Search results for: ramus height
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1482

Search results for: ramus height

342 Impact of COVID-19 on Radiology Training in Australia and New Zealand

Authors: Preet Gill, Danus Ravindran

Abstract:

These The COVID-19 pandemic resulted in widespread implications for medical specialist training programs worldwide, including radiology. The objective of this study was to investigate the impact of COVID-19 on the Australian and New Zealand radiology trainee experience and well-being, as well as to compare the Australasian experience with that reported by other countries. An anonymised electronic online questionnaire was disseminated to all training members of the Royal Australian and New Zealand College of Radiologists who were radiology trainees during the 2020 – 2022 clinical years. Trainees were questioned about their experience from the beginning of the COVID-19 pandemic in Australasia (March 2020) to the time of survey completion. Participation was voluntary. Questions assessed the impact of the pandemic across multiple domains, including workload (inpatient/outpatient & individual modality volume), teaching, supervision, external learning opportunities, redeployment and trainee wellbeing. Survey responses were collated and compared with other peer reviewed publications. Answer options were primarily in categorical format (nominal and ordinal subtypes, as appropriate). An opportunity to provide free text answers to a minority of questions was provided. While our results mirror that of other countries, which demonstrated reduced case exposure and increased remote teaching and supervision, responses showed variation in the methods utilised by training sites during the height of the pandemic. A significant number of trainees were affected by examination cancellations/postponements and had subspecialty training rotations postponed. The majority of trainees felt that the pandemic had a negative effect on their training. In conclusion, the COVID-19 pandemic has had a significant impact on radiology trainees across Australia and New Zealand. The present study has highlighted the extent of these effects, with most aspects of training impacted. Opportunities exist to utilise this information to create robust workplace strategies to mitigate these negative effects should the need arise in the future.

Keywords: COVID-19, radiology, training, pandemic

Procedia PDF Downloads 66
341 Optimization of Headspace Solid Phase Microextraction (SPME) Technique Coupled with GC MS for Identification of Volatile Organic Compounds Released by Trogoderma Variabile

Authors: Thamer Alshuwaili, Yonglin Ren, Bob Du, Manjree Agarwal

Abstract:

The warehouse beetle, Trogoderma variabile Ballion (Coleoptera: Dermestidae), is a major pest of packaged and processed stored products. Warehouse beetle is the common name which was given by Okumura (1972). This pest has been reported to infest 119 different commodities, and it is distributed throughout the tropical and subtropical parts of the world. Also, it is difficult to control because of the insect's ability to stay without food for long times, and it can survive for years under dry conditions and low-moisture food, and it has also developed resistance to many insecticides. The young larvae of these insects can cause damage to seeds, but older larvae prefer to feed on whole grains. The percentage of damage caused by these insects range between 30-70% in the storage. T. variabile is the species most responsible for causing significant damage in grain stores worldwide. Trogoderma spp. is a huge problem for cereal grains, and there are many countries, such as the USA, Australia, China, Kenya, Uganda and Tanzania who have specific quarantine regulations against possible importation. Also, grain stocks can be almost completely destroyed because of the massive populations the insect may develop. However, the purpose of the current research was to optimize conditions to collect volatile organic compound from Trogoderma variabile at different life stages by using headspace solid phase microextraction (SPME) coupled with gas chromatography-mass spectrometry (GC-MS) and flame ionization detection (FID). Using SPME technique to extract volatile from insects is an efficient, straightforward and nondestructive method. Result of the study shows that 15 insects were optimal number for larvae and adults. Selection of the number of insects depend on the height of the peak area and the number of peaks. Sixteen hours were optimized as the best extraction time for larvae and 8 hours was the optimal number of adults.

Keywords: Trogoderma variabile, warehouse beetle , GC-MS, Solid phase microextraction

Procedia PDF Downloads 129
340 Effects of Intercropping Maize (Zea mays L.) with Jack Beans (Canavalia ensiformis L.) at Different Spacing and Weeding Regimes on Crops Productivity

Authors: Oluseun S. Oyelakin, Olalekan W. Olaniyi

Abstract:

A field experiment was conducted at Ido town in Ido Local Government Area of Oyo state, Nigeria to determine the effects of intercropping maize (Zea mays L.) with Jack bean (Canavalia ensiformis L.) at different spacing and weeding regimes on crops productivity. The treatments were 2 x 2 x 3 factorial arrangement involving two spatial crop arrangements. Spacing of 75 cm x 50 cm and 90 cm x 42 cm (41.667 cm) with two plants per stand resulted in plant population of approximately 53,000 plants/hectare. Also, Randomized Complete Block Design (RCBD) with two cropping patterns (sole and intercrop), three weeding regimes (weedy check, weeds once, and weed twice) with three replicates was used. Data were analyzed with SAS (Statistical Analysis System) and statistical means separated using Least Significant Difference (LSD) (P ≤ 0.05). Intercropping and crop spacing did not have significant influence on the growth parameters and yield parameters. The maize grain yield of 1.11 t/ha obtained under sole maize was comparable to 1.05 t/ha from maize/jack beans. Weeding regime significantly influenced growth and yields of maize in intercropping with Jack beans. Weeding twice resulted in significantly higher growth than that of the other weeding regimes. Plant height at 6 Weeks After Sowing (WAS) under weeding twice regime (3 and 6 WAS) was 83.9 cm which was significantly different from 67.75 cm and 53.47 cm for weeding once (3 WAS) and no weeding regimes respectively. Moreover, maize grain yield of 1.3 t/ha obtained from plots weeded twice was comparable to that of 1.23 t/ha from single weeding and both were significantly higher than 0.71 t/ha maize grain yield obtained from the no weeding control. The dry matter production of Jack beans reduced at some growth stages due to intercropping of maize with Jack beans though with no significance effect on the other growth parameters of the crop. There was no effect on the growth parameters of Jack beans in maize/jack beans intercrop based on cropping spacing while comparable growth and dry matter production in Jack beans were produced in maize/Jack beans mixture with single weeding.

Keywords: crop spacing, intercropping, growth parameter, weeding regime, sole cropping, WAS, week after sowing

Procedia PDF Downloads 144
339 Prevalence of Malnutrition and Associated Factors among Children Aged 6-59 Months at Hidabu Abote District, North Shewa, Oromia Regional State

Authors: Kebede Mengistu, Kassahun Alemu, Bikes Destaw

Abstract:

Introduction: Malnutrition continues to be a major public health problem in developing countries. It is the most important risk factor for the burden of diseases. It causes about 300, 000 deaths per year and responsible for more than half of all deaths in children. In Ethiopia, child malnutrition rate is one of the most serious public health problem and the highest in the world. High malnutrition rates in the country pose a significant obstacle to achieving better child health outcomes. Objective: To assess prevalence of malnutrition and associated factors among children aged 6-59 months at Hidabu Abote district, North shewa, Oromia. Methods: A community based cross sectional study was conducted on 820 children aged 6-59 months from September 8-23, 2012 at Hidabu Abote district. Multistage sampling method was used to select households. Children were selected from each kebeles by simple random sampling. Anthropometric measurements and structured questioners were used. Data was processed using EPi-info soft ware and exported to SPSS for analysis. Then after, sex, age, months, height, and weight transferred with HHs number to ENA for SMART 2007software to convert nutritional data into Z-scores of the indices; H/A, W/H and W/A. Bivariate and multivariate logistic regressions were used to identify associated factors of malnutrition. Results: The analysis this study revealed that, 47.6%, 30.9% and 16.7% of children were stunted, underweight and wasted, respectively. The main associated factors of stunting were found to be child age, family monthly income, children were received butter as pre-lacteal feeding and family planning. Underweight was associated with number of children HHs and children were received butter as per-lacteal feeding but un treatment of water in HHs only associated with wasting. Conclusion and recommendation: From the findings of this study, it is concluded that malnutrition is still an important problem among children aged 6-59 months. Therefore, especial attention should be given on intervention of malnutrition.

