land use and Land cover (LU/LC) has a profound impact on the area's natural, economic, and ecological development, and the search for drivers of land cover change is one of the fundamental issues of LU/LC change. The study aimed to assess the temporal and Spatio-temporal dynamics of LU/LC in the past and to predict the future using Landsat images by exploring the characteristics of different LU/LC types. Spatio-temporal patterns of LU/LC change in Ibb Governorate, Yemen, were analyzed based on RS and GIS from 1990, 2005, and 2020. A socioeconomic survey and key informant interviews were used to assess potential drivers of LU/LC. The results showed that from 1990 to 2020, the total area of vegetation land decreased by 5.3%, while the area of barren land, grassland, built-up area, and waterbody increased by 2.7%, 1.6%, 1.04%, and 0.06%, respectively. Based on socio-economic surveys and key informant interviews, natural factors had a significant and long-term impact on land change. In contrast, site construction and socio-economic factors were the main driving forces affecting land change in a short time scale. The analysis results have been linked to the CA-Markov Land Use simulation and forecasting model for the years 2035 and 2050. The simulation results revealed from the period 2020 to 2050, the trend of dynamic changes in land use, where the total area of barren land decreased by 7.0% and grassland by 0.2%, while the vegetation land, built-up area, and waterbody increased by 4.6%, 2.6%, and 0.1 %, respectively. Overall, these findings provide LULC's past and future trends and identify drivers, which can play an important role in sustainable land use planning and management by balancing and coordinating urban growth and land use and can also be used at the regional level in different levels to provide as a reference. In addition, the results provide scientific guidance to government departments and local decision-makers in future land-use planning through dynamic monitoring of LU/LC change.Keywords: LU/LC change, CA-Markov model, driving forces, change detection, LU/LC change simulation
Procedia PDF Downloads 6417043 Performance Modeling and Availability Analysis of Yarn Dyeing System of a Textile Industry
Authors: P. C. Tewari, Rajiv Kumar, Dinesh Khanduja
Abstract:
This paper discusses the performance modeling and availability analysis of Yarn Dyeing System of a Textile Industry. The Textile Industry is a complex and repairable engineering system. Yarn Dyeing System of Textile Industry consists of five subsystems arranged in series configuration. For performance modeling and analysis of availability, a performance evaluating model has been developed with the help of mathematical formulation based on Markov-Birth-Death Process. The differential equations have been developed on the basis of Probabilistic Approach using a Transition Diagram. These equations have further been solved using normalizing condition in order to develop the steady state availability, a performance measure of the system concerned. The system performance has been further analyzed with the help of decision matrices. These matrices provide various availability levels for different combinations of failure and repair rates for various subsystems. The findings of this paper are, therefore, considered to be useful for the analysis of availability and determination of the best possible maintenance strategies which can be implemented in future to enhance the system performance.Keywords: performance modeling, markov process, steady state availability, availability analysis
Procedia PDF Downloads 33517042 An Overview of Bioinformatics Methods to Detect Novel Riboswitches Highlighting the Importance of Structure Consideration
Authors: Danny Barash
Abstract:
Riboswitches are RNA genetic control elements that were originally discovered in bacteria and provide a unique mechanism of gene regulation. They work without the participation of proteins and are believed to represent ancient regulatory systems in the evolutionary timescale. One of the biggest challenges in riboswitch research is that many are found in prokaryotes but only a small percentage of known riboswitches have been found in certain eukaryotic organisms. The few examples of eukaryotic riboswitches were identified using sequence-based bioinformatics search methods that include some slight structural considerations. These pattern-matching methods were the first ones to be applied for the purpose of riboswitch detection and they can also be programmed very efficiently using a data structure called affix arrays, making them suitable for genome-wide searches of riboswitch patterns. However, they are limited by their ability to detect harder to find riboswitches that deviate from the known patterns. Several methods have been developed since then to tackle this problem. The most commonly used by practitioners is Infernal that relies on Hidden Markov Models (HMMs) and Covariance Models (CMs). Profile