Search results for: multiple scales method
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 22972

Search results for: multiple scales method

21832 Predicting Loss of Containment in Surface Pipeline using Computational Fluid Dynamics and Supervised Machine Learning Model to Improve Process Safety in Oil and Gas Operations

Authors: Muhammmad Riandhy Anindika Yudhy, Harry Patria, Ramadhani Santoso

Abstract:

Loss of containment is the primary hazard that process safety management is concerned within the oil and gas industry. Escalation to more serious consequences all begins with the loss of containment, starting with oil and gas release from leakage or spillage from primary containment resulting in pool fire, jet fire and even explosion when reacted with various ignition sources in the operations. Therefore, the heart of process safety management is avoiding loss of containment and mitigating its impact through the implementation of safeguards. The most effective safeguard for the case is an early detection system to alert Operations to take action prior to a potential case of loss of containment. The detection system value increases when applied to a long surface pipeline that is naturally difficult to monitor at all times and is exposed to multiple causes of loss of containment, from natural corrosion to illegal tapping. Based on prior researches and studies, detecting loss of containment accurately in the surface pipeline is difficult. The trade-off between cost-effectiveness and high accuracy has been the main issue when selecting the traditional detection method. The current best-performing method, Real-Time Transient Model (RTTM), requires analysis of closely positioned pressure, flow and temperature (PVT) points in the pipeline to be accurate. Having multiple adjacent PVT sensors along the pipeline is expensive, hence generally not a viable alternative from an economic standpoint.A conceptual approach to combine mathematical modeling using computational fluid dynamics and a supervised machine learning model has shown promising results to predict leakage in the pipeline. Mathematical modeling is used to generate simulation data where this data is used to train the leak detection and localization models. Mathematical models and simulation software have also been shown to provide comparable results with experimental data with very high levels of accuracy. While the supervised machine learning model requires a large training dataset for the development of accurate models, mathematical modeling has been shown to be able to generate the required datasets to justify the application of data analytics for the development of model-based leak detection systems for petroleum pipelines. This paper presents a review of key leak detection strategies for oil and gas pipelines, with a specific focus on crude oil applications, and presents the opportunities for the use of data analytics tools and mathematical modeling for the development of robust real-time leak detection and localization system for surface pipelines. A case study is also presented.

Keywords: pipeline, leakage, detection, AI

Procedia PDF Downloads 183
21831 Forecasting Exchange Rate between Thai Baht and the US Dollar Using Time Series Analysis

Authors: Kunya Bowornchockchai

Abstract:

The objective of this research is to forecast the monthly exchange rate between Thai baht and the US dollar and to compare two forecasting methods. The methods are Box-Jenkins’ method and Holt’s method. Results show that the Box-Jenkins’ method is the most suitable method for the monthly Exchange Rate between Thai Baht and the US Dollar. The suitable forecasting model is ARIMA (1,1,0)  without constant and the forecasting equation is Yt = Yt-1 + 0.3691 (Yt-1 - Yt-2) When Yt  is the time series data at time t, respectively.

Keywords: Box–Jenkins method, Holt’s method, mean absolute percentage error (MAPE), exchange rate

Procedia PDF Downloads 249
21830 Evaluation of a Surrogate Based Method for Global Optimization

Authors: David Lindström

Abstract:

We evaluate the performance of a numerical method for global optimization of expensive functions. The method is using a response surface to guide the search for the global optimum. This metamodel could be based on radial basis functions, kriging, or a combination of different models. We discuss how to set the cycling parameters of the optimization method to get a balance between local and global search. We also discuss the eventual problem with Runge oscillations in the response surface.

Keywords: expensive function, infill sampling criterion, kriging, global optimization, response surface, Runge phenomenon

Procedia PDF Downloads 572
21829 Optimization Techniques for Microwave Structures

Authors: Malika Ourabia

Abstract:

A new and efficient method is presented for the analysis of arbitrarily shaped discontinuities. The discontinuities is characterized using a hybrid spectral/numerical technique. This structure presents an arbitrary number of ports, each one with different orientation and dimensions. This article presents a hybrid method based on multimode contour integral and mode matching techniques. The process is based on segmentation and dividing the structure into key building blocks. We use the multimode contour integral method to analyze the blocks including irregular shape discontinuities. Finally, the multimode scattering matrix of the whole structure can be found by cascading the blocks. Therefore, the new method is suitable for analysis of a wide range of waveguide problems. Therefore, the present approach can be applied easily to the analysis of any multiport junctions and cascade blocks. The accuracy of the method is validated comparing with results for several complex problems found in the literature. CPU times are also included to show the efficiency of the new method proposed.