Keywords: children, Hidabu Abote district, malnutrition, public health

Procedia PDF Downloads 427
338 Experimental Investigation of Nucleate Pool Boiling Heat Transfer on Laser-Structured Copper Surfaces of Different Patterns

Authors: Luvindran Sugumaran, Mohd Nashrul Mohd Zubir, Kazi Md Salim Newaz, Tuan Zaharinie Tuan Zahari, Suazlan Mt Aznam, Aiman Mohd Halil

Abstract:

With reference to Energy Roadmap 2050, the minimization of greenhouse gas emissions and the enhancement of energy efficiency are the two key factors that could facilitate a radical change in the world's energy infrastructure. However, the energy demands of electronic devices skyrocketed with the advent of the digital age. Currently, the two-phase cooling technique based on phase change pool boiling heat transfer has received a lot of attention because of its potential to fully utilize the latent heat of the fluid and produce a highly effective heat dissipation capacity while keeping the equipment's operating temperature within an acceptable range. There are numerous strategies available for the alteration of heating surfaces, but finding the best, simplest, and most dependable one remains a challenge. Lately, surface texturing via laser ablation has been used in a variety of investigations, demonstrating its significant potential for enhancing the pool boiling heat transfer performance. In this research, the nucleate pool boiling heat transfer performance of laser-structured copper surfaces of different patterns was investigated. The bare copper surface serves as a reference to compare the performance of laser-structured surfaces. It was observed that the heat transfer coefficients were increased with the increase of surface area ratio and the ratio of the peak-to-valley height of the microstructure. Laser machined grain structure produced extra nucleation sites, which ultimately caused the improved pool boiling performance. Due to an increase in nucleation site density and surface area, the enhanced nucleate boiling served as the primary heat transfer mechanism. The pool boiling performance of the laser-structured copper surfaces is superior to the bare copper surface in all aspects.

Keywords: heat transfer coefficient, laser structuring, micro structured surface, pool boiling

Procedia PDF Downloads 83
337 Experimental Investigation of Nucleate Pool Boiling Heat Transfer on Laser-Structured Copper Surfaces of Different Patterns

Authors: Luvindran Sugumaran, Mohd Nashrul Mohd Zubir, Kazi Md Salim Newaz, Tuan Zaharinie Tuan Zahari, Suazlan Mt Aznam, Aiman Mohd Halil

Abstract:

With reference to Energy Roadmap 2050, the minimization of greenhouse gas emissions, and the enhancement of energy efficiency are the two key factors that could facilitate a radical change in the world's energy infrastructure. However, the energy demands of electronic devices skyrocketed with the advent of the digital age. Currently, the two-phase cooling technique based on phase change pool boiling heat transfer has received a lot of attention because of its potential to fully utilize the latent heat of the fluid and produce a highly effective heat dissipation capacity while keeping the equipment's operating temperature within an acceptable range. There are numerous strategies available for the alteration of heating surfaces, but to find the best, simplest, and most dependable one remains a challenge. Lately, surface texturing via laser ablation has been used in a variety of investigations, demonstrating its significant potential for enhancing the pool boiling heat transfer performance. In this research, the nucleate pool boiling heat transfer performance of laser-structured copper surfaces of different patterns was investigated. The bare copper surface serves as a reference to compare the performance of laser-structured surfaces. It was observed that the heat transfer coefficients were increased with the increase of surface area ratio and the ratio of the peak-to-valley height of the microstructure. Laser machined grain structure produced extra nucleation sites, which ultimately caused the improved pool boiling performance. Due to an increase in nucleation site density and surface area, the enhanced nucleate boiling served as the primary heat transfer mechanism. The pool boiling performance of the laser-structured copper surfaces is superior to the bare copper surface in all aspects.

Keywords: heat transfer coefficient, laser structuring, micro structured surface, pool boiling

Procedia PDF Downloads 81
336 Experimental Investigation of Nucleate Pool Boiling Heat Transfer on Laser-Structured Copper Surfaces of Different Patterns

Authors: Luvindran Sugumaran, Mohd Nashrul Mohd Zubir, Kazi Md. Salim Newaz, Tuan Zaharinie Tuan Zahari, Suazlan Mt Aznam, Aiman Mohd Halil

Abstract:

With reference to Energy Roadmap 2050, the minimization of greenhouse gas emissions and the enhancement of energy efficiency are the two key factors that could facilitate a radical change in the world's energy infrastructure. However, the energy demands of electronic devices skyrocketed with the advent of the digital age. Currently, the two-phase cooling technique based on phase change pool boiling heat transfer has received a lot of attention because of its potential to fully utilize the latent heat of the fluid and produce a highly effective heat dissipation capacity while keeping the equipment's operating temperature within an acceptable range. There are numerous strategies available for the alteration of heating surfaces, but to find the best, simplest, and most dependable one remains a challenge. Lately, surface texturing via laser ablation has been used in a variety of investigations, demonstrating its significant potential for enhancing the pool boiling heat transfer performance. In this research, the nucleate pool boiling heat transfer performance of laser-structured copper surfaces of different patterns was investigated. The bare copper surface serves as a reference to compare the performance of laser-structured surfaces. It was observed that the heat transfer coefficients were increased with the increase of surface area ratio and the ratio of the peak-to-valley height of the microstructure. Laser-machined grain structure produced extra nucleation sites, which ultimately caused the improved pool boiling performance. Due to an increase in nucleation site density and surface area, the enhanced nucleate boiling served as the primary heat transfer mechanism. The pool boiling performance of the laser-structured copper surfaces is superior to the bare copper surface in all aspects.

Keywords: heat transfer coefficient, laser structuring, micro structured surface, pool boiling

Procedia PDF Downloads 84
335 Evaluation and Control of Cracking for Bending Rein-forced One-way Concrete Voided Slab with Plastic Hollow Inserts

Authors: Mindaugas Zavalis

Abstract:

Analysis of experimental tests data of bending one-way reinforced concrete slabs from various articles of science revealed that voided slabs with a grid of hollow plastic inserts inside have smaller mechani-cal and physical parameters compared to continuous cross-section slabs (solid slabs). The negative influence of a reinforced concrete slab is impacted by hollow plastic inserts, which make a grid of voids in the middle of the cross-sectional area of the reinforced concrete slab. A formed grid of voids reduces the slab’s stiffness, which influences the slab’s parameters of serviceability, like deflection and cracking. Prima-ry investigation of data established during experiments illustrates that cracks occur faster in the tensile surface of the voided slab under bend-ing compared to bending solid slab. It means that the crack bending moment force for the voided slab is smaller than the solid slab and the reduction can variate in the range of 14 – 40 %. Reduce of resistance to cracking can be controlled by changing a lot of factors: the shape of the plastic hallow insert, plastic insert height, steps between plastic in-serts, usage of prestressed reinforcement, the diameter of reinforcement bar, slab effective depth, the bottom cover thickness of concrete, effec-tive cross-section of the concrete area about reinforcement and etc. Mentioned parameters are used to evaluate crack width and step of cracking, but existing analytical calculation methods for cracking eval-uation of voided slab with plastic inserts are not so exact and the re-sults of cracking evaluation in this paper are higher than the results of analyzed experiments. Therefore, it was made analytically calculations according to experimental bending tests of voided reinforced concrete slabs with hollow plastic inserts to find and propose corrections for the evaluation of cracking for reinforced concrete voided slabs with hollow plastic inserts.