Hidden Markov Models were also carried out in the pHMM Riboswitch Scanner web application, independently from Infernal. Other computational approaches that have been developed include RMDetect by the use of 3D structural modules and RNAbor that utilizes Boltzmann probability of structural neighbors. We have tried to incorporate more sophisticated secondary structure considerations based on RNA folding prediction using several strategies. The first idea was to utilize window-based methods in conjunction with folding predictions by energy minimization. The moving window approach is heavily geared towards secondary structure consideration relative to sequence that is treated as a constraint. However, the method cannot be used genome-wide due to its high cost because each folding prediction by energy minimization in the moving window is computationally expensive, enabling to scan only at the vicinity of genes of interest. The second idea was to remedy the inefficiency of the previous approach by constructing a pipeline that consists of inverse RNA folding considering RNA secondary structure, followed by a BLAST search that is sequence-based and highly efficient. This approach, which relies on inverse RNA folding in general and our own in-house fragment-based inverse RNA folding program called RNAfbinv in particular, shows capability to find attractive candidates that are missed by Infernal and other standard methods being used for riboswitch detection. We demonstrate attractive candidates found by both the moving-window approach and the inverse RNA folding approach performed together with BLAST. We conclude that structure-based methods like the two strategies outlined above hold considerable promise in detecting riboswitches and other conserved RNAs of functional importance in a variety of organisms.Keywords: riboswitches, RNA folding prediction, RNA structure, structure-based methods
Procedia PDF Downloads 23417041 Risk of Fatal and Non-Fatal Coronary Heart Disease and Stroke Events among Adult Patients with Hypertension: Basic Markov Model Inputs for Evaluating Cost-Effectiveness of Hypertension Treatment: Systematic Review of Cohort Studies
Authors: Mende Mensa Sorato, Majid Davari, Abbas Kebriaeezadeh, Nizal Sarrafzadegan, Tamiru Shibru, Behzad Fatemi
Abstract:
Markov model, like cardiovascular disease (CVD) policy model based simulation, is being used for evaluating the cost-effectiveness of hypertension treatment. Stroke, angina, myocardial infarction (MI), cardiac arrest, and all-cause mortality were included in this model. Hypertension is a risk factor for a number of vascular and cardiac complications and CVD outcomes. Objective: This systematic review was conducted to evaluate the comprehensiveness of this model across different regions globally. Methods: We searched articles written in the English language from PubMed/Medline, Ovid/Medline, Embase, Scopus, Web of Science, and Google scholar with a systematic search query. Results: Thirteen cohort studies involving a total of 2,165,770 (1,666,554 hypertensive adult population and 499,226 adults with treatment-resistant hypertension) were included in this scoping review. Hypertension is clearly associated with coronary heart disease (CHD) and stroke mortality, unstable angina, stable angina, MI, heart failure (HF), sudden cardiac death, transient ischemic attack, ischemic stroke, subarachnoid hemorrhage, intracranial hemorrhage, peripheral arterial disease (PAD), and abdominal aortic aneurism (AAA). Association between HF and hypertension is variable across regions. Treatment resistant hypertension is associated with a higher relative risk of developing major cardiovascular events and all-cause mortality when compared with non-resistant hypertension. However, it is not included in the previous CVD policy model. Conclusion: The CVD policy model used can be used in most regions for the evaluation of the cost-effectiveness of hypertension treatment. However, hypertension is highly associated with HF in Latin America, the Caribbean, Eastern Europe, and Sub-Saharan Africa. Therefore, it is important to consider HF in the CVD policy model for evaluating the cost-effectiveness of hypertension treatment in these regions. We do not suggest the inclusion of PAD and AAA in the CVD policy model for evaluating the cost-effectiveness of hypertension treatment due to a lack of sufficient evidence. Researchers should consider the effect of treatment-resistant hypertension either by including it in the basic model or during setting the model assumptions.Keywords: cardiovascular disease policy model, cost-effectiveness analysis, hypertension, systematic review, twelve major cardiovascular events
Procedia PDF Downloads 7117040 Evaluating Machine Learning Techniques for Activity Classification in Smart Home Environments
Authors: Talal Alshammari, Nasser Alshammari, Mohamed Sedky, Chris Howard
Abstract:
With the widespread adoption of the Internet-connected devices, and with the prevalence of the Internet of Things (IoT) applications, there is an increased interest in machine learning techniques that can provide useful and interesting services in the smart home domain. The areas that machine learning techniques can help advance are varied and ever-evolving. Classifying smart home inhabitants’ Activities of Daily Living (ADLs), is one prominent example. The ability of machine learning technique to find meaningful spatio-temporal relations of high-dimensional data is an important requirement as well. This paper presents a comparative evaluation of state-of-the-art machine learning techniques to classify ADLs in the smart home domain. Forty-two synthetic datasets and two real-world datasets with multiple inhabitants are used to evaluate and compare the performance of the identified machine learning techniques. Our results show significant performance differences between the evaluated techniques. Such as AdaBoost, Cortical Learning Algorithm (CLA), Decision Trees, Hidden Markov Model (HMM), Multi-layer Perceptron (MLP), Structured Perceptron and Support Vector Machines (SVM). Overall, neural network based techniques have shown superiority over the other tested techniques.Keywords: activities of daily living, classification, internet of things, machine learning, prediction, smart home
Procedia PDF Downloads 35717039 Comparison of Two Neural Networks To Model Margarine Age And Predict Shelf-Life Using Matlab
Authors: Phakamani Xaba, Robert Huberts, Bilainu Oboirien
Abstract:
The present study was aimed at developing & comparing two neural-network-based predictive models to predict shelf-life/product age of South African margarine using free fatty acid (FFA), water droplet size (D3.3), water droplet distribution (e-sigma), moisture content, peroxide value (PV), anisidine valve (AnV) and total oxidation (totox) value as input variables to the model. Brick margarine products which had varying ages ranging from fresh i.e. week 0 to week 47 were sourced. The brick margarine products which had been stored at 10 & 25 °C and were characterized. JMP and MATLAB models to predict shelf-life/ margarine age were developed and their performances were compared. The key performance indicators to evaluate the model performances were correlation coefficient (CC), root mean square error (RMSE), and mean absolute percentage error (MAPE) relative to the actual data. The MATLAB-developed model showed a better performance in all three performance indicators. The correlation coefficient of the MATLAB model was 99.86% versus 99.74% for the JMP model, the RMSE was 0.720 compared to 1.005 and the MAPE was 7.4% compared to 8.571%. The MATLAB model was selected to be the most accurate, and then, the number of hidden neurons/ nodes was optimized to develop a single predictive model. The optimized MATLAB with 10 neurons showed a better performance compared to the models with 1 & 5 hidden neurons. The developed models can be used by margarine manufacturers, food research institutions, researchers etc, to predict shelf-life/ margarine product age, optimize addition of antioxidants, extend shelf-life of products and proactively troubleshoot for problems related to changes which have an impact on shelf-life of margarine without conducting expensive trials.Keywords: margarine shelf-life, predictive modelling, neural networks, oil oxidation
Procedia PDF Downloads 19717038 Performance of the Strong Stability Method in the Univariate Classical Risk Model
Authors: Safia Hocine, Zina Benouaret, Djamil A¨ıssani
Abstract:
In this paper, we study the performance of the strong stability method of the univariate classical risk model. We interest to the stability bounds established using two approaches. The first based on the strong stability method developed for a general Markov chains. The second approach based on the regenerative processes theory . By adopting an algorithmic procedure, we study the performance of the stability method in the case of exponential distribution claim amounts. After presenting numerically and graphically the stability bounds, an interpretation and comparison of the results have been done.Keywords: Marcov chain, regenerative process, risk model, ruin probability, strong stability
Procedia PDF Downloads 32417037 Spatial Time Series Models for Rice and Cassava Yields Based on Bayesian Linear Mixed Models
Authors: Panudet Saengseedam, Nanthachai Kantanantha
Abstract:
This paper proposes a linear mixed model (LMM) with spatial effects to forecast rice and cassava yields in Thailand at the same time. A multivariate conditional autoregressive (MCAR) model is assumed to present the spatial effects. A Bayesian method is used for parameter estimation via Gibbs sampling Markov Chain Monte Carlo (MCMC). The model is applied to the rice and cassava yields monthly data which have been extracted from the Office of Agricultural Economics, Ministry of Agriculture and Cooperatives of Thailand. The results show that the proposed model has better performance in most provinces in both fitting part and validation part compared to the simple exponential smoothing and conditional auto regressive models (CAR) from our previous study.Keywords: Bayesian method, linear mixed model, multivariate conditional autoregressive model, spatial time series