Keywords: segmentation, s parameters, simulation, optimization

Procedia PDF Downloads 524
21828 Virulence Phenotypes Among Multi-Drug Resistant Uropathogenic Bacteria

Authors: V. V. Lakshmi, Y. V. S. Annapurna

Abstract:

Urinary tract infection (UTI) is one of the most common infectious diseases seen in the community. Susceptible individuals experience multiple episodes, and progress to acute pyelonephritis or uro-sepsis or develop asymptomatic bacteriuria (ABU). Ability to cause extraintestinal infections depends on several virulence factors required for survival at extraintestinal sites. Presence of virulence phenotypes enhances the pathogenicity of these otherwise commensal organisms and thus augments its ability to cause extraintestinal infections, the most frequent in urinary tract infections(UTI). The present study focuses on detection of the virulence characters exhibited by the uropathogenic organism and most common factors exhibited in the local pathogens. A total of 700 isolates of E.coli and Klebsiella spp were included in the study. These were isolated from patients from local hospitals reported to be suffering with UTI over a period of three years. Isolation and identification was done based on Gram character and IMVIC reactions. Antibiotic sensitivity profile was carried out by disc diffusion method and multi drug resistant strains with MAR index of 0.7 were further selected.. Virulence features examined included their ability to produce exopolysaccharides, protease- gelatinase production, hemolysin production, haemagglutination and hydrophobicity test. Exopolysaccharide production was most predominant virulence feature among the isolates when checked by congo red method. The biofilms production examined by microtitre plates using ELISA reader confirmed that this is the major factor contributing to virulencity of the pathogens followed by hemolysin production

Keywords: Escherichia coli, Klebsiella sp, Uropathogens, Virulence features.

Procedia PDF Downloads 416
21827 Optimization of Surface Roughness by Taguchi’s Method for Turning Process

Authors: Ashish Ankus Yerunkar, Ravi Terkar

Abstract:

Study aimed at evaluating the best process environment which could simultaneously satisfy requirements of both quality as well as productivity with special emphasis on reduction of cutting tool flank wear, because reduction in flank wear ensures increase in tool life. The predicted optimal setting ensured minimization of surface roughness. Purpose of this paper is focused on the analysis of optimum cutting conditions to get lowest surface roughness in turning SCM 440 alloy steel by Taguchi method. Design for the experiment was done using Taguchi method and 18 experiments were designed by this process and experiments conducted. The results are analyzed using ANOVA method. Taguchi method has depicted that the depth of cut has significant role to play in producing lower surface roughness followed by feed. The Cutting speed has lesser role on surface roughness from the tests. The vibrations of the machine tool, tool chattering are the other factors which may contribute poor surface roughness to the results and such factors ignored for analyses. The inferences by this method will be useful to other researches for similar type of study and may be vital for further research on tool vibrations, cutting forces etc.

Keywords: surface roughness (ra), machining, dry turning, taguchi method, turning process, anova method, mahr perthometer

Procedia PDF Downloads 365
21826 Load Management Using Multiple Sequential Load Shaping Techniques

Authors: Amira M. Attia, Karim H. Youssef, Nabil H. Abbasi

Abstract:

Demand Side Management (DSM) is an essential characteristic of current and future smart grid systems. As one of DSM functions, load management aims to control customers’ total electric consumption and utility’s load factor by using various load shaping techniques. However, applying load shaping techniques such as load shifting, peak clipping, or strategic conservation individually does not provide the desired level of improvement for load factor increment and/or customer’s bill reduction. In this paper, two load shaping techniques will be simulated as constrained optimization problems. The purpose is to reflect the application of combined load shifting and strategic conservation model together at the same time, and the application of combined load shifting and peak clipping model as well. The problem will be formulated and solved by using disciplined convex programming (CVX) based MATLAB® R2013b. Simulation results will be evaluated and compared for studying the most impactful multi-techniques model in improving load curve.

Keywords: convex programing, demand side management, load shaping, multiple, building energy optimization

Procedia PDF Downloads 306
21825 Evaluation of Relationship between Job Stress Dimensions with Occupational Accidents in Industrial Factories in Southwest of Iran

Authors: Ali Ahmadi, Maryam Abbasi, Mohammad Mehdi Parsaei

Abstract:

Background: Stress in the workplace today is one of the most important public health concerns and a serious threat to the health of the workforce worldwide. Occupational stress can cause occupational events and reduce quality of life. As a result, it has a very undesirable impact on the performance of organizations, companies, and their human resources. This study aimed to evaluate the relationship between job stress dimensions and occupational accidents in industrial factories in Southwest Iran. Materials and Methods: This cross-sectional study was conducted among 200 workers in the summer of 2023 in the Southwest of Iran. To select participants, we used a convenience sampling method. The research tools in this study were the Health and Safety Executive (HSE) stress questionnaire with 35 questions and 7 dimensions and demographic information. A high score on this questionnaire indicates that there is low job stress and pressure. All workers completed the informed consent form. Univariate analysis was performed using chi-square and T-test. Multiple regression analysis was used to estimate the odds ratios (OR) and 95% confidence interval (CI) for the association of stress-related factors with job accidents in participants. Stata 14.0 software was used for analysis. Results: The mean age of the participants was 39.81(6.36) years. The prevalence of job accidents was 28.0% (95%CI: 21.0, 34.0). Based on the results of the multiple logistic regression with the adjustment of the effect of the confounding variables, one increase in the score of the demand dimension had a protective impact on the risk of job accidents(aOR=0.91,95%CI:0.85-0.95). Additionally, an increase in one of the scores of the managerial support (aOR=0.89, 95% CI: 0.83-0.95) and peer support (aOR=0.76, 95%CI: 0.67-87) dimensions was associated with a lower number of job accidents. Among dimensions, an increase in the score of relationship (aOR=0.89, 95%CI: 0.80-0.98) and change (aOR=0.86, 95%CI: 0.74-0.96) reduced the odds of the accident's occurrence among the workers by 11% and 16%, respectively. However, there was no significant association between role and control dimensions and the job accident (p>0.05). Conclusions: The results show that the prevalence of job accidents was alarmingly high. Our results suggested that an increase in scores of dimensions HSE questioners is significantly associated with a decrease the accident occurrence in the workplace. Therefore, planning to address stressful factors in the workplace seems necessary to prevent occupational accidents.

Keywords: HSE, Iran, job stress occupational accident, safety, occupational health

Procedia PDF Downloads 64
21824 Factors Associated with Acute Kidney Injury in Multiple Trauma Patients with Rhabdomyolysis

Authors: Yong Hwang, Kang Yeol Suh, Yundeok Jang, Tae Hoon Kim

Abstract:

Introduction: Rhabdomyolysis is a syndrome characterized by muscle necrosis and the release of intracellular muscle constituents into the circulation. Acute kidney injury is a potential complication of severe rhabdomyolysis and the prognosis is substantially worse if renal failure develops. We try to identify the factors that were predictive of AKI in severe trauma patients with rhabdomyolysis. Methods: This retrospective study was conducted at the emergency department of a level Ⅰ trauma center. Patients enrolled that initial creatine phosphokinase (CPK) levels were higher than 1000 IU with acute multiple trauma, and more than 18 years older from Oct. 2012 to June 2016. We collected demographic data (age, gender, length of hospital day, and patients’ outcome), laboratory data (ABGA, lactate, hemoglobin. hematocrit, platelet, LDH, myoglobin, liver enzyme, and BUN/Cr), and clinical data (Injury Mechanism, RTS, ISS, AIS, and TRISS). The data were compared and analyzed between AKI and Non-AKI group. Statistical analyses were performed using IMB SPSS 20.0 statistics for Window. Results: Three hundred sixty-four patients were enrolled that AKI group were ninety-six and non-AKI group were two hundred sixty-eight. The base excess (HCO3), AST/ALT, LDH, and myoglobin in AKI group were significantly higher than non-AKI group from laboratory data (p ≤ 0.05). The injury severity score (ISS), revised Trauma Score (RTS), Abbreviated Injury Scale 3 and 4 (AIS 3 and 4) were showed significant results in clinical data. The patterns of CPK level were increased from first and second day, but slightly decreased from third day in both group. Seven patients had received hemodialysis treatment despite the bleeding risk and were survived in AKI group. Conclusion: We recommend that HCO3, CPK, LDH, and myoglobin should be checked and be concerned about ISS, RTS, AIS with injury mechanism at the early stage of treatment in the emergency department.

Keywords: acute kidney injury, emergencies, multiple trauma, rhabdomyolysis

Procedia PDF Downloads 337
21823 Permanent Magnet Machine Can Be a Vibration Sensor for Itself

Authors: M. Barański

Abstract:

The article presents a new vibration diagnostic method designed to (PM) machines with permanent magnets. Those devices are commonly used in small wind and water systems or vehicles drives. The author’s method is very innovative and unique. Specific structural properties of PM machines are used in this method - electromotive force (EMF) generated due to vibrations. There was analysed number of publications which describe vibration diagnostic methods and tests of electrical PM machines and there was no method found to determine the technical condition of such machine basing on their own signals. In this article, the method genesis, the similarity of machines with permanent magnet to vibration sensor and simulation and laboratory tests results will be discussed. The method of determination the technical condition of electrical machine with permanent magnets basing on its own signals is the subject of patent application No P.405669, and it is the main thesis of author’s doctoral dissertation.

Keywords: vibrations, generator, permanent magnet, traction drive, electrical vehicle

Procedia PDF Downloads 363
21822 Factors Predicting Preventive Behavior for Osteoporosis in University Students

Authors: Thachamon Sinsoongsud, Noppawan Piaseu

Abstract:

This predictive study was aimed to 1) describe self efficacy for risk reduction and preventive behavior for osteoporosis, and 2) examine factors predicting preventive behavior for osteoporosis in nursing students. Through purposive sampling, the sample included 746 nursing students in a public university in Bangkok, Thailand. Data were collected by a self-reported questionnaire on self efficacy and preventive behavior for osteoporosis. Data were analyzed using descriptive statistics and multiple regression analysis with stepwise method. Results revealed that majority of the students were female (98.3%) with mean age of 19.86 + 1.26 years. The students had self efficacy and preventive behavior for osteoporosis at moderate level. Self efficacy and level of education could together predicted 35.2% variance of preventive behavior for osteoporosis (p< .001). Results suggest approaches for promoting preventive behavior for osteoporosis through enhancing self efficacy among nursing students in a public university in Bangkok, Thailand.