Keywords: voided slab, cracking, hallow plastic insert, bending, one-way reinforced concrete, serviceability

Procedia PDF Downloads 68
334 Woody Carbon Stock Potentials and Factor Affecting Their Storage in Munessa Forest, Southern Ethiopia

Authors: Mojo Mengistu Gelasso

Abstract:

The tropical forest is considered the most important forest ecosystem for mitigating climate change by sequestering a high amount of carbon. The potential carbon stock of the forest can be influenced by many factors. Therefore, studying these factors is crucial for understanding the determinants that affect the potential for woody carbon storage in the forest. This study was conducted to evaluate the potential for woody carbon stock and how it varies based on plant community types, as well as along altitudinal, slope, and aspect gradients in the Munessa dry Afromontane forest. Vegetation data was collected using systematic sampling. Five line transects were established at 100 m intervals along the altitudinal gradient between two consecutive transect lines. On each transect, 10 quadrats (20 x 20 m), separated by 200 m, were established. The woody carbon was estimated using an appropriate allometric equation formulated for tropical forests. The data was analyzed using one-way ANOVA in R software. The results showed that the total woody carbon stock of the Munessa forest was 210.43 ton/ha. The analysis of variance revealed that woody carbon density varied significantly based on environmental factors, while community types had no significant effect. The highest mean carbon stock was found at middle altitudes (2367-2533 m.a.s.l), lower slopes (0-13%), and west-facing aspects. The Podocarpus falcatus-Croton macrostachyus community type also contributed a higher woody carbon stock, as larger tree size classes and older trees dominated it. Overall, the potential for woody carbon sequestration in this study was strongly associated with environmental variables. Additionally, the uneven distribution of species with larger diameter at breast height (DBH) in the study area might be linked to anthropogenic factors, as the current forest growth indicates characteristics of a secondary forest. Therefore, our study suggests that the development and implementation of a sustainable forest management plan is necessary to increase the carbon sequestration potential of this forest and mitigate climate change.

Keywords: munessa forest, woody carbon stock, environmental factors, climate mitigation

Procedia PDF Downloads 80
333 Woody Carbon Stock Potentials and Factor Affecting Their Storage in Munessa Forest, Southern Ethiopia

Authors: Mengistu Gelasso Mojo

Abstract:

The tropical forest is considered the most important forest ecosystem for mitigating climate change by sequestering a high amount of carbon. The potential carbon stock of the forest can be influenced by many factors. Therefore, studying these factors is crucial for understanding the determinants that affect the potential for woody carbon storage in the forest. This study was conducted to evaluate the potential for woody carbon stock and how it varies based on plant community types, as well as along altitudinal, slope, and aspect gradients in the Munessa dry Afromontane forest. Vegetation data was collected using systematic sampling. Five line transects were established at 100 m intervals along the altitudinal gradient between two consecutive transect lines. On each transect, 10 quadrats (20 x 20 m), separated by 200 m, were established. The woody carbon was estimated using an appropriate allometric equation formulated for tropical forests. The data was analyzed using one-way ANOVA in R software. The results showed that the total woody carbon stock of the Munessa forest was 210.43 ton/ha. The analysis of variance revealed that woody carbon density varied significantly based on environmental factors, while community types had no significant effect. The highest mean carbon stock was found at middle altitudes (2367-2533 m.a.s.l), lower slopes (0-13%), and west-facing aspects. The Podocarpus falcatus-Croton macrostachyus community type also contributed a higher woody carbon stock, as larger tree size classes and older trees dominated it. Overall, the potential for woody carbon sequestration in this study was strongly associated with environmental variables. Additionally, the uneven distribution of species with larger diameter at breast height (DBH) in the study area might be linked to anthropogenic factors, as the current forest growth indicates characteristics of a secondary forest. Therefore, our study suggests that the development and implementation of a sustainable forest management plan is necessary to increase the carbon sequestration potential of this forest and mitigate climate change.

Keywords: munessa forest, woody carbon stock, environmental factors, climate mitigation

Procedia PDF Downloads 83
332 Foamability and Foam Stability of Gelatine-Sodium Dodecyl Sulfate Solutions

Authors: Virginia Martin Torrejon, Song Hang

Abstract:

Gelatine foams are widely explored materials due to their biodegradability, biocompatibility, and availability. They exhibit outstanding properties and are currently subject to increasing scientific research due to their potential use in different applications, such as biocompatible cellular materials for biomedical products or biofoams as an alternative to fossil-fuel-derived packaging. Gelatine is a highly surface-active polymer, and its concentrated solutions usually do not require surfactants to achieve low surface tension. Still, anionic surfactants like sodium dodecyl sulfate (SDS) strongly interact with gelatine, impacting its viscosity and rheological properties and, in turn, their foaming behaviour. Foaming behaviour is a key parameter for cellular solids produced by mechanical foaming as it has a significant effect on the processing and properties of cellular materials. Foamability mainly impacts the density and the mechanical properties of the foams, while foam stability is crucial to achieving foams with low shrinkage and desirable pore morphology. This work aimed to investigate the influence of SDS on the foaming behaviour of concentrated gelatine foams by using a dynamic foam analyser. The study of maximum foam height created, foam formation behaviour, drainage behaviour, and foam structure with regard to bubble size and distribution were carried out in 10 wt% gelatine solutions prepared at different SDS/gelatine concentration ratios. Comparative rheological and viscometry measurements provided a good correlation with the data from the dynamic foam analyser measurements. SDS incorporation at optimum dosages and gelatine gelation led to highly stable foams at high expansion ratios. The viscosity increase of the hydrogel solution at SDS content increased was a key parameter for foam stabilization. In addition, the impact of SDS content on gelling time and gel strength also considerably impacted the foams' stability and pore structure.

Keywords: dynamic foam analyser, gelatine foams stability and foamability, gelatine-surfactant foams, gelatine-SDS rheology, gelatine-SDS viscosity

Procedia PDF Downloads 154
331 Varying Frequency Application of Vermicast as Supplemented with 19-19-19+Me in the Agronomic Performance of Lettuce (Lactuca sativa)

Authors: Jesryl B. Paulite, Eixer Niel V. Enesco

Abstract:

Lettuce is not well known in the lowland locality in the tropical countries like Philippines. Farmers thought that this crop is not adaptable to the climate that we have in lowland. But some new varieties can tolerate warmer conditions. The massive use of pesticides in lettuce production might chronically affect human health and environment. The move of the Philippine government is toward organic. One of the organic material is vermicompost. It is an organic fertilizer that serves as soil conditioner and enhances soil fertility and promotes vigorous and healthy crop growth and Supplementation of 19-19-19+M.E. will make it better since it contains N-P-K and selected microelements to meet the nutritive requirements of the crop. The experiment was conducted at Purok 3, Brgy. Tiburcia, Kapalong, Davao del Norte from February 6, 2014 to March 4, 2014. The study was conducted to determine the effect of varying frequency application of vermicast as supplemented with 19-19-19+M.E. in lettuce. Specifically, this aimed to 1.) Identify the agronomic performance of lettuce as affected by varying frequency application of vermicast as supplemented with 19-19-19+M.E.; 2.) Assess the economic profitability of lettuce as applied with vermicast as supplemented with 19-19-19+M.E. The study was laid out in Randomized Complete Block Design (RCBD) with four treatments and three replications. The treatments were as follow: T1 – Untreated, T2 - Weekly Application, T3- Bi-weekly Application, and T4- Monthly Application. The data on percent (%) mortality were transformed using square root of transformation before Analysis of Variance (ANOVA). Results revealed not significant in terms of percent mortality in weekly and monthly application of the treatment having a mean of 1.76 % and 3.09 %. However, Significant differences were observed in agronomic performances such as; plant height with a mean of 10.63 cm in weekly application and 6.40 cm for the untreated, leaf width with a mean of 10.80 cm for the weekly application and 6.03 for the untreated, fresh weight with a mean of 25.67 g for the weekly application and 6.83 g for the untreated, and yield with a mean of 1,208.33 kg/ha for the weekly application and 327.08 kg/ha for the untreated, respectively. Results further exposed that profitability of lettuce in terms of Return of Production Cost (RPC) were; bi-weekly with 91.01 %, monthly with 68.20 %, weekly with 25.34 % and untreated (control) with 16.69 %.

Keywords: agronomic performance, economic profitability, vermicast, percent mortality, 19-19-19+ME

Procedia PDF Downloads 449
330 Topography Effects on Wind Turbines Wake Flow

Authors: H. Daaou Nedjari, O. Guerri, M. Saighi

Abstract:

A numerical study was conducted to optimize the positioning of wind turbines over complex terrains. Thus, a two-dimensional disk model was used to calculate the flow velocity deficit in wind farms for both flat and complex configurations. The wind turbine wake was assessed using the hybrid methods that combine CFD (Computational Fluid Dynamics) with the actuator disc model. The wind turbine rotor has been defined with a thrust force, coupled with the Navier-Stokes equations that were resolved by an open source computational code (Code_Saturne V3.0 developed by EDF) The simulations were conducted in atmospheric boundary layer condition considering a two-dimensional region located at the north of Algeria at 36.74°N longitude, 02.97°E latitude. The topography elevation values were collected according to a longitudinal direction of 1km downwind. The wind turbine sited over topography was simulated for different elevation variations. The main of this study is to determine the topography effect on the behavior of wind farm wake flow. For this, the wake model applied in complex terrain needs to selects the singularity effects of topography on the vertical wind flow without rotor disc first. This step allows to determine the existence of mixing scales and friction forces zone near the ground. So, according to the ground relief the wind flow waS disturbed by turbulence and a significant speed variation. Thus, the singularities of the velocity field were thoroughly collected and thrust coefficient Ct was calculated using the specific speed. In addition, to evaluate the land effect on the wake shape, the flow field was also simulated considering different rotor hub heights. Indeed, the distance between the ground and the hub height of turbine (Hhub) was tested in a flat terrain for different locations as Hhub=1.125D, Hhub = 1.5D and Hhub=2D (D is rotor diameter) considering a roughness value of z0=0.01m. This study has demonstrated that topographical farm induce a significant effect on wind turbines wakes, compared to that on flat terrain.

Keywords: CFD, wind turbine wake, k-epsilon model, turbulence, complex topography

Procedia PDF Downloads 563
329 Prevalence and Predictors of Metabolic Syndrome among Diabetic Clinic Attendees in Sokoto, Nigeria

Authors: Kehinde Joseph Awosan, Balarabe Adami Isah, Edzu Usman Yunusa, Sarafadeen Adeniyi Arisegi, Izuchukwu Obasi, Oluchi Solomon-Anucha

Abstract:

Background: Metabolic syndrome (MetS) is prevalent in patients with diabetes mellitus and a significant risk for major cardiovascular events. Identifying its burden and peculiarities is crucial to preventing complications among those at risk. Aim: This study was conducted to determine the prevalence and predictors of metabolic syndrome among diabetes clinic attendees in Sokoto, Nigeria. Materials and Methods: A cross-sectional study was conducted among 365 patients with type 2 diabetes attending the diabetes clinic of Specialist Hospital, Sokoto, Nigeria. A structured questionnaire was used to obtain data on the respondents’ socio-demographic variables, treatment history, and lifestyle. Blood pressure and anthropometric measurements (including weight, height, and waist circumference) were done for the patients. Likewise, biochemical assessment (including fasting plasma glucose, high-density lipoprotein cholesterol (HDL-c), and triglyceride (TG) was done. Metabolic syndrome was defined according to the National Cholesterol Education Program Adult Treatment Panel III (NCEP ATP III). Data were analyzed using the IBM Statistical Package for Social Sciences (SPSS) version 25. Results: The ages of the patients ranged from 30 to 78 (mean = 50.9 ±11.7) years. The overall prevalence of MetS was 57.3%, with a higher prevalence in females (68.1%) than males (43.0%). The most common components of MetS observed were hypertension (69.2%), and elevated fasting plasma glucose (65.7%); while the predictors of MetS were age > 50 years (OR 6.960, 95% CI: 3.836-12.628, p < 0.001), female sex (OR 2.300, 95% CI: 1.355-3.903, p = 0.002), physical activity (OR 0.214, 95% CI: 0.126-0.363, p < 0.001), and overweight/obesity (OR 3.356, 95% CI: 1.838-6.127, p < 0.001). Conclusion: Metabolic syndrome is prevalent among patients with type 2 diabetes in Sokoto, Nigeria, and the predictors were age > 50 years, female sex, physical activity, and overweight/obesity. Diabetes care providers should screen their patients for MetS to prevent adverse cardiovascular events.

Keywords: prevalence, predictors, metabolic syndrome, diabetes

Procedia PDF Downloads 144
328 Body Composition Analysis of University Students by Anthropometry and Bioelectrical Impedance Analysis

Authors: Vinti Davar

Abstract:

Background: Worldwide, at least 2.8 million people die each year as a result of being overweight or obese, and 35.8 million (2.3%) of global DALYs are caused by overweight or obesity. Obesity is acknowledged as one of the burning public health problems reducing life expectancy and quality of life. The body composition analysis of the university population is essential in assessing the nutritional status, as well as the risk of developing diseases associated with abnormal body fat content so as to make nutritional recommendations. Objectives: The main aim was to determine the prevalence of obesity and overweight in University students using Anthropometric analysis and BIA methods Material and Methods: In this cross-sectional study, 283 university students participated. The body composition analysis was undertaken by using mainly: i) Anthropometric Measurement: Height, Weight, BMI, waist circumference, hip circumference and skin fold thickness, ii) Bio-electrical impedance was used for analysis of body fat mass, fat percent and visceral fat which was measured by Tanita SC-330P Professional Body Composition Analyzer. The data so collected were compiled in MS Excel and analyzed for males and females using SPSS 16.Results and Discussion: The mean age of the male (n= 153) studied subjects was 25.37 ±2.39 year and females (n=130) was 22.53 ±2.31. The data of BIA revealed very high mean fat per cent of the female subjects i.e. 30.3±6.5 per cent whereas mean fat per cent of the male subjects was 15.60±6.02 per cent indicating a normal body fat range. The findings showed high visceral fat of both males (12.92±3.02) and females (16.86±4.98). BMI, BF% and WHR were higher among females, and BMI was higher among males. The most evident correlation was verified between BF% and WHR for female students (r=0.902; p<0.001). The correlation of BFM and BF% with thickness of triceps, sub scapular and abdominal skin folds and BMI was significant (P<0.001). Conclusion: The studied data made it obvious that there is a need to initiate lifestyle changing strategies especially for adult females and encourage them to improve their dietary intake to prevent incidence of non communicable diseases due to obesity and high fat percentage.