Procedia PDF Downloads 39517036 A Markov Model for the Elderly Disability Transition and Related Factors in China
Authors: Huimin Liu, Li Xiang, Yue Liu, Jing Wang
Abstract:
Background: As one of typical case for the developing countries who are stepping into the aging times globally, more and more older people in China might face the problem of which they could not maintain normal life due to the functional disability. While the government take efforts to build long-term care system and further carry out related policies for the core concept, there is still lack of strong evidence to evaluating the profile of disability states in the elderly population and its transition rate. It has been proved that disability is a dynamic condition of the person rather than irreversible so it means possible to intervene timely on them who might be in a risk of severe disability. Objective: The aim of this study was to depict the picture of the disability transferring status of the older people in China, and then find out individual characteristics that change the state of disability to provide theory basis for disability prevention and early intervention among elderly people. Methods: Data for this study came from the 2011 baseline survey and the 2013 follow-up survey of the China Health and Retirement Longitudinal Study (CHARLS). Normal ADL function, 1~2 ADLs disability,3 or above ADLs disability and death were defined from state 1 to state 4. Multi-state Markov model was applied and the four-state homogeneous model with discrete states and discrete times from two visits follow-up data was constructed to explore factors for various progressive stages. We modeled the effect of explanatory variables on the rates of transition by using a proportional intensities model with covariate, such as gender. Result: In the total sample, state 2 constituent ratio is nearly about 17.0%, while state 3 proportion is blow the former, accounting for 8.5%. Moreover, ADL disability statistics difference is not obvious between two years. About half of the state 2 in 2011 improved to become normal in 2013 even though they get elder. However, state 3 transferred into the proportion of death increased obviously, closed to the proportion back to state 2 or normal functions. From the estimated intensities, we see the older people are eleven times as likely to develop at 1~2 ADLs disability than dying. After disability onset (state 2), progression to state 3 is 30% more likely than recovery. Once in state 3, a mean of 0.76 years is spent before death or recovery. In this model, a typical person in state 2 has a probability of 0.5 of disability-free one year from now while the moderate disabled or above has a probability of 0.14 being dead. Conclusion: On the long-term care cost considerations, preventive programs for delay the disability progression of the elderly could be adopted based on the current disabled state and main factors of each stage. And in general terms, those focusing elderly individuals who are moderate or above disabled should go first.Keywords: Markov model, elderly people, disability, transition intensity
Procedia PDF Downloads 29017035 Detection of Change Points in Earthquakes Data: A Bayesian Approach
Authors: F. A. Al-Awadhi, D. Al-Hulail
Abstract:
In this study, we applied the Bayesian hierarchical model to detect single and multiple change points for daily earthquake body wave magnitude. The change point analysis is used in both backward (off-line) and forward (on-line) statistical research. In this study, it is used with the backward approach. Different types of change parameters are considered (mean, variance or both). The posterior model and the conditional distributions for single and multiple change points are derived and implemented using BUGS software. The model is applicable for any set of data. The sensitivity of the model is tested using different prior and likelihood functions. Using Mb data, we concluded that during January 2002 and December 2003, three changes occurred in the mean magnitude of Mb in Kuwait and its vicinity.Keywords: multiple change points, Markov Chain Monte Carlo, earthquake magnitude, hierarchical Bayesian mode
Procedia PDF Downloads 45617034 A Fine String between Weaving the Text and Patching It: Reading beyond the Hidden Symbols and Antithetical Relationships in the Classical and Modern Arabic Poetry
Authors: Rima Abu Jaber-Bransi, Rawya Jarjoura Burbara
Abstract:
This study reveals the extension and continuity between the classical Arabic poetry and modern Arabic poetry through investigation of its ambiguity, symbolism, and antithetical relationships. The significance of this study lies in its exploration and discovering of a new method of reading classical and modern Arabic poetry. The study deals with the Fatimid poetry and discovers a new method to read it. It also deals with the relationship between the apparent and the hidden meanings of words through focusing on how the paradoxical antithetical relationships change the meaning of the whole poem and give it a different dimension through the use of Oxymorons. In our unprecedented research on Oxymoron, we found out that the words in modern Arabic poetry are used in unusual combinations that convey apparent and hidden meanings. In some cases, the poet introduces an image with a symbol of a certain thing, but the reader soon discovers that the symbol includes its opposite, too. The question is: How does the reader find that hidden harmony in that apparent disharmony? The first and most important conclusion of this study is that the Fatimid poetry was written for two types of readers: religious readers who know the religious symbols and the hidden secret meanings behind the words, and ordinary readers who understand the apparent literal meaning of the words. Consequently, the interpretation of the poem is subject to the type of reading. In Fatimid poetry we found out that the hunting-journey is a journey of hidden esoteric knowledge; the Horse is al-Naqib, a religious rank of the investigator and missionary; the Lion is Ali Ibn Abi Talib. The words black and white, day and night, bird, death and murder have different meanings and indications. Our study points out the importance of reading certain poems in certain periods in two different ways: the first depends on a doctrinal interpretation that transforms the external apparent (ẓāher) meanings into internal inner hidden esoteric (bāṭen) ones; the second depends on the interpretation of antithetical relationships between the words in order to reveal meanings that the poet hid for a reader who participates in the processes of creativity. The second conclusion is that the classical poem employed symbols, oxymora and antonymous and antithetical forms to create two poetic texts in one mold and form. We can conclude that this study is pioneering in showing the constant paradoxical relationship between the apparent and the hidden meanings in classical and modern Arabic poetry.Keywords: apparent, symbol, hidden, antithetical, oxymoron, Sophism, Fatimid poetry
Procedia PDF Downloads 26217033 Comparison of Two Maintenance Policies for a Two-Unit Series System Considering General Repair
Authors: Seyedvahid Najafi, Viliam Makis
Abstract:
In recent years, maintenance optimization has attracted special attention due to the growth of industrial systems complexity. Maintenance costs are high for many systems, and preventive maintenance is effective when it increases operations' reliability and safety at a reduced cost. The novelty of this research is to consider general repair in the modeling of multi-unit series systems and solve the maintenance problem for such systems using the semi-Markov decision process (SMDP) framework. We propose an opportunistic maintenance policy for a series system composed of two main units. Unit 1, which is more expensive than unit 2, is subjected to condition monitoring, and its deterioration is modeled using a gamma process. Unit 1 hazard rate is estimated by the proportional hazards model (PHM), and two hazard rate control limits are considered as the thresholds of maintenance interventions for unit 1. Maintenance is performed on unit 2, considering an age control limit. The objective is to find the optimal control limits and minimize the long-run expected average cost per unit time. The proposed algorithm is applied to a numerical example to compare the effectiveness of the proposed policy (policy Ⅰ) with policy Ⅱ, which is similar to policy Ⅰ, but instead of general repair, replacement is performed. Results show that policy Ⅰ leads to lower average cost compared with policy Ⅱ.Keywords: condition-based maintenance, proportional hazards model, semi-Markov decision process, two-unit series systems
Procedia PDF Downloads 12317032 Detecting HCC Tumor in Three Phasic CT Liver Images with Optimization of Neural Network
Authors: Mahdieh Khalilinezhad, Silvana Dellepiane, Gianni Vernazza
Abstract:
The aim of the present work is to build a model based on tissue characterization that is able to discriminate pathological and non-pathological regions from three-phasic CT images. Based on feature selection in different phases, in this research, we design a neural network system that has optimal neuron number in a hidden layer. Our approach consists of three steps: feature selection, feature reduction, and classification. For each ROI, 6 distinct set of texture features are extracted such as first order histogram parameters, absolute gradient, run-length matrix, co-occurrence matrix, autoregressive model, and wavelet, for a total of 270 texture features. We show that with the injection of liquid and the analysis of more phases the high relevant features in each region changed. Our results show that for detecting HCC tumor phase3 is the best one in most of the features that we apply to the classification algorithm. The percentage of detection between these two classes according to our method, relates to first order histogram parameters with the accuracy of 85% in phase 1, 95% phase 2, and 95% in phase 3.Keywords: multi-phasic liver images, texture analysis, neural network, hidden layer
