Search results for: liquid cell
4314 Numerical Analysis of Laminar Reflux Condensation from Gas-Vapour Mixtures in Vertical Parallel Plate Channels
Authors: Foad Hassaninejadafarahani, Scott Ormiston
Abstract:
Reflux condensation occurs in a vertical channels and tubes when there is an upward core flow of vapor (or gas-vapor mixture) and a downward flow of the liquid film. The understanding of this condensation configuration is crucial in the design of reflux condensers, distillation columns, and in loss-of-coolant safety analyses in nuclear power plant steam generators. The unique feature of this flow is the upward flow of the vapor-gas mixture (or pure vapor) that retards the liquid flow via shear at the liquid-mixture interface. The present model solves the full, elliptic governing equations in both the film and the gas-vapor core flow. The computational mesh is non-orthogonal and adapts dynamically the phase interface, thus produces sharp and accurate interface. Shear forces and heat and mass transfer at the interface are accounted for fundamentally. This modeling is a big step ahead of current capabilities by removing the limitations of previous reflux condensation models which inherently cannot account for the detailed local balances of shear, mass, and heat transfer at the interface. Discretisation has been done based on a finite volume method and a co-located variable storage scheme. An in-house computer code was developed to implement the numerical solution scheme. Detailed results are presented for laminar reflux condensation from steam-air mixtures flowing in vertical parallel plate channels. The results include velocity and pressure profiles, as well as axial variations of film thickness, Nusselt number and interface gas mass fraction.Keywords: Reflux, Condensation, CFD-Two Phase, Nusselt number
Procedia PDF Downloads 3644313 The Role of Moringa oleifera Extract Leaves in Inducing Apoptosis in Breast Cancer Cell Line
Authors: V. Yurina, H. Sujuti, E. Rahmani, A. R. Nopitasari
Abstract:
Breast cancer has the highest prevalence cancer in women. Moringa leaves (M. oleifera) contain quercetin, kaempferol, and benzyl isothiocyanate which can enhance induction of apoptosis. This research aimed to study the role of the leaf extract of Moringa to increase apoptosis in breast cancer cell line, MCF-7 cells. This research used in vitro experimental, post-test only, control group design on breast cancer cells MCF-7 in vitro. Moringa leaves were extracted by maceration method with ethanol 70%. Cells were treated with drumstick leaves extract on 1100, 2200, and 4400 μg/ml for Hsp27 and caspase-9 expression (immunocytochemistry) and apoptosis (TUNEL assay) test. The results of this study found that the IC50 2200 µg/ml. Moringa leaves extract can significantly increase the expression of caspase-9 (p<0.05) and decreased Hsp 27 expression (p<0.05). Moreover it can increase apoptosis (p<0.05) significantly in MCF-7 cells. The conclusion of this study is Moringa leaves extract is able to increase the expression of caspase-9, decrease Hsp27 expression and increase apoptosis in breast cancer cell-line MCF-7.Keywords: apoptosis, breast cancer, caspase-9, Hsp27, Moringa oleifera
Procedia PDF Downloads 5454312 Application of Robotics to Assemble a Used Fuel Container in the Canadian Used Fuel Packing Plant
Authors: Dimitrie Marinceu
Abstract:
The newest Canadian Used Fuel Container (UFC)- (called also “Mark II”) modifies the design approach for its Assembly Robotic Cell (ARC) in the Canadian Used (Nuclear) Fuel Packing Plant (UFPP). Some of the robotic design solutions are presented in this paper. The design indicates that robots and manipulators are expected to be used in the Canadian UFPP. As normally, the UFPP design will incorporate redundancy of all equipment to allow expedient recovery from any postulated upset conditions. Overall, this paper suggests that robot usage will have a significant positive impact on nuclear safety, quality, productivity, and reliability.Keywords: used fuel packing plant, robotic assembly cell, used fuel container, deep geological repository
Procedia PDF Downloads 2924311 Broadband Ultrasonic and Rheological Characterization of Liquids Using Longitudinal Waves
Authors: M. Abderrahmane Mograne, Didier Laux, Jean-Yves Ferrandis
Abstract:
Rheological characterizations of complex liquids like polymer solutions present an important scientific interest for a lot of researchers in many fields as biology, food industry, chemistry. In order to establish master curves (elastic moduli vs frequency) which can give information about microstructure, classical rheometers or viscometers (such as Couette systems) are used. For broadband characterization of the sample, temperature is modified in a very large range leading to equivalent frequency modifications applying the Time Temperature Superposition principle. For many liquids undergoing phase transitions, this approach is not applicable. That is the reason, why the development of broadband spectroscopic methods around room temperature becomes a major concern. In literature many solutions have been proposed but, to our knowledge, there is no experimental bench giving the whole rheological characterization for frequencies about a few Hz (Hertz) to many MHz (Mega Hertz). Consequently, our goal is to investigate in a nondestructive way in very broadband frequency (A few Hz – Hundreds of MHz) rheological properties using longitudinal ultrasonic waves (L waves), a unique experimental bench and a specific container for the liquid: a test tube. More specifically, we aim to estimate the three viscosities (longitudinal, shear and bulk) and the complex elastic moduli (M*, G* and K*) respectively longitudinal, shear and bulk moduli. We have decided to use only L waves conditioned in two ways: bulk L wave in the liquid or guided L waves in the tube test walls. In this paper, we will present first results for very low frequencies using the ultrasonic tracking of a falling ball in the test tube. This will lead to the estimation of shear viscosity from a few mPa.s to a few Pa.s (Pascal second). Corrections due to the small dimensions of the tube will be applied and discussed regarding the size of the falling ball. Then the use of bulk L wave’s propagation in the liquid and the development of a specific signal processing in order to assess longitudinal velocity and attenuation will conduct to the longitudinal viscosity evaluation in the MHz frequency range. At last, the first results concerning the propagation, the generation and the processing of guided compressional waves in the test tube walls will be discussed. All these approaches and results will be compared to standard methods available and already validated in our lab.Keywords: nondestructive measurement for liquid, piezoelectric transducer, ultrasonic longitudinal waves, viscosities
Procedia PDF Downloads 2654310 Determination of Aflatoxins in Edible-Medicinal Plant Samples by HPLC with Fluorescence Detector and KOBRA-Cell
Authors: Isil Gazioglu, Abdulselam Ertas
Abstract:
Aflatoxins (AFs) are secondary toxic metabolites of Aspergillus flavus and A. parasiticus. AFs can be absorbed through the skin. Potent carcinogens like AFs should be completely absent from cosmetics, this can be achieved by careful quality control of the raw plant materials. Regulatory limits for aflatoxins have been established in many countries, and reliable testing methodology is needed to implement and enforce the regulatory limits. In this study, ten medicinal plant samples (Bundelia tournefortti, Capsella bursa-pastoris, Carduus tenuiflorus, Cardaria draba, Malva neglecta, Malvella sharardiana, Melissa officinalis, Sideritis libanotica, Stakys thirkei, Thymus nummularius) were investigated for aflatoxin (AF) contaminations by employing an HPLC assay for the determination of AFB1, B2, G1 and G2. The samples were extracted with 70% (v/v) methanol in water before further cleaned up with an immunoaffinity column and followed by the detection of AFs by using an electrochemically post-column derivatization with Kobra-Cell and fluorescence detector. The extraction procedure was optimized in order to obtain the best recovery. The method was successfully carried out with all medicinal plant samples. The results revealed that five (50%) of samples were contaminated with AFs. The association between particular samples and the AF contaminated could not be determined due to the low frequency of positive samples.Keywords: aflatoxin B1, HPLC-FLD, KOBRA-Cell, mycotoxin
Procedia PDF Downloads 6064309 A Distinct Reversed-Phase High-Performance Liquid Chromatography Method for Simultaneous Quantification of Evogliptin Tartrate and Metformin HCl in Pharmaceutical Dosage Forms