Keywords: anthropometry, bioelectrical impedance, body fat percentage, obesity

Procedia PDF Downloads 380
327 Effect of Dynamic Loading by Cyclic Triaxial Tests on Sand Stabilized with Cement

Authors: Priyanka Devi, Mohammad Muzzaffar Khan, G. Kalyan Kumar

Abstract:

Liquefaction of saturated soils due to dynamic loading is an important and interesting area in the field of geotechnical earthquake engineering. When the soil liquefies, the structures built on it develops uneven settlements thereby producing cracks in the structure and weakening the foundation. The 1964 Alaskan Good Friday earthquake, the 1989 San Francisco earthquake and 2011 Tōhoku earthquake are some of the examples of liquefaction occurred due to an earthquake. To mitigate the effect of liquefaction, several methods such use of stone columns, increasing the vertical stress, compaction and removal of liquefiable soil are practiced. Grouting is one of those methods used to increase the strength of the foundation and develop resistance to liquefaction of soil without affecting the superstructure. In the present study, an attempt has been made to investigate the undrained cyclic behavior of locally available soil, stabilized by cement to mitigate the seismically induced soil liquefaction. The specimens of 75mm diameter and 150mm height were reconstituted in the laboratory using water sedimentation technique. A series of strain-controlled cyclic triaxial tests were performed on saturated soil samples followed by consolidation. The effects of amplitude, confining pressure and relative density on the dynamic behavior of sand was studied for soil samples with varying cement content. The results obtained from the present study on loose specimens and medium dense specimens indicate that (i) the higher the relative density, the more will be the liquefaction resistance, (ii) with increase of effective confining pressure, a decrease in developing of excess pore water pressure during cyclic loading was observed and (iii) sand specimens treated with cement showed reduced excess pore pressures and increased liquefaction resistance suggesting it as one of the mitigation methods.

Keywords: cyclic triaxial test, liquefaction, soil-cement stabilization, pore pressure ratio

Procedia PDF Downloads 295
326 The Social Justice of Movement: Undocumented Immigrant Coalitions in the United States

Authors: Libia Jiménez Chávez

Abstract:

This is a study of freedom riders and their courageous journey for civil rights, but the year was not 1961. It was 2003. This paper chronicles the emergence of a new civil rights movement for immigrant rights through an oral history of the 2003 U.S. Immigrant Workers Freedom Ride (IWFR). During the height of the post-9/11 immigrant repression, a bloc of organizations inspired by the Civil Rights Movement of the 1960s mobilized 900 multinational immigrants and their allies in the fight for legal status, labor protections, family reunification, and civil rights. The activists visited over 100 U.S. cities, met with Congressional leaders in the nation’s capital, and led a rally of over 50,000 people in New York City. This unified effort set the groundwork for the national May Day immigration protests of 2006. Movements can be characterized in two distinct ways: physical movement and social movements. In the past, historians have considered immigrants both as people and as participants in social movements. In contrast, studies of recent migrants tend to say little about their involvement in immigrant political mobilizations. The dominant literature on immigration portrays immigrants as objects of exclusion, border enforcement, detention, and deportation instead of strategic political actors. This paper aims to change this perception. It considers the Freedom Riders both as immigrants who were literally on the move and as participants in a social movement. Through interviews with participants and archival video footage housed at the University of California Los Angeles, it is possible to study this mobile protest as a movement. This contemporary immigrant struggle is an opportunity to explore the makeup and development of a heterogenous immigrant coalition and consider the relationship between population movements and social justice. In addition to oral histories and archival research, the study will utilize social movement literature, U.S. immigration and labor history, and Undocumented Critical Theory to expand the historiography of immigrant social movements in America.

Keywords: civil rights, immigrant social movements, undocumented communities, undocumented critical theory

Procedia PDF Downloads 171
325 Clustering and Modelling Electricity Conductors from 3D Point Clouds in Complex Real-World Environments

Authors: Rahul Paul, Peter Mctaggart, Luke Skinner

Abstract:

Maintaining public safety and network reliability are the core objectives of all electricity distributors globally. For many electricity distributors, managing vegetation clearances from their above ground assets (poles and conductors) is the most important and costly risk mitigation control employed to meet these objectives. Light Detection And Ranging (LiDAR) is widely used by utilities as a cost-effective method to inspect their spatially-distributed assets at scale, often captured using high powered LiDAR scanners attached to fixed wing or rotary aircraft. The resulting 3D point cloud model is used by these utilities to perform engineering grade measurements that guide the prioritisation of vegetation cutting programs. Advances in computer vision and machine-learning approaches are increasingly applied to increase automation and reduce inspection costs and time; however, real-world LiDAR capture variables (e.g., aircraft speed and height) create complexity, noise, and missing data, reducing the effectiveness of these approaches. This paper proposes a method for identifying each conductor from LiDAR data via clustering methods that can precisely reconstruct conductors in complex real-world configurations in the presence of high levels of noise. It proposes 3D catenary models for individual clusters fitted to the captured LiDAR data points using a least square method. An iterative learning process is used to identify potential conductor models between pole pairs. The proposed method identifies the optimum parameters of the catenary function and then fits the LiDAR points to reconstruct the conductors.

Keywords: point cloud, LİDAR data, machine learning, computer vision, catenary curve, vegetation management, utility industry

Procedia PDF Downloads 99
324 Optical Simulation of HfO₂ Film - Black Silicon Structures for Solar Cells Applications

Authors: Gagik Ayvazyan, Levon Hakhoyan, Surik Khudaverdyan, Laura Lakhoyan

Abstract:

Black Si (b-Si) is a nano-structured Si surface formed by a self-organized, maskless process with needle-like surfaces discernible by their black color. The combination of low reflectivity and the semi-conductive properties of Si found in b-Si make it a prime candidate for application in solar cells as an antireflection surface. However, surface recombination losses significantly reduce the efficiency of b-Si solar cells. Surface passivation using suitable dielectric films can minimize these losses. Nowadays some works have demonstrated that excellent passivation of b-Si nanostructures can be reached using Al₂O₃ films. However, the negative fixed charge present in Al₂O₃ films should provide good field effect passivation only for p- and p+-type Si surfaces. HfO2 thin films have not been practically tested for passivation of b-Si. HfO₂ could provide an alternative for n- and n+- type Si surface passivation since it has been shown to exhibit positive fixed charge. Using optical simulation by Finite-Difference Time Domain (FDTD) method, the possibility of b-Si passivation by HfO2 films has been analyzed. The FDTD modeling revealed that b-Si layers with HfO₂ films effectively suppress reflection in the wavelength range 400–1000 nm and across a wide range of incidence angles. The light-trapping performance primarily depends on geometry of the needles and film thickness. With the decrease of periodicity and increase of height of the needles, the reflectance decrease significantly, and the absorption increases significantly. Increase in thickness results in an even greater decrease in the calculated reflection coefficient of model structures and, consequently, to an improvement in the antireflection characteristics in the visible range. The excellent surface passivation and low reflectance results prove the potential of using the combination of the b-Si surface and the HfO₂ film for solar cells applications.

