Search results for: validation indexes
485 The Happiness Pulse: A Measure of Individual Wellbeing at a City Scale, Development and Validation
Authors: Rosemary Hiscock, Clive Sabel, David Manley, Sam Wren-Lewis
Abstract:
As part of the Happy City Index Project, Happy City have developed a survey instrument to measure experienced wellbeing: how people are feeling and functioning in their everyday lives. The survey instrument, called the Happiness Pulse, was developed in partnership with the New Economics Foundation (NEF) with the dual aim of collecting citywide wellbeing data and engaging individuals and communities in the measurement and promotion of their own wellbeing. The survey domains and items were selected through a review of the academic literature and a stakeholder engagement process, including local policymakers, community organisations and individuals. The Happiness Pulse was included in the Bristol pilot of the Happy City Index (n=722). The experienced wellbeing items were subjected to factor analysis. A reduced number of items to be included in a revised scale for future data collection were again entered into a factor analysis. These revised factors were tested for reliability and validity. Among items to be included in a revised scale for future data collection three factors emerged: Be, Do and Connect. The Be factor had good reliability, convergent and criterion validity. The Do factor had good discriminant validity. The Connect factor had adequate reliability and good discriminant and criterion validity. Some age, gender and socioeconomic differentiation was found. The properties of a new scale to measure experienced wellbeing, intended for use by municipal authorities, are described. Happiness Pulse data can be combined with local data on wellbeing conditions to determine what matters for peoples wellbeing across a city and why.Keywords: city wellbeing , community wellbeing, engaging individuals and communities, measuring wellbeing and happiness
Procedia PDF Downloads 261484 Predicting Stem Borer Density in Maize Using RapidEye Data and Generalized Linear Models
Authors: Elfatih M. Abdel-Rahman, Tobias Landmann, Richard Kyalo, George Ong’amo, Bruno Le Ru
Abstract:
Maize (Zea mays L.) is a major staple food crop in Africa, particularly in the eastern region of the continent. The maize growing area in Africa spans over 25 million ha and 84% of rural households in Africa cultivate maize mainly as a means to generate food and income. Average maize yields in Sub Saharan Africa are 1.4 t/ha as compared to global average of 2.5–3.9 t/ha due to biotic and abiotic constraints. Amongst the biotic production constraints in Africa, stem borers are the most injurious. In East Africa, yield losses due to stem borers are currently estimated between 12% to 40% of the total production. The objective of the present study was therefore to predict stem borer larvae density in maize fields using RapidEye reflectance data and generalized linear models (GLMs). RapidEye images were captured for a test site in Kenya (Machakos) in January and in February 2015. Stem borer larva numbers were modeled using GLMs assuming Poisson (Po) and negative binomial (NB) distributions with error with log arithmetic link. Root mean square error (RMSE) and ratio prediction to deviation (RPD) statistics were employed to assess the models performance using a leave one-out cross-validation approach. Results showed that NB models outperformed Po ones in all study sites. RMSE and RPD ranged between 0.95 and 2.70, and between 2.39 and 6.81, respectively. Overall, all models performed similar when used the January and the February image data. We conclude that reflectance data from RapidEye data can be used to estimate stem borer larvae density. The developed models could to improve decision making regarding controlling maize stem borers using various integrated pest management (IPM) protocols.Keywords: maize, stem borers, density, RapidEye, GLM
Procedia PDF Downloads 496483 Functional Connectivity Signatures of Polygenic Depression Risk in Youth
Authors: Louise Moles, Steve Riley, Sarah D. Lichenstein, Marzieh Babaeianjelodar, Robert Kohler, Annie Cheng, Corey Horien Abigail Greene, Wenjing Luo, Jonathan Ahern, Bohan Xu, Yize Zhao, Chun Chieh Fan, R. Todd Constable, Sarah W. Yip
Abstract:
Background: Risks for depression are myriad and include both genetic and brain-based factors. However, relationships between these systems are poorly understood, limiting understanding of disease etiology, particularly at the developmental level. Methods: We use a data-driven machine learning approach connectome-based predictive modeling (CPM) to identify functional connectivity signatures associated with polygenic risk scores for depression (DEP-PRS) among youth from the Adolescent Brain and Cognitive Development (ABCD) study across diverse brain states, i.e., during resting state, during affective working memory, during response inhibition, during reward processing. Results: Using 10-fold cross-validation with 100 iterations and permutation testing, CPM identified connectivity signatures of DEP-PRS across all examined brain states (rho’s=0.20-0.27, p’s<.001). Across brain states, DEP-PRS was positively predicted by increased connectivity between frontoparietal and salience networks, increased motor-sensory network connectivity, decreased salience to subcortical connectivity, and decreased subcortical to motor-sensory connectivity. Subsampling analyses demonstrated that model accuracies were robust across random subsamples of N’s=1,000, N’s=500, and N’s=250 but became unstable at N’s=100. Conclusions: These data, for the first time, identify neural networks of polygenic depression risk in a large sample of youth before the onset of significant clinical impairment. Identified networks may be considered potential treatment targets or vulnerability markers for depression risk.Keywords: genetics, functional connectivity, pre-adolescents, depression
Procedia PDF Downloads 58482 The Development, Validation, and Evaluation of the Code Blue Simulation Module in Improving the Code Blue Response Time among Nurses
Authors: Siti Rajaah Binti Sayed Sultan
Abstract:
Managing the code blue event is stressful for nurses, the patient, and the patient's families. The rapid response from the first and second responders in the code blue event will improve patient outcomes and prevent tissue hypoxia that leads to brain injury and other organ failures. Providing 1 minute for the cardiac massage and 2 minutes for defibrillation will significantly improve patient outcomes. As we know, the American Heart Association came out with guidelines for managing cardiac arrest patients. The hospital must provide competent staff to manage this situation. It can be achieved when the staff is well equipped with the skill, attitude, and knowledge to manage this situation with well-planned strategies, i.e., clear guidelines for managing the code blue event, competent staff, and functional equipment. The code blue simulation (CBS) was chosen in the training program for code blue management because it can mimic real scenarios. Having the code blue simulation module will allow the staff to appreciate what they will face during the code blue event, especially since it rarely happens in that area. This CBS module training will help the staff familiarize themselves with the activities that happened during actual events and be able to operate the equipment accordingly. Being challenged and independent in managing the code blue in the early phase gives the patient a better outcome. The CBS module will help the assessor and the hospital management team with the proper tools and guidelines for managing the code blue drill accordingly. As we know, prompt action will benefit the patient and their family. It also indirectly increases the confidence and job satisfaction among the nurses, increasing the standard of care, reducing the complication and hospital burden, and enhancing cost-effective care.Keywords: code blue simulation module, development of code blue simulation module, code blue response time, code blue drill, cardiorespiratory arrest, managing code blue