Procedia PDF Downloads 26217031 Coaches Attitudes, Efficacy and Proposed Behaviors towards Athletes with Hidden Disabilities: A Review of Recent Survey Research
Authors: Robbi Beyer, Tiffanye Vargas, Margaret Flores
Abstract:
Within the United States, youths with hidden disabilities (specific learning disabilities, attention deficit hyperactivity disorder, emotional behavioral disorders, mild intellectual disabilities and speech/language disorders) can often be part of the kindergarten through twelfth grade school population. Because individuals with hidden disabilities have no apparent physical disability, learning difficulties may be overlooked and these youths may be mistakenly labeled as unmotivated, or defiant because they don't understand and follow directions, or maintain enough attention to remember and perform. These behaviors are considered especially challenging for youth sport coaches to manage and they often find it difficult to successfully select and deliver effective accommodations for the athletes. These deficits can be remediated and compensated through the use of research-validated strategies and instructional methods. However, while these techniques are commonly included in teacher preparation, they rarely, if ever, are included in coaching preparation. Therefore, the purpose of this presentation is to summarize consecutive research studies that examined coaching education within the United States for youth athletes with hidden disabilities. Each study utilized a questionnaire format to collect data from coaches on attitudes, efficacy and solutions for addressing challenging behaviors. Results indicated that although the majority of coaches’ attitudes were positive and they perceived themselves confident in working with athletes who have hidden disabilities, there were significant differences in the understanding of appropriate teaching strategies and techniques for this population. For example, when asked to describe a videotaped situation of why an athlete is not performing correctly, coaches often found the athlete to be at fault, as opposed to considering the possibility of faulty directions, or the need for accommodations in teaching/coaching style. When considering coaches’ preparation, 83% of participants declared they were inadequately prepared to coach athletes with hidden disabilities and 92% strongly supported improved preparation for coaches. The comprehensive examination of coaches’ perceptions and efficacy in working with youth athletes with hidden disabilities has provided valuable insight and highlights the need for continued research in this area.Keywords: health, hidden disabilties, physical activity, youth recreational sports
Procedia PDF Downloads 34617030 Comparative Study of Non-Identical Firearms with Priority to Repair Subject to Inspection
Authors: A. S. Grewal, R. S. Sangwan, Dharambir, Vikas Dhanda
Abstract:
The purpose of this paper is to develop and analyze two reliability models for a system of non-identical firearms – one is standard firearm (called as original unit) and the other is a country-made firearm (called as duplicate /substandard unit). There is a single server who comes immediately to do inspection and repair whenever needed. On the failure of standard firearm, the server inspects the operative country-made firearm to see whether the unit is capable of performing the desired function well or not. If country-made firearm is not capable to do so, the operation of the system is stopped and server starts repair of the standard firearms immediately. However, no inspection is done at the failure of the country-made firearm as the country-made firearm alone is capable of performing the given task well. In model I, priority to repair the standard firearm is given in case system fails completely and country-made firearm is already under repair, whereas in model II there is no such priority. The failure and repair times of each unit are assumed to be independent and uncorrelated random variables. The distributions of failure time of the units are taken as negative exponential while that of repair and inspection times are general. By using semi-Markov process and regenerative point technique some econo-reliability measures are obtained. Graphs are plotted to compare the MTSF (mean time to system failure), availability and profit of the models for a particular case.Keywords: non-identical firearms, inspection, priority to repair, semi-Markov process, regenerative point
Procedia PDF Downloads 426