Keywords: antireflection, black silicon, HfO₂, passivation, simulation, solar cell

Procedia PDF Downloads 146
323 Comparative Settlement Analysis on the under of Embankment with Empirical Formulas and Settlement Plate Measurement for Reducing Building Crack around of Embankments

Authors: Safitri Nur Wulandari, M. Ivan Adi Perdana, Prathisto L. Panuntun Unggul, R. Dary Wira Mahadika

Abstract:

In road construction on the soft soil, we need a soil improvement method to improve the soil bearing capacity of the land base so that the soil can withstand the traffic loads. Most of the land in Indonesia has a soft soil, where soft soil is a type of clay that has the consistency of very soft to medium stiff, undrained shear strength, Cu <0:25 kg/cm2, or the estimated value of NSPT <5 blows/ft. This study focuses on the analysis of the effect on preloading load (embarkment) to the amount of settlement ratio on the under of embarkment that will impact on the building cracks around of embarkment. The method used in this research is a superposition method for embarkment distribution on 27 locations with undisturbed soil samples at some borehole point in Java and Kalimantan, Indonesia. Then correlating the results of settlement plate monitoring on the field with Asaoka method. The results of settlement plate monitoring taken from an embarkment of Ahmad Yani airport in Semarang on 32 points. Where the value of Cc (index compressible) soil data based on some laboratory test results, while the value of Cc is not tested obtained from empirical formula Ardhana and Mochtar, 1999. From this research, the results of the field monitoring showed almost the same results with an empirical formulation with the standard deviation of 4% where the formulation of the empirical results of this analysis obtained by linear formula. Value empirical linear formula is to determine the effect of compression heap area as high as 4,25 m is 3,1209x + y = 0.0026 for the slope of the embankment 1: 8 for the same analysis with an initial height of embankment on the field. Provided that at the edge of the embankment settlement worth is not equal to 0 but at a quarter of embankment has a settlement ratio average 0.951 and at the edge of embankment has a settlement ratio 0,049. The influence areas around of embankment are approximately 1 meter for slope 1:8 and 7 meters for slope 1:2. So, it can cause the building cracks, to build in sustainable development.

Keywords: building cracks, influence area, settlement plate, soft soil, empirical formula, embankment

Procedia PDF Downloads 344
322 Redox-Mediated Supramolecular Radical Gel

Authors: Sonam Chorol, Sharvan Kumar, Pritam Mukhopadhyay

Abstract:

In biology, supramolecular systems require the use of chemical fuels to stay in sustained nonequilibrium steady states termed dissipative self-assembly in contrast to synthetic self-assembly. Biomimicking these natural dynamic systems, some studies have demonstrated artificial self-assembly under nonequilibrium utilizing various forms of energies (fuel) such as chemical, redox, and pH. Naphthalene diimides (NDIs) are well-known organic molecules in supramolecular architectures with high electron affinity and have applications in controlled electron transfer (ET) reactions, etc. Herein, we report the endergonic ET from tetraphenylborate to highly electron-deficient phosphonium NDI²+ dication to generate NDI•+ radical. The formation of radicals was confirmed by UV-Vis-NIR absorption spectroscopy. Electron-donor and electron-acceptor energy levels were calculated from experimental electrochemistry and theoretical DFT analysis. The HOMO of the electron donor locates below the LUMO of the electro-acceptor. This indicates that electron transfer is endergonic (ΔE°ET = negative). The endergonic ET from NaBPh₄ to NDI²+ dication was achieved thermodynamically by the formation of coupled biphenyl product confirmed by GC-MS analysis. NDI molecule bearing octyl phosphonium at the core and H-bond forming imide moieties at the axial position forms a gel. The rheological properties of purified radical ion NDI⦁+ gels were evaluated. The atomic force microscopy studies reveal the formation of large branching-type networks with a maximum height of 70-80 nm. The endergonic ET from NaBPh₄ to NDI²+ dication was used to design the assembly and disassembly redox reaction cycle using reducing (NaBPh₄) and oxidizing agents (Br₂) as chemical fuels. A part of NaBPh₄ is used to drive assembly, while a fraction of the NaBPh₄ is dissipated by forming a useful product. The system goes back to the disassembled NDI²+ dication state with the addition of Br₂. We think bioinspired dissipative self-assembly is the best approach to developing future lifelike materials with autonomous behavior.

Keywords: Ionic-gel, redox-cycle, self-assembly, useful product

Procedia PDF Downloads 85
321 Prevalence and Associated Factors of Overweight and Obesity in Children with Intellectual Disability: A Cross-Sectional Study among Chinese Children

Authors: Jing-Jing Wang, Yang Gao, Heather H. M. Kwok, Wendy Y. J. Huang

Abstract:

Objectives: Intellectual disability (ID) ranks among the top 20 most costly disorders. A child with ID creates a wide set of challenges to the individual, family, and society, and overweight and obesity aggravate those challenges. People with ID have the right to attain optimal health like the rest of the population. They should be given priority to eliminate existing health inequities. Childhood obesity epidemic and associated factors among children, in general, has been well documented, while knowledge about overweight and obesity in children with ID is scarce. Methods: A cross-sectional study was conducted among 524 Chinese children with ID (males: 68.9%, mean age: 12.2 years) in Hong Kong in 2015. Children’s height and weight were measured at school. Parents, in the presence of their children, completed a self-administered questionnaire at home about the children’s physical activity (PA), eating habits, and sleep duration in a typical week as well as parenting practices regarding children’s eating and PA, and their socio-demographic characteristics. Multivariate logistic regression estimated the potential risk factors for children being overweight. Results: The prevalence of overweight and obesity in children with ID was 31.3%, which was higher than their general counterparts (18.7%-19.9%). Multivariate analyses revealed that the risk factors of overweight and obese in children with ID included: comorbidity with autism, the maternal side being overweight or obese, parenting practices with less pressure to eat more, children having shorter sleep duration, longer periods of sedentary behavior, and higher intake frequencies of sweetened food, fried food, and meats, fish, and eggs. Children born in other places, having snacks more frequently, and having irregular meals were also more likely to be overweight or obese, with marginal significance. Conclusions: Children with ID are more vulnerable to being overweight or obese than their typically developing counterparts. Identified risk factors in this study highlight a multifaceted approach to the involvement of parents as well as the modification of some children’s questionable behaviors to help them achieve a healthy weight.

Keywords: prevalence, risk factors, obesity, children with disability

Procedia PDF Downloads 136
320 Dynamic Model for Forecasting Rainfall Induced Landslides

Authors: R. Premasiri, W. A. H. A. Abeygunasekara, S. M. Hewavidana, T. Jananthan, R. M. S. Madawala, K. Vaheeshan

Abstract:

Forecasting the potential for disastrous events such as landslides has become one of the major necessities in the current world. Most of all, the landslides occurred in Sri Lanka are found to be triggered mostly by intense rainfall events. The study area is the landslide near Gerandiella waterfall which is located by the 41st kilometer post on Nuwara Eliya-Gampala main road in Kotmale Division in Sri Lanka. The landslide endangers the entire Kotmale town beneath the slope. Geographic Information System (GIS) platform is very much useful when it comes to the need of emulating the real-world processes. The models are used in a wide array of applications ranging from simple evaluations to the levels of forecast future events. This project investigates the possibility of developing a dynamic model to map the spatial distribution of the slope stability. The model incorporates several theoretical models including the infinite slope model, Green Ampt infiltration model and Perched ground water flow model. A series of rainfall values can be fed to the model as the main input to simulate the dynamics of slope stability. Hydrological model developed using GIS is used to quantify the perched water table height, which is one of the most critical parameters affecting the slope stability. Infinite slope stability model is used to quantify the degree of slope stability in terms of factor of safety. DEM was built with the use of digitized contour data. Stratigraphy was modeled in Surfer using borehole data and resistivity images. Data available from rainfall gauges and piezometers were used in calibrating the model. During the calibration, the parameters were adjusted until a good fit between the simulated ground water levels and the piezometer readings was obtained. This model equipped with the predicted rainfall values can be used to forecast of the slope dynamics of the area of interest. Therefore it can be investigated the slope stability of rainfall induced landslides by adjusting temporal dimensions.