Procedia PDF Downloads 65481 Hardware-In-The-Loop Relative Motion Control: Theory, Simulation and Experimentation
Authors: O. B. Iskender, K. V. Ling, V. Dubanchet, L. Simonini
Abstract:
This paper presents a Guidance and Control (G&C) strategy to address spacecraft maneuvering problem for future Rendezvous and Docking (RVD) missions. The proposed strategy allows safe and propellant efficient trajectories for space servicing missions including tasks such as approaching, inspecting and capturing. This work provides the validation test results of the G&C laws using a Hardware-In-the-Loop (HIL) setup with two robotic mockups representing the chaser and the target spacecraft. Through this paper, the challenges of the relative motion control in space are first summarized, and in particular, the constraints imposed by the mission, spacecraft and, onboard processing capabilities. Second, the proposed algorithm is introduced by presenting the formulation of constrained Model Predictive Control (MPC) to optimize the fuel consumption and explicitly handle the physical and geometric constraints in the system, e.g. thruster or Line-Of-Sight (LOS) constraints. Additionally, the coupling between translational motion and rotational motion is addressed via dual quaternion based kinematic description and accordingly explained. The resulting convex optimization problem allows real-time implementation capability based on a detailed discussion on the computational time requirements and the obtained results with respect to the onboard computer and future trends of space processors capabilities. Finally, the performance of the algorithm is presented in the scope of a potential future mission and of the available equipment. The results also cover a comparison between the proposed algorithms with Linear–quadratic regulator (LQR) based control law to highlight the clear advantages of the MPC formulation.Keywords: autonomous vehicles, embedded optimization, real-time experiment, rendezvous and docking, space robotics
Procedia PDF Downloads 124480 Modeling of Masonry In-Filled R/C Frame to Evaluate Seismic Performance of Existing Building
Authors: Tarek M. Alguhane, Ayman H. Khalil, M. N. Fayed, Ayman M. Ismail
Abstract:
This paper deals with different modeling aspects of masonry infill: no infill model, Layered shell infill model, and strut infill model. These models consider the complicated behavior of the in-filled plane frames under lateral load similar to an earthquake load. Three strut infill models are used: NBCC (2005) strut infill model, ASCE/SEI 41-06 strut infill model and proposed strut infill model based on modification to Canadian, NBCC (2005) strut infill model. Pushover and modal analyses of a masonry infill concrete frame with a single storey and an existing 5-storey RC building have been carried out by using different models for masonry infill. The corresponding hinge status, the value of base shear at target displacement as well as their dynamic characteristics have been determined and compared. A validation of the structural numerical models for the existing 5-storey RC building has been achieved by comparing the experimentally measured and the analytically estimated natural frequencies and their mode shapes. This study shows that ASCE/SEI 41-06 equation underestimates the values for the equivalent properties of the diagonal strut while Canadian, NBCC (2005) equation gives realistic values for the equivalent properties. The results indicate that both ASCE/SEI 41-06 and Canadian, NBCC (2005) equations for strut infill model give over estimated values for dynamic characteristic of the building. Proposed modification to Canadian, NBCC (2005) equation shows that the fundamental dynamic characteristic values of the building are nearly similar to the corresponding values using layered shell elements as well as measured field results.Keywords: masonry infill, framed structures, RC buildings, non-structural elements
Procedia PDF Downloads 277479 Advances of Image Processing in Precision Agriculture: Using Deep Learning Convolution Neural Network for Soil Nutrient Classification
Authors: Halimatu S. Abdullahi, Ray E. Sheriff, Fatima Mahieddine
Abstract:
Agriculture is essential to the continuous existence of human life as they directly depend on it for the production of food. The exponential rise in population calls for a rapid increase in food with the application of technology to reduce the laborious work and maximize production. Technology can aid/improve agriculture in several ways through pre-planning and post-harvest by the use of computer vision technology through image processing to determine the soil nutrient composition, right amount, right time, right place application of farm input resources like fertilizers, herbicides, water, weed detection, early detection of pest and diseases etc. This is precision agriculture which is thought to be solution required to achieve our goals. There has been significant improvement in the area of image processing and data processing which has being a major challenge. A database of images is collected through remote sensing, analyzed and a model is developed to determine the right treatment plans for different crop types and different regions. Features of images from vegetations need to be extracted, classified, segmented and finally fed into the model. Different techniques have been applied to the processes from the use of neural network, support vector machine, fuzzy logic approach and recently, the most effective approach generating excellent results using the deep learning approach of convolution neural network for image classifications. Deep Convolution neural network is used to determine soil nutrients required in a plantation for maximum production. The experimental results on the developed model yielded results with an average accuracy of 99.58%.Keywords: convolution, feature extraction, image analysis, validation, precision agriculture
Procedia PDF Downloads 315478 Precipitation Intensity: Duration Based Threshold Analysis for Initiation of Landslides in Upper Alaknanda Valley
Authors: Soumiya Bhattacharjee, P. K. Champati Ray, Shovan L. Chattoraj, Mrinmoy Dhara
Abstract:
The entire Himalayan range is globally renowned for rainfall-induced landslides. The prime focus of the study is to determine rainfall based threshold for initiation of landslides that can be used as an important component of an early warning system for alerting stake holders. This research deals with temporal dimension of slope failures due to extreme rainfall events along the National Highway-58 from Karanprayag to Badrinath in the Garhwal Himalaya, India. Post processed 3-hourly rainfall intensity data and its corresponding duration from daily rainfall data available from Tropical Rainfall Measuring Mission (TRMM) were used as the prime source of rainfall data. Landslide event records from Border Road Organization (BRO) and some ancillary landslide inventory data for 2013 and 2014 have been used to determine Intensity Duration (ID) based rainfall threshold. The derived governing threshold equation, I= 4.738D-0.025, has been considered for prediction of landslides of the study region. This equation was validated with an accuracy of 70% landslides during August and September 2014. The derived equation was considered for further prediction of landslides of the study region. From the obtained results and validation, it can be inferred that this equation can be used for initiation of landslides in the study area to work as a part of an early warning system. Results can significantly improve with ground based rainfall estimates and better database on landslide records. Thus, the study has demonstrated a very low cost method to get first-hand information on possibility of impending landslide in any region, thereby providing alert and better preparedness for landslide disaster mitigation.Keywords: landslide, intensity-duration, rainfall threshold, TRMM, slope, inventory, early warning system
Procedia PDF Downloads 272477 Identification and Validation of Co-Dominant Markers for Selection of the CO-4 Anthracnose Disease Resistance Gene in Common Bean Cultivar G2333
Authors: Annet Namusoke, Annet Namayanja, Peter Wasswa, Shakirah Nampijja