Keywords: osteoporosis, self-efficacy, preventive behavior, nursing students

Procedia PDF Downloads 374
21821 Quantum Graph Approach for Energy and Information Transfer through Networks of Cables

Authors: Mubarack Ahmed, Gabriele Gradoni, Stephen C. Creagh, Gregor Tanner

Abstract:

High-frequency cables commonly connect modern devices and sensors. Interestingly, the proportion of electric components is rising fast in an attempt to achieve lighter and greener devices. Modelling the propagation of signals through these cable networks in the presence of parameter uncertainty is a daunting task. In this work, we study the response of high-frequency cable networks using both Transmission Line and Quantum Graph (QG) theories. We have successfully compared the two theories in terms of reflection spectra using measurements on real, lossy cables. We have derived a generalisation of the vertex scattering matrix to include non-uniform networks – networks of cables with different characteristic impedances and propagation constants. The QG model implicitly takes into account the pseudo-chaotic behavior, at the vertices, of the propagating electric signal. We have successfully compared the asymptotic growth of eigenvalues of the Laplacian with the predictions of Weyl law. We investigate the nearest-neighbour level-spacing distribution of the resonances and compare our results with the predictions of Random Matrix Theory (RMT). To achieve this, we will compare our graphs with the generalisation of Wigner distribution for open systems. The problem of scattering from networks of cables can also provide an analogue model for wireless communication in highly reverberant environments. In this context, we provide a preliminary analysis of the statistics of communication capacity for communication across cable networks, whose eventual aim is to enable detailed laboratory testing of information transfer rates using software defined radio. We specialise this analysis in particular for the case of MIMO (Multiple-Input Multiple-Output) protocols. We have successfully validated our QG model with both TL model and laboratory measurements. The growth of Eigenvalues compares well with Weyl’s law and the level-spacing distribution agrees so well RMT predictions. The results we achieved in the MIMO application compares favourably with the prediction of a parallel on-going research (sponsored by NEMF21.)

Keywords: eigenvalues, multiple-input multiple-output, quantum graph, random matrix theory, transmission line

Procedia PDF Downloads 165
21820 Microbial Dynamics and Sensory Traits of Spanish- and Greek-Style Table Olives (Olea europaea L. cv. Ascolana tenera) Fermented with Sea Fennel (Crithmum maritimum L.)

Authors: Antonietta Maoloni, Federica Cardinali, Vesna Milanović, Andrea Osimani, Ilario Ferrocino, Maria Rita Corvaglia, Luca Cocolin, Lucia Aquilanti

Abstract:

Table olives (Olea europaea L.) are among the most important fermented vegetables all over the world, while sea fennel (Crithmum maritimum L.) is an emerging food crop with interesting nutritional and sensory traits. Both of them are characterized by the presence of several bioactive compounds with potential beneficial health effects, thus representing two valuable substrates for the manufacture of innovative vegetable-based preserves. Given these premises, the present study was aimed at exploring the co-fermentation of table olives and sea fennel to produce new high-value preserves. Spanish style or Greek style processing method and the use of a multiple strain starter were explored. The preserves were evaluated for their microbial dynamics and key sensory traits. During the fermentation, a progressive pH reduction was observed. Mesophilic lactobacilli, mesophilic lactococci, and yeasts were the main microbial groups at the end of the fermentation, whereas Enterobacteriaceae decreased during fermentation. An evolution of the microbiota was revealed by metataxonomic analysis, with Lactiplantibacillus plantarum dominating in the late stage of fermentation, irrespective of processing method and use of the starter. Greek style preserves resulted in more crunchy and less fibrous than Spanish style one and were preferred by trained panelists.

Keywords: lactic acid bacteria, Lactiplantibacillus plantarum, metataxonomy, panel test, rock samphire

Procedia PDF Downloads 124
21819 Application of a Modified Crank-Nicolson Method in Metallurgy

Authors: Kobamelo Mashaba

Abstract:

The molten slag has a high substantial temperatures range between 1723-1923, carrying a huge amount of useful energy for reducing energy consumption and CO₂ emissions under the heat recovery process. Therefore in this study, we investigated the performance of the modified crank Nicolson method for a delayed partial differential equation on the heat recovery of molten slag in the metallurgical mining environment. It was proved that the proposed method converges quickly compared to the classic method with the existence of a unique solution. It was inferred from numerical result that the proposed methodology is more viable and profitable for the mining industry.