Keywords: factor of safety, geographic information system, hydrological model, slope stability

Procedia PDF Downloads 423
319 3D-Shape-Perception Studied Exemplarily with Tetrahedron and Icosahedron as Prototypes of the Polarities Sharp versus Round

Authors: Iris Sauerbrei, Jörg Trojan, Erich Lehner

Abstract:

Introduction and significance of the study: This study examines if three-dimensional shapes elicit distinct patterns of perceptions. If so, it is relevant for all fields of design, especially for the design of the built environment. Description of basic methodologies: The five platonic solids are the geometrical base for all other three-dimensional shapes, among which tetrahedron and icosahedron provide the clearest representation of the qualities sharp and round. The component pair of attributes ‘sharp versus round’ has already been examined in various surveys in a psychology of perception and in neuroscience by means of graphics, images of products of daily use, as well as by photographs and walk-through-videos of landscapes and architecture. To verify a transfer of outcomes of the existing surveys to the perception of three-dimensional shapes, walk-in models (total height 2.2m) of tetrahedron and icosahedron were set up in a public park in Frankfurt am Main, Germany. Preferences of park visitors were tested by questionnaire; also they were asked to write down associations in a free text. In summer 2015, the tetrahedron was assembled eight times, the icosahedron seven times. In total 288 participants took part in the study; 116 rated the tetrahedron, 172 rated the icosahedron. Findings: Preliminary analyses of the collected data using Wilcoxon Rank-Sum tests show that the perceptions of the two solids differ in respect to several attributes and that each of the tested model show significance for specific attributes. Conclusion: These findings confirm the assumptions and provide first evidence that the perception of three-dimensional shapes are associated to characteristic attributes and to which. In order to enable conscious choices for spatial arrangements in design processes for the built environment, future studies should examine attributes for the other three basic bodies - Octahedron, Cube, and Dodecahedron. Additionally, similarities and differences between the perceptions of two- and three-dimensional shapes as well as shapes that are more complex need further research.

Keywords: 3D shapes, architecture, geometrical features, space perception, walk-in models

Procedia PDF Downloads 228
318 Development of Knitted Seersucker Fabric for Improved Comfort Properties

Authors: Waqas Ashraf, Yasir Nawab, Haritham Khan, Habib Awais, Shahbaz Ahmad

Abstract:

Seersucker is a popular lightweight fabric widely used in men’s and women’s suiting, casual wear, children’s clothing, house robes, bed spreads and for spring and summer wear. The puckered effect generates air spaces between body and the fabric, keeping the wearer cool in hot conditions. The aim of this work was to develop knitted seersucker fabric on single cylinder weft knitting machine using plain jersey structure. Core spun cotton yarn and cotton spun yarn of same linear density were used. Core spun cotton yarn, contains cotton fiber in the sheath and elastase filament in the core. The both yarn were fed at regular interval to feeders on the machine. The loop length and yarn tension were kept constant at each feeder. The samples were then scoured and bleached. After wet processing, the fabric samples were washed and tumble dried. Parameters like loop length, stitch density and areal density were measured after conditioning these samples for 24 hours in Standard atmospheric condition. Produced sample has a regular puckering stripe along the width of the fabric with same height. The stitch density of both the flat and puckered area of relaxed fabric was found to be different .Air permeability and moisture management tests were performed. The results indicated that the knitted seersucker fabric has better wicking and moisture management properties as the flat area contact, whereas puckered area held away from the skin. Seersucker effect in knitted fabric was achieved by the difference of contraction of both sets of courses produced from different types of yarns. The seer sucker fabric produce by knitting technique is less expensive as compared to woven seer sucker fabric as there is no need of yarn preparation. The knitted seersucker fabric is more practicable for summer dresses, skirts, blouses, shirts, trousers and shorts.

Keywords: air permeability, knitted structure, moisture management, seersucker

Procedia PDF Downloads 325
317 Understanding the Classification of Rain Microstructure and Estimation of Z-R Relationship using a Micro Rain Radar in Tropical Region

Authors: Tomiwa, Akinyemi Clement

Abstract:

Tropical regions experience diverse and complex precipitation patterns, posing significant challenges for accurate rainfall estimation and forecasting. This study addresses the problem of effectively classifying tropical rain types and refining the Z-R (Reflectivity-Rain Rate) relationship to enhance rainfall estimation accuracy. Through a combination of remote sensing, meteorological analysis, and machine learning, the research aims to develop an advanced classification framework capable of distinguishing between different types of tropical rain based on their unique characteristics. This involves utilizing high-resolution satellite imagery, radar data, and atmospheric parameters to categorize precipitation events into distinct classes, providing a comprehensive understanding of tropical rain systems. Additionally, the study seeks to improve the Z-R relationship, a crucial aspect of rainfall estimation. One year of rainfall data was analyzed using a Micro Rain Radar (MRR) located at The Federal University of Technology Akure, Nigeria, measuring rainfall parameters from ground level to a height of 4.8 km with a vertical resolution of 0.16 km. Rain rates were classified into low (stratiform) and high (convective) based on various microstructural attributes such as rain rates, liquid water content, Drop Size Distribution (DSD), average fall speed of the drops, and radar reflectivity. By integrating diverse datasets and employing advanced statistical techniques, the study aims to enhance the precision of Z-R models, offering a more reliable means of estimating rainfall rates from radar reflectivity data. This refined Z-R relationship holds significant potential for improving our understanding of tropical rain systems and enhancing forecasting accuracy in regions prone to heavy precipitation.

Keywords: remote sensing, precipitation, drop size distribution, micro rain radar

Procedia PDF Downloads 37
316 Investigation of Aerodynamic and Design Features of Twisting Tall Buildings

Authors: Sinan Bilgen, Bekir Ozer Ay, Nilay Sezer Uzol

Abstract:

After decades of conventional shapes, irregular forms with complex geometries are getting more popular for form generation of tall buildings all over the world. This trend has recently brought out diverse building forms such as twisting tall buildings. This study investigates both the aerodynamic and design features of twisting tall buildings through comparative analyses. Since twisting a tall building give rise to additional complexities related with the form and structural system, lateral load effects become of greater importance on these buildings. The aim of this study is to analyze the inherent characteristics of these iconic forms by comparing the wind loads on twisting tall buildings with those on their prismatic twins. Through a case study research, aerodynamic analyses of an existing twisting tall building and its prismatic counterpart were performed and the results have been compared. The prismatic twin of the original building were generated by removing the progressive rotation of its floors with the same plan area and story height. Performance-based measures under investigation have been evaluated in conjunction with the architectural design. Aerodynamic effects have been analyzed by both wind tunnel tests and computational methods. High frequency base balance tests and pressure measurements on 3D models were performed to evaluate wind load effects on a global and local scale. Comparisons of flat and real surface models were conducted to further evaluate the effects of the twisting form without façade texture contribution. Comparisons highlighted that, the twisting form under investigation shows better aerodynamic behavior both for along wind but particularly for across wind direction. Compared to the prismatic counterpart; twisting model is superior on reducing vortex-shedding dynamic response by disorganizing the wind vortices. Consequently, despite the difficulties arisen from inherent complexity of twisted forms, they could still be feasible and viable with their attractive images in the realm of tall buildings.