Abstract:
Common bean cultivar G2333 which offers broad resistance for anthracnose has been widely used as a source of resistance in breeding for anthracnose resistance. The cultivar is pyramided with three genes namely CO-4, CO-5 and CO-7 and of these three genes, the CO-4 gene has been found to offer the broadest resistance. The main aim of this work was to identify and validate easily assayable PCR based co-dominant molecular markers for selection of the CO-4 gene in segregating populations derived from crosses of G2333 with RWR 1946 and RWR 2075, two commercial Andean cultivars highly susceptible to anthracnose. Marker sequences for the study were obtained by blasting the sequence of the COK-4 gene in the Phaseolus gene database. Primer sequence pairs that were not provided from the Phaseolus gene database were designed by the use of Primer3 software. PCR conditions were optimized and the PCR products were run on 6% HPAGE gel. Results of the polymorphism test indicated that out of 18 identified markers, only two markers namely BM588 and BM211 behaved co-dominantly. Phenotypic evaluation for reaction to anthracnose disease was done by inoculating 21days old seedlings of three parents, F1 and F2 populations with race 7 of Colletotrichum lindemuthianum in the humid chamber. DNA testing of the BM588 marker onto the F2 segregating population of the crosses RWR 1946 x G 2333 and RWR 2075 x G2333 further revealed that the marker BM588 co-segregated with disease resistance with co-dominance of two alleles of 200bp and 400bp, fitting the expected segregation ratio of 1:2:1. The BM588 marker was significantly associated with disease resistance and gave promising results for marker assisted selection of the CO-4 gene in the breeding lines. Activities to validate the BM211 marker are also underway.Keywords: codominant, Colletotrichum lindemuthianum, MAS, Phaseolus vulgaris
Procedia PDF Downloads 291476 Effects of an Educative Model in Socially Responsible Behavior and Other Psychological Variables
Authors: Gracia V. Navarro, Maria V. Gonzalez, Carlos G. Reed
Abstract:
The eudaimonic perspective in philosophy and psychology suggests that a good life is closely related to developing oneself in order to contribute to the well-being and happiness of other people and of the world as a whole. Educational psychology can help to achieve this through the design and validation of educative models. Since 2004, the University of Concepcion and other Chilean universities apply an educative model to train socially responsible professionals, people that in the exercise of their profession contribute to generate equity for the development and assess the impacts of their decisions, opting for those that serve the common good. The main aim is to identify if a relationship exists between achieved learning, attitudes toward social responsibility, self-attribution of socially responsible behavior, value type, professional behavior observed and, participation in a specific model to train socially responsible (SR) professionals. The Achieved Learning and Attitudes Toward Social Responsibility Questionnaire, interview with employers and Values Questionnaire and Self-attribution of SR Behavior Questionnaire is applied to 394 students and graduates, divided into experimental and control groups (trained and not trained under the educative model), in order to identify the professional behavior of the graduates. The results show that students and graduates perceive cognitive, affective and behavioral learning, with significant differences in attitudes toward social responsibility and self-attribution of SR behavior, between experimental and control. There are also differences in employers' perceptions about the professional practice of those who were trained under the model and those who were not. It is concluded that the educative model has an impact on the learning of social responsibility and educates for a full life. It is also concluded that it is necessary to identify mediating variables of the model effect.Keywords: educative model, good life, professional social responsibility, values
Procedia PDF Downloads 264475 Machine Learning Techniques for COVID-19 Detection: A Comparative Analysis
Authors: Abeer A. Aljohani
Abstract:
COVID-19 virus spread has been one of the extreme pandemics across the globe. It is also referred to as coronavirus, which is a contagious disease that continuously mutates into numerous variants. Currently, the B.1.1.529 variant labeled as omicron is detected in South Africa. The huge spread of COVID-19 disease has affected several lives and has surged exceptional pressure on the healthcare systems worldwide. Also, everyday life and the global economy have been at stake. This research aims to predict COVID-19 disease in its initial stage to reduce the death count. Machine learning (ML) is nowadays used in almost every area. Numerous COVID-19 cases have produced a huge burden on the hospitals as well as health workers. To reduce this burden, this paper predicts COVID-19 disease is based on the symptoms and medical history of the patient. This research presents a unique architecture for COVID-19 detection using ML techniques integrated with feature dimensionality reduction. This paper uses a standard UCI dataset for predicting COVID-19 disease. This dataset comprises symptoms of 5434 patients. This paper also compares several supervised ML techniques to the presented architecture. The architecture has also utilized 10-fold cross validation process for generalization and the principal component analysis (PCA) technique for feature reduction. Standard parameters are used to evaluate the proposed architecture including F1-Score, precision, accuracy, recall, receiver operating characteristic (ROC), and area under curve (AUC). The results depict that decision tree, random forest, and neural networks outperform all other state-of-the-art ML techniques. This achieved result can help effectively in identifying COVID-19 infection cases.Keywords: supervised machine learning, COVID-19 prediction, healthcare analytics, random forest, neural network
Procedia PDF Downloads 92474 Computational Feasibility Study of a Torsional Wave Transducer for Tissue Stiffness Monitoring
Authors: Rafael Muñoz, Juan Melchor, Alicia Valera, Laura Peralta, Guillermo Rus
Abstract:
A torsional piezoelectric ultrasonic transducer design is proposed to measure shear moduli in soft tissue with direct access availability, using shear wave elastography technique. The measurement of shear moduli of tissues is a challenging problem, mainly derived from a) the difficulty of isolating a pure shear wave, given the interference of multiple waves of different types (P, S, even guided) emitted by the transducers and reflected in geometric boundaries, and b) the highly attenuating nature of soft tissular materials. An immediate application, overcoming these drawbacks, is the measurement of changes in cervix stiffness to estimate the gestational age at delivery. The design has been optimized using a finite element model (FEM) and a semi-analytical estimator of the probability of detection (POD) to determine a suitable geometry, materials and generated waves. The technique is based on the time of flight measurement between emitter and receiver, to infer shear wave velocity. Current research is centered in prototype testing and validation. The geometric optimization of the transducer was able to annihilate the compressional wave emission, generating a quite pure shear torsional wave. Currently, mechanical and electromagnetic coupling between emitter and receiver signals are being the research focus. Conclusions: the design overcomes the main described problems. The almost pure shear torsional wave along with the short time of flight avoids the possibility of multiple wave interference. This short propagation distance reduce the effect of attenuation, and allow the emission of very low energies assuring a good biological security for human use.Keywords: cervix ripening, preterm birth, shear modulus, shear wave elastography, soft tissue, torsional wave