Keywords: delayed partial differential equation, modified Crank-Nicolson Method, molten slag, heat recovery, parabolic equation

Procedia PDF Downloads 97
21818 Virulence Phenotypes among Multi Drug Resistant Uropathogenic E. Coli and Klebsiella SPP

Authors: V. V. Lakshmi, Y. V. S. Annapurna

Abstract:

Urinary tract infection (UTI) is one of the most common infectious diseases seen in the community. Susceptible individuals experience multiple episodes, and progress to acute pyelonephritis or uro-sepsis or develop asymptomatic bacteriuria (ABU). Ability to cause extraintestinal infections depends on several virulence factors required for survival at extraintestinal sites. Presence of virulence phenotypes enhances the pathogenicity of these otherwise commensal organisms and thus augments its ability to cause extraintestinal infections, the most frequent in urinary tract infections(UTI). The present study focuses on detection of the virulence characters exhibited by the uropathogenic organism and most common factors exhibited in the local pathogens. A total of 700 isolates of E.coli and Klebsiella spp were included in the study.These were isolated from patients from local hospitals reported to be suffering with UTI over a period of three years. Isolation and identification was done based on Gram character and IMVIC reactions. Antibiotic sensitivity profile was carried out by disc diffusion method and multi drug resistant strains with MAR index of 0.7 were further selected. Virulence features examined included their ability to produce exopolysaccharides, protease- gelatinase production, hemolysin production, haemagglutination and hydrophobicity test. Exopolysaccharide production was most predominant virulence feature among the isolates when checked by congo red method. The biofilms production examined by microtitre plates using ELISA reader confirmed that this is the major factor contributing to virulencity of the pathogens followed by hemolysin production.

Keywords: Escherichia coli, Klebsiella spp, Uropathogens, virulence features

Procedia PDF Downloads 311
21817 Implicit Off-Grid Block Method for Solving Fourth and Fifth Order Ordinary Differential Equations Directly

Authors: Olusola Ezekiel Abolarin, Gift E. Noah

Abstract:

This research work considered an innovative procedure to numerically approximate higher-order Initial value problems (IVP) of ordinary differential equations (ODE) using the Legendre polynomial as the basis function. The proposed method is a half-step, self-starting Block integrator employed to approximate fourth and fifth order IVPs without reduction to lower order. The method was developed through a collocation and interpolation approach. The basic properties of the method, such as convergence, consistency and stability, were well investigated. Several test problems were considered, and the results compared favorably with both exact solutions and other existing methods.

Keywords: initial value problem, ordinary differential equation, implicit off-grid block method, collocation, interpolation

Procedia PDF Downloads 74
21816 First Order Reversal Curve Method for Characterization of Magnetic Nanostructures

Authors: Bashara Want

Abstract:

One of the key factors limiting the performance of magnetic memory is that the coercivity has a distribution with finite width, and the reversal starts at the weakest link in the distribution. So one must first know the distribution of coercivities in order to learn how to reduce the width of distribution and increase the coercivity field to obtain a system with narrow width. First Order Reversal Curve (FORC) method characterizes a system with hysteresis via the distribution of local coercivities and, in addition, the local interaction field. The method is more versatile than usual conventional major hysteresis loops that give only the statistical behaviour of the magnetic system. The FORC method will be presented and discussed at the conference.

Keywords: magnetic materials, hysteresis, first-order reversal curve method, nanostructures

Procedia PDF Downloads 78
21815 Impacts on Marine Ecosystems Using a Multilayer Network Approach

Authors: Nelson F. F. Ebecken, Gilberto C. Pereira, Lucio P. de Andrade

Abstract:

Bays, estuaries and coastal ecosystems are some of the most used and threatened natural systems globally. Its deterioration is due to intense and increasing human activities. This paper aims to monitor the socio-ecological in Brazil, model and simulate it through a multilayer network representing a DPSIR structure (Drivers, Pressures, States-Impacts-Responses) considering the concept of Management based on Ecosystems to support decision-making under the National/State/Municipal Coastal Management policy. This approach considers several interferences and can represent a significant advance in several scientific aspects. The main objective of this paper is the coupling of three different types of complex networks, the first being an ecological network, the second a social network, and the third a network of economic activities, in order to model the marine ecosystem. Multilayer networks comprise two or more "layers", which may represent different types of interactions, different communities, different points in time, and so on. The dependency between layers results from processes that affect the various layers. For example, the dispersion of individuals between two patches affects the network structure of both samples. A multilayer network consists of (i) a set of physical nodes representing entities (e.g., species, people, companies); (ii) a set of layers, which may include multiple layering aspects (e.g., time dependency and multiple types of relationships); (iii) a set of state nodes, each of which corresponds to the manifestation of a given physical node in a layer-specific; and (iv) a set of edges (weighted or not) to connect the state nodes among themselves. The edge set includes the intralayer edges familiar and interlayer ones, which connect state nodes between layers. The applied methodology in an existent case uses the Flow cytometry process and the modeling of ecological relationships (trophic and non-trophic) following fuzzy theory concepts and graph visualization. The identification of subnetworks in the fuzzy graphs is carried out using a specific computational method. This methodology allows considering the influence of different factors and helps their contributions to the decision-making process.