Keywords: aerodynamic tests, motivation for twisting, tall buildings, twisted forms, wind excitation

Procedia PDF Downloads 234
315 Dust Particle Removal from Air in a Self-Priming Submerged Venturi Scrubber

Authors: Manisha Bal, Remya Chinnamma Jose, B.C. Meikap

Abstract:

Dust particles suspended in air are a major source of air pollution. A self-priming submerged venturi scrubber proven very effective in cases of handling nuclear power plant accidents is an efficient device to remove dust particles from the air and thus aids in pollution control. Venturi scrubbers are compact, have a simple mode of operation, no moving parts, easy to install and maintain when compared to other pollution control devices and can handle high temperatures and corrosive and flammable gases and dust particles. In the present paper, fly ash particles recognized as a high air pollutant substance emitted mostly from thermal power plants is considered as the dust particle. Its exposure through skin contact, inhalation and indigestion can lead to health risks and in severe cases can even root to lung cancer. The main focus of this study is on the removal of fly ash particles from polluted air using a self-priming venturi scrubber in submerged conditions using water as the scrubbing liquid. The venturi scrubber comprising of three sections: converging section, throat and diverging section is submerged inside a water tank. The liquid enters the throat due to the pressure difference composed of the hydrostatic pressure of the liquid and static pressure of the gas. The high velocity dust particles atomize the liquid droplets at the throat and this interaction leads to its absorption into water and thus removal of fly ash from the air. Detailed investigation on the scrubbing of fly ash has been done in this literature. Experiments were conducted at different throat gas velocities, water levels and fly ash inlet concentrations to study the fly ash removal efficiency. From the experimental results, the highest fly ash removal efficiency of 99.78% is achieved at the throat gas velocity of 58 m/s, water level of height 0.77m with fly ash inlet concentration of 0.3 x10⁻³ kg/Nm³ in the submerged condition. The effect of throat gas velocity, water level and fly ash inlet concentration on the removal efficiency has also been evaluated. Furthermore, experimental results of removal efficiency are validated with the developed empirical model.

Keywords: dust particles, fly ash, pollution control, self-priming venturi scrubber

Procedia PDF Downloads 164
314 Self-Esteem and Emotional Intelligence’s Association to Nutritional Status in Adolescent Schoolchildren in Chile

Authors: Peter Mc Coll, Alberto Caro, Chiara Gandolfo, Montserrat Labbe, Francisca Schnaidt, Michela Palazzi

Abstract:

Self-esteem and emotional intelligence are variables that are related to people's nutritional status. Self-esteem may be at low levels in people living with obesity, while emotional intelligence can play an important role in the way people living with obesity cope. The objective of the study was to measure the association between self-esteem and emotional intelligence to nutritional status in adolescent population. Methodology: A cross-sectional study was carried out with 179 adolescent schoolchildren between 13 and 19 years old from a public school. The objective was to evaluate nutritional status; weight and height were measured by calculating the body mass index and Z score. Self-esteem was evaluated using the Coopersmith Self-esteem Inventory adapted by Brinkmann and Segure. Emotional intelligence was measured using the Emotional Quotient Inventory: short, by Bar On, adapted questionnaire, translated into Spanish by López Zafra. For statistical analysis: Pearson's Chi-square test, Pearson's correlation, and odd ratio calculation were used, with a p value at a significance level < 5%. Results: The study group was composed of 71% female and 29% male. The nutritional status was distributed as eutrophic 41.9%, overweight 20.1%, and obesity 21.1%. In relation to self-esteem, 44.1% presented low and very low levels, without differences by gender. Emotional intelligence was distributed: low 3.4%, medium 81%, and high 13.4% -no differences according to gender. The association between nutritional status (overweight and obesity) with low and very low self-esteem, an odds ratio of 2.5 (95% CI 1.12 – 5.59) was obtained with a p-value = 0.02. The correlation analysis between the intrapersonal sub-dimension emotional intelligence scores and the Z score of nutritional status presented a negative correlation of r = - 0.209 with a p-value < 0.005. The correlation between emotional intelligence subdimension stress management with Z score presented a positive correlation of r = 0.0161 with a p-value < 0.05. In conclusion, the group of adolescents studied had a high prevalence of overweight and obesity, a high prevalence of low self-esteem, and a high prevalence of average emotional intelligence. Overweight and obese adolescents were 2.5 times more likely to have low self-esteem. As overweight and obesity increase, self-esteem decreases, and the ability to manage stress increases.

Keywords: self-esteem, emotional intelligence, obesity, adolescent, nutritional status

Procedia PDF Downloads 60
313 Measurement and Simulation of Axial Neutron Flux Distribution in Dry Tube of KAMINI Reactor

Authors: Manish Chand, Subhrojit Bagchi, R. Kumar

Abstract:

A new dry tube (DT) has been installed in the tank of KAMINI research reactor, Kalpakkam India. This tube will be used for neutron activation analysis of small to large samples and testing of neutron detectors. DT tube is 375 cm height and 7.5 cm in diameter, located 35 cm away from the core centre. The experimental thermal flux at various axial positions inside the tube has been measured by irradiating the flux monitor (¹⁹⁷Au) at 20kW reactor power. The measured activity of ¹⁹⁸Au and the thermal cross section of ¹⁹⁷Au (n,γ) ¹⁹⁸Au reaction were used for experimental thermal flux measurement. The flux inside the tube varies from 10⁹ to 10¹⁰ and maximum flux was (1.02 ± 0.023) x10¹⁰ n cm⁻²s⁻¹ at 36 cm from the bottom of the tube. The Au and Zr foils without and with cadmium cover of 1-mm thickness were irradiated at the maximum flux position in the DT to find out the irradiation specific input parameters like sub-cadmium to epithermal neutron flux ratio (f) and the epithermal neutron flux shape factor (α). The f value was 143 ± 5, indicates about 99.3% thermal neutron component and α value was -0.2886 ± 0.0125, indicates hard epithermal neutron spectrum due to insufficient moderation. The measured flux profile has been validated using theoretical model of KAMINI reactor through Monte Carlo N-Particle Code (MCNP). In MCNP, the complex geometry of the entire reactor is modelled in 3D, ensuring minimum approximations for all the components. Continuous energy cross-section data from ENDF-B/VII.1 as well as S (α, β) thermal neutron scattering functions are considered. The neutron flux has been estimated at the corresponding axial locations of the DT using mesh tally. The thermal flux obtained from the experiment shows good agreement with the theoretically predicted values by MCNP, it was within ± 10%. It can be concluded that this MCNP model can be utilized for calculating other important parameters like neutron spectra, dose rate, etc. and multi elemental analysis can be carried out by irradiating the sample at maximum flux position using measured f and α parameters by k₀-NAA standardization.

Keywords: neutron flux, neutron activation analysis, neutron flux shape factor, MCNP, Monte Carlo N-Particle Code

Procedia PDF Downloads 164