Procedia PDF Downloads 345473 Elaboration and Validation of a Survey about Research on the Characteristics of Mentoring of University Professors’ Lifelong Learning
Authors: Nagore Guerra Bilbao, Clemente Lobato Fraile
Abstract:
This paper outlines the design and development of the MENDEPRO questionnaire, designed to analyze mentoring performance within a professional development process carried out with professors at the University of the Basque Country, Spain. The study took into account the international research carried out over the past two decades into teachers' professional development, and was also based on a thorough review of the most common instruments used to identify and analyze mentoring styles, many of which fail to provide sufficient psychometric guarantees. The present study aimed to gather empirical data in order to verify the metric quality of the questionnaire developed. To this end, the process followed to validate the theoretical construct was as follows: The formulation of the items and indicators in accordance with the study variables; the analysis of the validity and reliability of the initial questionnaire; the review of the second version of the questionnaire and the definitive measurement instrument. Content was validated through the formal agreement and consensus of 12 university professor training experts. A reduced sample of professors who had participated in a lifelong learning program was then selected for a trial evaluation of the instrument developed. After the trial, 18 items were removed from the initial questionnaire. The final version of the instrument, comprising 33 items, was then administered to a sample group of 99 participants. The results revealed a five-dimensional structure matching theoretical expectations. Also, the reliability data for both the instrument as a whole (.98) and its various dimensions (between .91 and .97) were very high. The questionnaire was thus found to have satisfactory psychometric properties and can therefore be considered apt for studying the performance of mentoring in both induction programs for young professors and lifelong learning programs for senior faculty members.Keywords: higher education, mentoring, professional development, university teaching
Procedia PDF Downloads 180472 Investigations of Bergy Bits and Ship Interactions in Extreme Waves Using Smoothed Particle Hydrodynamics
Authors: Mohammed Islam, Jungyong Wang, Dong Cheol Seo
Abstract:
The Smoothed Particle Hydrodynamics (SPH) method is a novel, meshless, and Lagrangian technique based numerical method that has shown promises to accurately predict the hydrodynamics of water and structure interactions in violent flow conditions. The main goal of this study is to build confidence on the versatility of the Smoothed Particle Hydrodynamics (SPH) based tool, to use it as a complementary tool to the physical model testing capabilities and support research need for the performance evaluation of ships and offshore platforms exposed to an extreme and harsh environment. In the current endeavor, an open-sourced SPH-based tool was used and validated for modeling and predictions of the hydrodynamic interactions of a 6-DOF ship and bergy bits. The study involved the modeling of a modern generic drillship and simplified bergy bits in floating and towing scenarios and in regular and irregular wave conditions. The predictions were validated using the model-scale measurements on a moored ship towed at multiple oblique angles approaching a floating bergy bit in waves. Overall, this study results in a thorough comparison between the model scale measurements and the prediction outcomes from the SPH tool for performance and accuracy. The SPH predicted ship motions and forces were primarily within ±5% of the measurements. The velocity and pressure distribution and wave characteristics over the free surface depicts realistic interactions of the wave, ship, and the bergy bit. This work identifies and presents several challenges in preparing the input file, particularly while defining the mass properties of complex geometry, the computational requirements, and the post-processing of the outcomes.Keywords: SPH, ship and bergy bit, hydrodynamic interactions, model validation, physical model testing
Procedia PDF Downloads 132471 Nucleotide Based Validation of the Endangered Plant Diospyros mespiliformis (Ebenaceae) by Evaluating Short Sequence Region of Plastid rbcL Gene
Authors: Abdullah Alaklabi, Ibrahim A. Arif, Sameera O. Bafeel, Ahmad H. Alfarhan, Anis Ahamed, Jacob Thomas, Mohammad A. Bakir
Abstract:
Diospyros mespiliformis (Hochst. ex A.DC.; Ebenaceae) is a large deciduous medicinal plant. This plant species is currently listed as endangered in Saudi Arabia. Molecular identification of this plant species based on short sequence regions (571 and 664 bp) of plastid rbcL (ribulose-1, 5-biphosphate carboxylase) gene was investigated in this study. The endangered plant specimens were collected from Al-Baha, Saudi Arabia (GPS coordinate: 19.8543987, 41.3059349). Phylogenetic tree inferred from the rbcL gene sequences showed that this species is very closely related with D. brandisiana. The close relationship was also observed among D. bejaudii, D. Philippinensis and D. releyi (≥99.7% sequence homology). The partial rbcL gene sequence region (571 bp) that was amplified by rbcL primer-pair rbcLaF-rbcLaR failed to discriminate D. mespiliformis from the closely related plant species, D. brandisiana. In contrast, primer-pair rbcL1F-rbcL724R yielded longer amplicon, discriminated the species from D. brandisiana and demonstrated nucleotide variations in 3 different sites (645G>T; 663A>C; 710C>G). Although D. mespiliformis (EU980712) and D. brandisiana (EU980656) are very closely related species (99.4%); however, studied specimen showed 100% sequence homology with D. mespiliformis and 99.6% with D. brandisiana. The present findings showed that rbcL short sequence region (664 bp) of plastid rbcL gene, amplified by primer-pair rbcL1F-rbcL724R, can be used for authenticating samples of D. mespiliforformis and may provide help in authentic identification and management process of this medicinally valuable endangered plant species.Keywords: Diospyros mespiliformis, endangered plant, identification partial rbcL
Procedia PDF Downloads 432470 Detecting Indigenous Languages: A System for Maya Text Profiling and Machine Learning Classification Techniques
Authors: Alejandro Molina-Villegas, Silvia Fernández-Sabido, Eduardo Mendoza-Vargas, Fátima Miranda-Pestaña
Abstract:
The automatic detection of indigenous languages in digital texts is essential to promote their inclusion in digital media. Underrepresented languages, such as Maya, are often excluded from language detection tools like Google’s language-detection library, LANGDETECT. This study addresses these limitations by developing a hybrid language detection solution that accurately distinguishes Maya (YUA) from Spanish (ES). Two strategies are employed: the first focuses on creating a profile for the Maya language within the LANGDETECT library, while the second involves training a Naive Bayes classification model with two categories, YUA and ES. The process includes comprehensive data preprocessing steps, such as cleaning, normalization, tokenization, and n-gram counting, applied to text samples collected from various sources, including articles from La Jornada Maya, a major newspaper in Mexico and the only media outlet that includes a Maya section. After the training phase, a portion of the data is used to create the YUA profile within LANGDETECT, which achieves an accuracy rate above 95% in identifying the Maya language during testing. Additionally, the Naive Bayes classifier, trained and tested on the same database, achieves an accuracy close to 98% in distinguishing between Maya and Spanish, with further validation through F1 score, recall, and logarithmic scoring, without signs of overfitting. This strategy, which combines the LANGDETECT profile with a Naive Bayes model, highlights an adaptable framework that can be extended to other underrepresented languages in future research. This fills a gap in Natural Language Processing and supports the preservation and revitalization of these languages.Keywords: indigenous languages, language detection, Maya language, Naive Bayes classifier, natural language processing, low-resource languages