Keywords: marine ecosystems, complex systems, multilayer network, ecosystems management

Procedia PDF Downloads 105
21814 The Effectiveness of Social Story with the Help Smart Board use to Teach Social Skills for Preschool Children with ASD

Authors: Dilay Akgun Giray

Abstract:

Basic insuffiency spaces of ASD diagnosed individuals can be grouped as cognitive and academic characteristics, communicational characteristics, social characteristics and emotional characteristics. Referring to the features that children with ASD exhibit on social events, it is clear they have limitations for several social skills. One of the evidence based practices which has been developed and used for the limitations of definite social skills for individuals with autism is “Social Story Method”. Social stories was designed and applied for the first time in 1991, a special education teacher, in order to acquire social skills and improve the existing social skills for children with ASD. Many studies have revealed the effectiveness of social stories for teaching the social skills to individuals with ASD. In this study, three social skills that the child ,who was diagnosed ASD, is going to need primarily will be studied with smart board. This study is multiple probe across-behavior design which is one of the single subject research models.

Keywords: authism spectrum disorders, social skills, social story, smart board

Procedia PDF Downloads 481
21813 Reliability Evidence of the Child Behavior Checklist (CBCL) Based on a Chinese Sample

Authors: Zhidong Zhang, Zhi-Chao Zhang, Georgiana Duarte

Abstract:

The Chinese version of the Child Behavior Checklist (CBCL) is the one of the Achenbach systems of empirically based assessment (ASEBA) scales, by which behavioral and emotional problems of early adolescents were examined. In order to further understand the robustness of the scale, its reliability has been examined. CBCL consists of 8 problems to measure internalizing, externalizing and social problems. In internalizing problem, there are Anxious, Withdrawn and Somatic Complaints. In this study, as an example, we only examined the anxious aspect which consisted of 13 questions. Cronbach alpha and factor analysis methods were used to examine the reliability of the scale. The result indicated that Cronbach alpha value was above 0.80.

Keywords: anxious/depressed problems, ASEBA, CBCL, Cronbach Alpha, reliability

Procedia PDF Downloads 456
21812 Multiple-Material Flow Control in Construction Supply Chain with External Storage Site

Authors: Fatmah Almathkour

Abstract:

Managing and controlling the construction supply chain (CSC) are very important components of effective construction project execution. The goals of managing the CSC are to reduce uncertainty and optimize the performance of a construction project by improving efficiency and reducing project costs. The heart of much SC activity is addressing risk, and the CSC is no different. The delivery and consumption of construction materials is highly variable due to the complexity of construction operations, rapidly changing demand for certain components, lead time variability from suppliers, transportation time variability, and disruptions at the job site. Current notions of managing and controlling CSC, involve focusing on one project at a time with a push-based material ordering system based on the initial construction schedule and, then, holding a tremendous amount of inventory. A two-stage methodology was proposed to coordinate the feed-forward control of advanced order placement with a supplier to a feedback local control in the form of adding the ability to transship materials between projects to improve efficiency and reduce costs. It focused on the single supplier integrated production and transshipment problem with multiple products. The methodology is used as a design tool for the CSC because it includes an external storage site not associated with one of the projects. The idea is to add this feature to a highly constrained environment to explore its effectiveness in buffering the impact of variability and maintaining project schedule at low cost. The methodology uses deterministic optimization models with objectives that minimizing the total cost of the CSC. To illustrate how this methodology can be used in practice and the types of information that can be gleaned, it is tested on a number of cases based on the real example of multiple construction projects in Kuwait.

Keywords: construction supply chain, inventory control supply chain, transshipment

Procedia PDF Downloads 119
21811 A New Reliability Allocation Method Based on Fuzzy Numbers

Authors: Peng Li, Chuanri Li, Tao Li

Abstract:

Reliability allocation is quite important during early design and development stages for a system to apportion its specified reliability goal to subsystems. This paper improves the reliability fuzzy allocation method and gives concrete processes on determining the factor set, the factor weight set, judgment set, and multi-grade fuzzy comprehensive evaluation. To determine the weight of factor set, the modified trapezoidal numbers are proposed to reduce errors caused by subjective factors. To decrease the fuzziness in the fuzzy division, an approximation method based on linear programming is employed. To compute the explicit values of fuzzy numbers, centroid method of defuzzification is considered. An example is provided to illustrate the application of the proposed reliability allocation method based on fuzzy arithmetic.