Procedia PDF Downloads 16469 Simulation-Based Validation of Safe Human-Robot-Collaboration
Authors: Titanilla Komenda
Abstract:
Human-machine-collaboration defines a direct interaction between humans and machines to fulfil specific tasks. Those so-called collaborative machines are used without fencing and interact with humans in predefined workspaces. Even though, human-machine-collaboration enables a flexible adaption to variable degrees of freedom, industrial applications are rarely found. The reasons for this are not technical progress but rather limitations in planning processes ensuring safety for operators. Until now, humans and machines were mainly considered separately in the planning process, focusing on ergonomics and system performance respectively. Within human-machine-collaboration, those aspects must not be seen in isolation from each other but rather need to be analysed in interaction. Furthermore, a simulation model is needed that can validate the system performance and ensure the safety for the operator at any given time. Following on from this, a holistic simulation model is presented, enabling a simulative representation of collaborative tasks – including both, humans and machines. The presented model does not only include a geometry and a motion model of interacting humans and machines but also a numerical behaviour model of humans as well as a Boole’s probabilistic sensor model. With this, error scenarios can be simulated by validating system behaviour in unplanned situations. As these models can be defined on the basis of Failure Mode and Effects Analysis as well as probabilities of errors, the implementation in a collaborative model is discussed and evaluated regarding limitations and simulation times. The functionality of the model is shown on industrial applications by comparing simulation results with video data. The analysis shows the impact of considering human factors in the planning process in contrast to only meeting system performance. In this sense, an optimisation function is presented that meets the trade-off between human and machine factors and aids in a successful and safe realisation of collaborative scenarios.Keywords: human-machine-system, human-robot-collaboration, safety, simulation
Procedia PDF Downloads 361468 Benefits of a Topical Emollient Product in the Management of Canine Nasal Hyperkeratosis
Authors: Christelle Navarro, Sébastien Viaud, Carole Gard, Bruno Jahier
Abstract:
Background: Idiopathic or familial nasal hyperkeratosis (NHK) may be considered a cosmetic issue in its uncomplicated form. Nevertheless, prevention of secondary lesions such as fissures or infections could be advised by proper management. The objective of this open-field study is to evaluate the benefits of a moisturizing balm in privately owned dogs with NHK, using an original validation grid for both investigator and owner assessments. Methods: Dogs with idiopathic or familial NHK received a vegetable-based ointment (Sensiderm® Balm, MP Labo, France) BID for 60 days. A global dermatological score (GDS) was defined using the sum of 4 criteria (“dryness,” “lichenification”, “crusts,” and “affected area”) on a 0 (no) to 3 (severe or > 2/3 extension) scale. Evaluation of this GDS (0-12) on D0, D30, and D60, by owners and investigators was the main outcome. The score’s percentage decrease versus D0, the evolution of each individual score, the correlation between observers, and the evaluation of clinical improvement and animal discomfort on VAS (0-10) during follow-up were analysed. Results: The global dermatological score significantly decreased over time (p<0.0001) for all observers. The decrease reached 44.9% and 54.3% at D30 and 54.5% and 62.3% at D60, for investigators and owners, respectively. “Dryness”, “Lichenification,” and “Affected area scores” decreased significantly and steadily over time compared to Day 0 for both investigators and owners (p < 0.001 and p = 0.001 for investigator assessment of dryness). All but one score (lichenification) were correlated at all times between observers (only at D60 for crusts). Whoever the observer, clinical improvement was always above 7. At D30 and until D60, “animal discomfort” was more than halved. Owner satisfaction was high as soon as D30 (8.1/10). No adverse effects were reported. Conclusion and clinical importance: The positive results confirm the benefits and safety of a moisturizing balm when used in dogs with uncomplicated NHK.Keywords: hyperkeratosis, nose, dog, moisturizer
Procedia PDF Downloads 129467 Investigation of Failure Mechanisms of Composite Laminates with Delamination and Repaired with Bolts
Authors: Shuxin Li, Peihao Song, Haixiao Hu, Dongfeng Cao
Abstract:
The interactive deformation and failure mechanisms, including local bucking/delamination propagation and global bucking, are investigated in this paper with numerical simulation and validation with experimental results. Three dimensional numerical models using ABAQUS brick elements combined with cohesive elements and contact elements are developed to simulate the deformation and failure characteristics of composite laminates with and without delamination under compressive loading. The zero-thickness cohesive elements are inserted on the possible path of delamination propagation, and the inter-laminate behavior is characterized by the mixed-mode traction-separation law. The numerical simulations identified the complex feature of interaction among local buckling and/or delamination propagation and final global bucking for composite laminates with delamination under compressive loading. Firstly there is an interaction between the local buckling and delamination propagation, i.e., local buckling induces delamination propagation, and then delamination growth further enhances the local buckling. Secondly, the interaction between the out-plan deformation caused by local buckling and the global bucking deformation results in final failure of the composite laminates. The simulation results are validated by the good agreement with the experimental results published in the literature. The numerical simulation validated with experimental results revealed that the degradation of the load capacity, in particular of the compressive strength of composite structures with delamination, is mainly attributed to the combined local buckling/delamination propagation effects. Consequently, a simple field-bolt repair approach that can hinder the local buckling and prevent delamination growth is explored. The analysis and simulation results demonstrated field-bolt repair could effectively restore compressive strength of composite laminates with delamination.Keywords: cohesive elements, composite laminates, delamination, local and global bucking, field-bolt repair
Procedia PDF Downloads 120466 Additional Opportunities of Forensic Medical Identification of Dead Bodies of Unkown Persons
Authors: Saule Mussabekova
Abstract:
A number of chemical elements widely presented in the nature is seldom met in people and vice versa. This is a peculiarity of accumulation of elements in the body, and their selective use regardless of widely changed parameters of external environment. Microelemental identification of human hair and particularly dead body is a new step in the development of modern forensic medicine which needs reliable criteria while identifying the person. In the condition of technology-related pressing of large industrial cities for many years and specific for each region multiple-factor toxic effect from many industrial enterprises it’s important to assess actuality and the role of researches of human hair while assessing degree of deposition with specific pollution. Hair is highly sensitive biological indicator and allows to assess ecological situation, to perform regionalism of large territories of geological and chemical methods. Besides, monitoring of concentrations of chemical elements in the regions of Kazakhstan gives opportunity to use these data while performing forensic medical identification of dead bodies of unknown persons. Methods based on identification of chemical composition of hair with further computer processing allowed to compare received data with average values for the sex, age, and to reveal causally significant deviations. It gives an opportunity preliminary to suppose the region of residence of the person, having concentrated actions of policy for search of people who are unaccounted for. It also allows to perform purposeful legal actions for its further identification having created more optimal and strictly individual scheme of personal identity. Hair is the most suitable material for forensic researches as it has such advances as long term storage properties with no time limitations and specific equipment. Besides, quantitative analysis of micro elements is well correlated with level of pollution of the environment, reflects professional diseases and with pinpoint accuracy helps not only to diagnose region of temporary residence of the person but to establish regions of his migration as well. Peculiarities of elemental composition of human hair have been established regardless of age and sex of persons residing on definite territories of Kazakhstan. Data regarding average content of 29 chemical elements in hair of population in different regions of Kazakhstan have been systemized. Coefficients of concentration of studies elements in hair relative to average values around the region have been calculated for each region. Groups of regions with specific spectrum of elements have been emphasized; these elements are accumulated in hair in quantities exceeding average indexes. Our results have showed significant differences in concentrations of chemical elements for studies groups and showed that population of Kazakhstan is exposed to different toxic substances. It depends on emissions to atmosphere from industrial enterprises dominating in each separate region. Performed researches have showed that obtained elemental composition of human hair residing in different regions of Kazakhstan reflects technogenic spectrum of elements.Keywords: analysis of elemental composition of hair, forensic medical research of hair, identification of unknown dead bodies, microelements
Procedia PDF Downloads 142465 The Interactive Wearable Toy "+Me", for the Therapy of Children with Autism Spectrum Disorders: Preliminary Results
Authors: Beste Ozcan, Valerio Sperati, Laura Romano, Tania Moretta, Simone Scaffaro, Noemi Faedda, Federica Giovannone, Carla Sogos, Vincenzo Guidetti, Gianluca Baldassarre
Abstract:
+me is an experimental interactive toy with the appearance of a soft, pillow-like, panda. Shape and consistency are designed to arise emotional attachment in young children: a child can wear it around his/her neck and treat it as a companion (i.e. a transitional object). When caressed on paws or head, the panda emits appealing, interesting outputs like colored lights or amusing sounds, thanks to embedded electronics. Such sensory patterns can be modified through a wirelessly connected tablet: by this, an adult caregiver can adapt +me responses to a child's reactions or requests, for example, changing the light hue or the type of sound. The toy control is therefore shared, as it depends on both the child (who handles the panda) and the adult (who manages the tablet and mediates the sensory input-output contingencies). These features make +me a potential tool for therapy with children with Neurodevelopmental Disorders (ND), characterized by impairments in the social area, like Autism Spectrum Disorders (ASD) and Language Disorders (LD): as a proposal, the toy could be used together with a therapist, in rehabilitative play activities aimed at encouraging simple social interactions and reinforcing basic relational and communication skills. +me was tested in two pilot experiments, the first one involving 15 Typically Developed (TD) children aged in 8-34 months, the second one involving 7 children with ASD, and 7 with LD, aged in 30-48 months. In both studies a researcher/caregiver, during a one-to-one, ten-minute activity plays with the panda and encourages the child to do the same. The purpose of both studies was to ascertain the general acceptability of the device as an interesting toy that is an object able to capture the child's attention and to maintain a high motivation to interact with it and with the adult. Behavioral indexes for estimating the interplay between the child, +me and caregiver were rated from the video recording of the experimental sessions. Preliminary results show how -on average- participants from 3 groups exhibit a good engagement: they touch, caress, explore the panda and show enjoyment when they manage to trigger luminous and sound responses. During the experiments, children tend to imitate the caregiver's actions on +me, often looking (and smiling) at him/her. Interesting behavioral differences between TD, ASD, and LD groups are scored: for example, ASD participants produce a fewer number of smiles both to panda and to a caregiver with respect to TD group, while LD scores stand between ASD and TD subjects. These preliminary observations suggest that the interactive toy +me is able to raise and maintain the interest of toddlers and therefore it can be reasonably used as a supporting tool during therapy, to stimulate pivotal social skills as imitation, turn-taking, eye contact, and social smiles. Interestingly, the young age of participants, along with the behavioral differences between groups, seem to suggest a further potential use of the device: a tool for early differential diagnosis (the average age of a childKeywords: autism spectrum disorders, interactive toy, social interaction, therapy, transitional wearable companion
Procedia PDF Downloads 123464 Experimental and Modal Determination of the State-Space Model Parameters of a Uni-Axial Shaker System for Virtual Vibration Testing
Authors: Jonathan Martino, Kristof Harri
Abstract:
In some cases, the increase in computing resources makes simulation methods more affordable. The increase in processing speed also allows real time analysis or even more rapid tests analysis offering a real tool for test prediction and design process optimization. Vibration tests are no exception to this trend. The so called ‘Virtual Vibration Testing’ offers solution among others to study the influence of specific loads, to better anticipate the boundary conditions between the exciter and the structure under test, to study the influence of small changes in the structure under test, etc. This article will first present a virtual vibration test modeling with a main focus on the shaker model and will afterwards present the experimental parameters determination. The classical way of modeling a shaker is to consider the shaker as a simple mechanical structure augmented by an electrical circuit that makes the shaker move. The shaker is modeled as a two or three degrees of freedom lumped parameters model while the electrical circuit takes the coil impedance and the dynamic back-electromagnetic force into account. The establishment of the equations of this model, describing the dynamics of the shaker, is presented in this article and is strongly related to the internal physical quantities of the shaker. Those quantities will be reduced into global parameters which will be estimated through experiments. Different experiments will be carried out in order to design an easy and practical method for the identification of the shaker parameters leading to a fully functional shaker model. An experimental modal analysis will also be carried out to extract the modal parameters of the shaker and to combine them with the electrical measurements. Finally, this article will conclude with an experimental validation of the model.Keywords: lumped parameters model, shaker modeling, shaker parameters, state-space, virtual vibration
Procedia PDF Downloads 269463 QSAR Modeling of Germination Activity of a Series of 5-(4-Substituent-Phenoxy)-3-Methylfuran-2(5H)-One Derivatives with Potential of Strigolactone Mimics toward Striga hermonthica
Authors: Strahinja Kovačević, Sanja Podunavac-Kuzmanović, Lidija Jevrić, Cristina Prandi, Piermichele Kobauri
Abstract:
The present study is based on molecular modeling of a series of twelve 5-(4-substituent-phenoxy)-3-methylfuran-2(5H)-one derivatives which have potential of strigolactones mimics toward Striga hermonthica. The first step of the analysis included the calculation of molecular descriptors which numerically describe the structures of the analyzed compounds. The descriptors ALOGP (lipophilicity), AClogS (water solubility) and BBB (blood-brain barrier penetration), served as the input variables in multiple linear regression (MLR) modeling of germination activity toward S. hermonthica. Two MLR models were obtained. The first MLR model contains ALOGP and AClogS descriptors, while the second one is based on these two descriptors plus BBB descriptor. Despite the braking Topliss-Costello rule in the second MLR model, it has much better statistical and cross-validation characteristics than the first one. The ALOGP and AClogS descriptors are often very suitable predictors of the biological activity of many compounds. They are very important descriptors of the biological behavior and availability of a compound in any biological system (i.e. the ability to pass through the cell membranes). BBB descriptor defines the ability of a molecule to pass through the blood-brain barrier. Besides the lipophilicity of a compound, this descriptor carries the information of the molecular bulkiness (its value strongly depends on molecular bulkiness). According to the obtained results of MLR modeling, these three descriptors are considered as very good predictors of germination activity of the analyzed compounds toward S. hermonthica seeds. This article is based upon work from COST Action (FA1206), supported by COST (European Cooperation in Science and Technology).Keywords: chemometrics, germination activity, molecular modeling, QSAR analysis, strigolactones
Procedia PDF Downloads 286462 Hyper Parameter Optimization of Deep Convolutional Neural Networks for Pavement Distress Classification
Authors: Oumaima Khlifati, Khadija Baba
Abstract:
Pavement distress is the main factor responsible for the deterioration of road structure durability, damage vehicles, and driver comfort. Transportation agencies spend a high proportion of their funds on pavement monitoring and maintenance. The auscultation of pavement distress was based on the manual survey, which was extremely time consuming, labor intensive, and required domain expertise. Therefore, the automatic distress detection is needed to reduce the cost of manual inspection and avoid more serious damage by implementing the appropriate remediation actions at the right time. Inspired by recent deep learning applications, this paper proposes an algorithm for automatic road distress detection and classification using on the Deep Convolutional Neural Network (DCNN). In this study, the types of pavement distress are classified as transverse or longitudinal cracking, alligator, pothole, and intact pavement. The dataset used in this work is composed of public asphalt pavement images. In order to learn the structure of the different type of distress, the DCNN models are trained and tested as a multi-label classification task. In addition, to get the highest accuracy for our model, we adjust the structural optimization hyper parameters such as the number of convolutions and max pooling, filers, size of filters, loss functions, activation functions, and optimizer and fine-tuning hyper parameters that conclude batch size and learning rate. The optimization of the model is executed by checking all feasible combinations and selecting the best performing one. The model, after being optimized, performance metrics is calculated, which describe the training and validation accuracies, precision, recall, and F1 score.Keywords: distress pavement, hyperparameters, automatic classification, deep learning
Procedia PDF Downloads 93461 Alternating Expectation-Maximization Algorithm for a Bilinear Model in Isoform Quantification from RNA-Seq Data
Authors: Wenjiang Deng, Tian Mou, Yudi Pawitan, Trung Nghia Vu
Abstract:
Estimation of isoform-level gene expression from RNA-seq data depends on simplifying assumptions, such as uniform reads distribution, that are easily violated in real data. Such violations typically lead to biased estimates. Most existing methods provide a bias correction step(s), which is based on biological considerations, such as GC content–and applied in single samples separately. The main problem is that not all biases are known. For example, new technologies such as single-cell RNA-seq (scRNA-seq) may introduce new sources of bias not seen in bulk-cell data. This study introduces a method called XAEM based on a more flexible and robust statistical model. Existing methods are essentially based on a linear model Xβ, where the design matrix X is known and derived based on the simplifying assumptions. In contrast, XAEM considers Xβ as a bilinear model with both X and β unknown. Joint estimation of X and β is made possible by simultaneous analysis of multi-sample RNA-seq data. Compared to existing methods, XAEM automatically performs empirical correction of potentially unknown biases. XAEM implements an alternating expectation-maximization (AEM) algorithm, alternating between estimation of X and β. For speed XAEM utilizes quasi-mapping for read alignment, thus leading to a fast algorithm. Overall XAEM performs favorably compared to other recent advanced methods. For simulated datasets, XAEM obtains higher accuracy for multiple-isoform genes, particularly for paralogs. In a differential-expression analysis of a real scRNA-seq dataset, XAEM achieves substantially greater rediscovery rates in an independent validation set.Keywords: alternating EM algorithm, bias correction, bilinear model, gene expression, RNA-seq
Procedia PDF Downloads 142460 A Method for Multimedia User Interface Design for Mobile Learning
Authors: Shimaa Nagro, Russell Campion
Abstract:
Mobile devices are becoming ever more widely available, with growing functionality, and are increasingly used as an enabling technology to give students access to educational material anytime and anywhere. However, the design of educational material user interfaces for mobile devices is beset by many unresolved research issues such as those arising from emphasising the information concepts then mapping this information to appropriate media (modelling information then mapping media effectively). This report describes a multimedia user interface design method for mobile learning. The method covers specification of user requirements and information architecture, media selection to represent the information content, design for directing attention to important information, and interaction design to enhance user engagement based on Human-Computer Interaction design strategies (HCI). The method will be evaluated by three different case studies to prove the method is suitable for application to different areas / applications, these are; an application to teach about major computer networking concepts, an application to deliver a history-based topic; (after these case studies have been completed, the method will be revised to remove deficiencies and then used to develop a third case study), an application to teach mathematical principles. At this point, the method will again be revised into its final format. A usability evaluation will be carried out to measure the usefulness and effectiveness of the method. The investigation will combine qualitative and quantitative methods, including interviews and questionnaires for data collection and three case studies for validating the MDMLM method. The researcher has successfully produced the method at this point which is now under validation and testing procedures. From this point forward in the report, the researcher will refer to the method using the MDMLM abbreviation which means Multimedia Design Mobile Learning Method.Keywords: human-computer interaction, interface design, mobile learning, education
Procedia PDF Downloads 245459 Artificial Neural Network Based Approach in Prediction of Potential Water Pollution Across Different Land-Use Patterns
Authors: M.Rüştü Karaman, İsmail İşeri, Kadir Saltalı, A.Reşit Brohi, Ayhan Horuz, Mümin Dizman
Abstract:
Considerable relations has recently been given to the environmental hazardous caused by agricultural chemicals such as excess fertilizers. In this study, a neural network approach was investigated in the prediction of potential nitrate pollution across different land-use patterns by using a feedforward multilayered computer model of artificial neural network (ANN) with proper training. Periodical concentrations of some anions, especially nitrate (NO3-), and cations were also detected in drainage waters collected from the drain pipes placed in irrigated tomato field, unirrigated wheat field, fallow and pasture lands. The soil samples were collected from the irrigated tomato field and unirrigated wheat field on a grid system with 20 m x 20 m intervals. Site specific nitrate concentrations in the soil samples were measured for ANN based simulation of nitrate leaching potential from the land profiles. In the application of ANN model, a multi layered feedforward was evaluated, and data sets regarding with training, validation and testing containing the measured soil nitrate values were estimated based on spatial variability. As a result of the testing values, while the optimal structures of 2-15-1 was obtained (R2= 0.96, P < 0.01) for unirrigated field, the optimal structures of 2-10-1 was obtained (R2= 0.96, P < 0.01) for irrigated field. The results showed that the ANN model could be successfully used in prediction of the potential leaching levels of nitrate, based on different land use patterns. However, for the most suitable results, the model should be calibrated by training according to different NN structures depending on site specific soil parameters and varied agricultural managements.Keywords: artificial intelligence, ANN, drainage water, nitrate pollution
Procedia PDF Downloads 310458 Validation of the Recovery of House Dust Mites from Fabrics by Means of Vacuum Sampling
Authors: A. Aljohani, D. Burke, D. Clarke, M. Gormally, M. Byrne, G. Fleming
Abstract:
Introduction: House Dust Mites (HDMs) are a source of allergen particles embedded in textiles and furnishings. Vacuum sampling is commonly used to recover and determine the abundance of HDMs but the efficiency of this method is less than standardized. Here, the efficiency of recovery of HDMs was evaluated from home-associated textiles using vacuum sampling protocols.Methods/Approach: Living Mites (LMs) or dead Mites (DMs) House Dust Mites (Dermatophagoides pteronyssinus: FERA, UK) were separately seeded onto the surfaces of Smooth Cotton, Denim and Fleece (25 mites/10x10cm2 squares) and left for 10 minutes before vacuuming. Fabrics were vacuumed (SKC Flite 2 pump) at a flow rate of 14 L/min for 60, 90 or 120 seconds and the number of mites retained by the filter (0.4μm x 37mm) unit was determined. Vacuuming was carried out in a linear direction (Protocol 1) or in a multidirectional pattern (Protocol 2). Additional fabrics with LMs were also frozen and then thawed, thereby euthanizing live mites (now termed EMs). Results/Findings: While there was significantly greater (p=0.000) recovery of mites (76% greater) in fabrics seeded with DMs than LMs irrespective of vacuuming protocol or fabric type, the efficiency of recovery of DMs (72%-76%) did not vary significantly between fabrics. For fabrics containing EMs, recovery was greatest for Smooth Cotton and Denim (65-73% recovered) and least for Fleece (15% recovered). There was no significant difference (p=0.99) between the recovery of mites across all three mite categories from Smooth Cotton and Denim but significantly fewer (p=0.000) mites were recovered from Fleece. Scanning Electron Microscopy images of HMD-seeded fabrics showed that live mites burrowed deeply into the Fleece weave which reduced their efficiency of recovery by vacuuming. Research Implications: Results presented here have implications for the recovery of HDMs by vacuuming and the choice of fabric to ameliorate HDM-dust sensitization.Keywords: allergy, asthma, dead, fabric, fleece, live mites, sampling
Procedia PDF Downloads 139457 Web Data Scraping Technology Using Term Frequency Inverse Document Frequency to Enhance the Big Data Quality on Sentiment Analysis
Authors: Sangita Pokhrel, Nalinda Somasiri, Rebecca Jeyavadhanam, Swathi Ganesan
Abstract:
Tourism is a booming industry with huge future potential for global wealth and employment. There are countless data generated over social media sites every day, creating numerous opportunities to bring more insights to decision-makers. The integration of Big Data Technology into the tourism industry will allow companies to conclude where their customers have been and what they like. This information can then be used by businesses, such as those in charge of managing visitor centers or hotels, etc., and the tourist can get a clear idea of places before visiting. The technical perspective of natural language is processed by analysing the sentiment features of online reviews from tourists, and we then supply an enhanced long short-term memory (LSTM) framework for sentiment feature extraction of travel reviews. We have constructed a web review database using a crawler and web scraping technique for experimental validation to evaluate the effectiveness of our methodology. The text form of sentences was first classified through Vader and Roberta model to get the polarity of the reviews. In this paper, we have conducted study methods for feature extraction, such as Count Vectorization and TFIDF Vectorization, and implemented Convolutional Neural Network (CNN) classifier algorithm for the sentiment analysis to decide the tourist’s attitude towards the destinations is positive, negative, or simply neutral based on the review text that they posted online. The results demonstrated that from the CNN algorithm, after pre-processing and cleaning the dataset, we received an accuracy of 96.12% for the positive and negative sentiment analysis.Keywords: counter vectorization, convolutional neural network, crawler, data technology, long short-term memory, web scraping, sentiment analysis
Procedia PDF Downloads 88456 Classifying Affective States in Virtual Reality Environments Using Physiological Signals
Authors: Apostolos Kalatzis, Ashish Teotia, Vishnunarayan Girishan Prabhu, Laura Stanley
Abstract:
Emotions are functional behaviors influenced by thoughts, stimuli, and other factors that induce neurophysiological changes in the human body. Understanding and classifying emotions are challenging as individuals have varying perceptions of their environments. Therefore, it is crucial that there are publicly available databases and virtual reality (VR) based environments that have been scientifically validated for assessing emotional classification. This study utilized two commercially available VR applications (Guided Meditation VR™ and Richie’s Plank Experience™) to induce acute stress and calm state among participants. Subjective and objective measures were collected to create a validated multimodal dataset and classification scheme for affective state classification. Participants’ subjective measures included the use of the Self-Assessment Manikin, emotional cards and 9 point Visual Analogue Scale for perceived stress, collected using a Virtual Reality Assessment Tool developed by our team. Participants’ objective measures included Electrocardiogram and Respiration data that were collected from 25 participants (15 M, 10 F, Mean = 22.28 4.92). The features extracted from these data included heart rate variability components and respiration rate, both of which were used to train two machine learning models. Subjective responses validated the efficacy of the VR applications in eliciting the two desired affective states; for classifying the affective states, a logistic regression (LR) and a support vector machine (SVM) with a linear kernel algorithm were developed. The LR outperformed the SVM and achieved 93.8%, 96.2%, 93.8% leave one subject out cross-validation accuracy, precision and recall, respectively. The VR assessment tool and data collected in this study are publicly available for other researchers.Keywords: affective computing, biosignals, machine learning, stress database
Procedia PDF Downloads 142