Keywords: reliability allocation, fuzzy arithmetic, allocation weight, linear programming

Procedia PDF Downloads 337
21810 Comparative Study between Classical P-Q Method and Modern Fuzzy Controller Method to Improve the Power Quality of an Electrical Network

Authors: A. Morsli, A. Tlemçani, N. Ould Cherchali, M. S. Boucherit

Abstract:

This article presents two methods for the compensation of harmonics generated by a nonlinear load. The first is the classic method P-Q. The second is the controller by modern method of artificial intelligence specifically fuzzy logic. Both methods are applied to an Active Power Filter shunt (APFs) based on a three-phase voltage converter at five levels NPC topology. In calculating the harmonic currents of reference, we use the algorithm P-Q and pulse generation, we use the intersective PWM. For flexibility and dynamics, we use fuzzy logic. The results give us clear that the rate of Harmonic Distortion issued by fuzzy logic is better than P-Q.

Keywords: fuzzy logic controller, P-Q method, pulse width modulation (PWM), shunt active power filter (sAPF), total harmonic distortion (THD)

Procedia PDF Downloads 543
21809 Multi-source Question Answering Framework Using Transformers for Attribute Extraction

Authors: Prashanth Pillai, Purnaprajna Mangsuli

Abstract:

Oil exploration and production companies invest considerable time and efforts to extract essential well attributes (like well status, surface, and target coordinates, wellbore depths, event timelines, etc.) from unstructured data sources like technical reports, which are often non-standardized, multimodal, and highly domain-specific by nature. It is also important to consider the context when extracting attribute values from reports that contain information on multiple wells/wellbores. Moreover, semantically similar information may often be depicted in different data syntax representations across multiple pages and document sources. We propose a hierarchical multi-source fact extraction workflow based on a deep learning framework to extract essential well attributes at scale. An information retrieval module based on the transformer architecture was used to rank relevant pages in a document source utilizing the page image embeddings and semantic text embeddings. A question answering framework utilizingLayoutLM transformer was used to extract attribute-value pairs incorporating the text semantics and layout information from top relevant pages in a document. To better handle context while dealing with multi-well reports, we incorporate a dynamic query generation module to resolve ambiguities. The extracted attribute information from various pages and documents are standardized to a common representation using a parser module to facilitate information comparison and aggregation. Finally, we use a probabilistic approach to fuse information extracted from multiple sources into a coherent well record. The applicability of the proposed approach and related performance was studied on several real-life well technical reports.

Keywords: natural language processing, deep learning, transformers, information retrieval

Procedia PDF Downloads 190
21808 Multistep Thermal Degradation Kinetics: Pyrolysis of CaSO₄-Complex Obtained by Antiscaling Effect of Maleic-Anhydride Polymer

Authors: Yousef M. Al-Roomi, Kaneez Fatema Hussain

Abstract:

This work evaluates the thermal degradation kinetic parameters of CaSO₄-complex isolated after the inhibition effect of maleic-anhydride based polymer (YMR-polymers). Pyrolysis experiments were carried out at four heating rates (5, 10, 15 and 20°C/min). Several analytical model-free methods were used to determine the kinetic parameters, including Friedman, Coats and Redfern, Kissinger, Flynn-Wall-Ozawa and Kissinger-Akahira–Sunose methods. The Criado model fitting method based on real mechanism followed in thermal degradation of the complex has been applied to explain the degradation mechanism of CaSO₄-complex. In addition, a simple dynamic model was proposed over two temperature ranges for successive decomposition of CaSO₄-complex which has a combination of organic and inorganic part (adsorbed polymer + CaSO₄.2H₂O scale). The model developed enabled the assessment of pre-exponential factor (A) and apparent activation-energy (Eₐ) for both stages independently using a mathematical developed expression based on an integral solution. The unique reaction mechanism approach applied in this study showed that (Eₐ₁-160.5 kJ/mole) for organic decomposition (adsorbed polymer stage-I) has been lower than Eₐ₂-388 kJ/mole for the CaSO₄ decomposition (inorganic stage-II). Further adsorbed YMR-antiscalant not only reduced the decomposition temperature of CaSO₄-complex compared to CaSO₄-blank (CaSO₄.2H₂O scales in the absence of YMR-polymer) but also distorted the crystal lattice of the organic complex of CaSO₄ precipitates, destroying their compact and regular crystal structures observed from XRD and SEM studies.

Keywords: CaSO₄-complex, maleic-anhydride polymers, thermal degradation kinetics and mechanism, XRD and SEM studies

Procedia PDF Downloads 116
21807 dynr.mi: An R Program for Multiple Imputation in Dynamic Modeling

Authors: Yanling Li, Linying Ji, Zita Oravecz, Timothy R. Brick, Michael D. Hunter, Sy-Miin Chow

Abstract:

Assessing several individuals intensively over time yields intensive longitudinal data (ILD). Even though ILD provide rich information, they also bring other data analytic challenges. One of these is the increased occurrence of missingness with increased study length, possibly under non-ignorable missingness scenarios. Multiple imputation (MI) handles missing data by creating several imputed data sets, and pooling the estimation results across imputed data sets to yield final estimates for inferential purposes. In this article, we introduce dynr.mi(), a function in the R package, Dynamic Modeling in R (dynr). The package dynr provides a suite of fast and accessible functions for estimating and visualizing the results from fitting linear and nonlinear dynamic systems models in discrete as well as continuous time. By integrating the estimation functions in dynr and the MI procedures available from the R package, Multivariate Imputation by Chained Equations (MICE), the dynr.mi() routine is designed to handle possibly non-ignorable missingness in the dependent variables and/or covariates in a user-specified dynamic systems model via MI, with convergence diagnostic check. We utilized dynr.mi() to examine, in the context of a vector autoregressive model, the relationships among individuals’ ambulatory physiological measures, and self-report affect valence and arousal. The results from MI were compared to those from listwise deletion of entries with missingness in the covariates. When we determined the number of iterations based on the convergence diagnostics available from dynr.mi(), differences in the statistical significance of the covariate parameters were observed between the listwise deletion and MI approaches. These results underscore the importance of considering diagnostic information in the implementation of MI procedures.

Keywords: dynamic modeling, missing data, mobility, multiple imputation

Procedia PDF Downloads 161
21806 Project Paulina: A Human-Machine Interface for Individuals with Limited Mobility and Conclusions from Research and Development

Authors: Radoslaw Nagay

Abstract:

The Paulina Project aims to address the challenges faced by immobilized individuals, such as those with multiple sclerosis, muscle dystrophy, or spinal cord injuries, by developing a flexible hardware and software solution. This paper presents the research and development efforts of our team, which commenced in 2019 and is now in its final stage. Recognizing the diverse needs and limitations of individuals with limited mobility, we conducted in-depth testing with a group of 30 participants. The insights gained from these tests led to the complete redesign of the system. Our presentation covers the initial project ideas, observations from in-situ tests, and the newly developed system that is currently under construction. Moreover, in response to the financial constraints faced by many disabled individuals, we propose an affordable business model for the future commercialization of our invention. Through the Paulina Project, we strive to empower immobilized individuals, providing them with greater independence and improved quality of life.

Keywords: UI, human-machine interface, social inclusion, multiple sclerosis, muscular dystrophy, spinal cord injury, quadriplegic

Procedia PDF Downloads 66
21805 Effectiveness of Online Language Learning

Authors: Shazi Shah Jabeen, Ajay Jesse Thomas

Abstract:

The study is aimed at understanding the learning trends of students who opt for online language courses and to assess the effectiveness of the same. Multiple factors including use of the latest available technology and the skills that are trained by these online methods have been assessed. An attempt has been made to answer how each of the various language skills is trained online and how effective the online methods are compared to the classroom methods when students interact with peers and instructor. A mixed method research design was followed for collecting information for the study where a survey by means of a questionnaire and in-depth interviews with a number of respondents were undertaken across the various institutes and study centers located in the United Arab Emirates. The questionnaire contained 19 questions which included 7 sub-questions. The study revealed that the students find learning with an instructor to be a lot more effective than learning alone in an online environment. They prefer classroom environment more than the online setting for language learning.

Keywords: effectiveness, language, online learning, skills

Procedia PDF Downloads 585
21804 Implicit Eulerian Fluid-Structure Interaction Method for the Modeling of Highly Deformable Elastic Membranes

Authors: Aymen Laadhari, Gábor Székely

Abstract:

This paper is concerned with the development of a fully implicit and purely Eulerian fluid-structure interaction method tailored for the modeling of the large deformations of elastic membranes in a surrounding Newtonian fluid. We consider a simplified model for the mechanical properties of the membrane, in which the surface strain energy depends on the membrane stretching. The fully Eulerian description is based on the advection of a modified surface tension tensor, and the deformations of the membrane are tracked using a level set strategy. The resulting nonlinear problem is solved by a Newton-Raphson method, featuring a quadratic convergence behavior. A monolithic solver is implemented, and we report several numerical experiments aimed at model validation and illustrating the accuracy of the presented method. We show that stability is maintained for significantly larger time steps.

Keywords: finite element method, implicit, level set, membrane, Newton method

Procedia PDF Downloads 299
21803 Collision Detection Algorithm Based on Data Parallelism

Authors: Zhen Peng, Baifeng Wu

Abstract:

Modern computing technology enters the era of parallel computing with the trend of sustainable and scalable parallelism. Single Instruction Multiple Data (SIMD) is an important way to go along with the trend. It is able to gather more and more computing ability by increasing the number of processor cores without the need of modifying the program. Meanwhile, in the field of scientific computing and engineering design, many computation intensive applications are facing the challenge of increasingly large amount of data. Data parallel computing will be an important way to further improve the performance of these applications. In this paper, we take the accurate collision detection in building information modeling as an example. We demonstrate a model for constructing a data parallel algorithm. According to the model, a complex object is decomposed into the sets of simple objects; collision detection among complex objects is converted into those among simple objects. The resulting algorithm is a typical SIMD algorithm, and its advantages in parallelism and scalability is unparalleled in respect to the traditional algorithms.

Keywords: data parallelism, collision detection, single instruction multiple data, building information modeling, continuous scalability

Procedia PDF Downloads 284