Authors: Rajeshkumar Kanubhai Patel, Neha Sudhirkumar Mochi
Abstract:
A simple and accurate stability-indicating, reversed-phase high-performance liquid chromatography (RP-HPLC) method was developed and validated for the simultaneous quantitation of Evogliptin tartrate and Metformin HCl in pharmaceutical dosage forms, following ICH guidelines. Forced degradation was performed under various stress conditions including acid, base, oxidation, thermal, and photodegradation. The method utilized an Eclipse C18 column (250 mm × 4.6 mm, 5 µm) with a mobile phase of 5 mM 1-hexane sulfonic acid sodium salt in water and 0.2% v/v TEA (45:55 %v/v), adjusted to pH 3.0 with OPA, at a flow rate of 1.0 mL/min. Detection at 254.4 nm using a PDA detector showed good resolution of degradation products and both drugs. Linearity was observed within 1-5 µg/mL for Evogliptin tartrate and 100-500 µg/mL for Metformin HCl, with % recovery between 99-100% and precision within acceptable limits (%RSD < 2%). The method proved to be specific, precise, accurate, and robust for routine analysis of these drugs.Keywords: stability indicating RP-HPLC, evogliptin tartrate, metformin HCl, validation
Procedia PDF Downloads 284308 A Differential Scanning Calorimetric Study of Frozen Liquid Egg Yolk Thawed by Different Thawing Methods
Authors: Karina I. Hidas, Csaba Németh, Anna Visy, Judit Csonka, László Friedrich, Ildikó Cs. Nyulas-Zeke
Abstract:
Egg yolk is a popular ingredient in the food industry due to its gelling, emulsifying, colouring, and coagulating properties. Because of the heat sensitivity of proteins, egg yolk can only be heat treated at low temperatures, so its shelf life, even with the addition of a preservative, is only a few weeks. Freezing can increase the shelf life of liquid egg yolk up to 1 year, but it undergoes gelling below -6 ° C, which is an irreversible phenomenon. The degree of gelation depends on the time and temperature of freezing and is influenced by the process of thawing. Therefore, in our experiment, we examined egg yolks thawed in different ways. In this study, unpasteurized, industrially broken, separated, and homogenized liquid egg yolk was used. Freshly produced samples were frozen in plastic containers at -18°C in a laboratory freezer. Frozen storage was performed for 90 days. Samples were analysed at day zero (unfrozen) and after frozen storage for 1, 7, 14, 30, 60 and 90 days. Samples were thawed in two ways (at 5°C for 24 hours and 30°C for 3 hours) before testing. Calorimetric properties were examined by differential scanning calorimetry, where heat flow curves were recorded. Denaturation enthalpy values were calculated by fitting a linear baseline, and denaturation temperature values were evaluated. Besides, dry matter content of samples was measured by the oven method with drying at 105°C to constant weight. For statistical analysis two-way ANOVA (α = 0.05) was employed, where thawing mode and freezing time were the fixed factors. Denaturation enthalpy values decreased from 1.1 to 0.47 at the end of the storage experiment, which represents a reduction of about 60%. The effect of freezing time was significant on these values, already the enthalpy of samples stored frozen for 1 day was significantly reduced. However, the mode of thawing did not significantly affect the denaturation enthalpy of the samples, and no interaction was seen between the two factors. The denaturation temperature and dry matter content did not change significantly either during the freezing period or during the defrosting mode. Results of our study show that slow freezing and frozen storage at -18°C greatly reduces the amount of protein that can be denatured in egg yolk, indicating that the proteins have been subjected to aggregation, denaturation or other protein conversions regardless of how they were thawed.Keywords: denaturation enthalpy, differential scanning calorimetry, liquid egg yolk, slow freezing
Procedia PDF Downloads 1304307 Superlyophobic Surfaces for Increased Heat Transfer during Condensation of CO₂
Authors: Ingrid Snustad, Asmund Ervik, Anders Austegard, Amy Brunsvold, Jianying He, Zhiliang Zhang
Abstract:
CO₂ capture, transport and storage (CCS) is essential to mitigate global anthropogenic CO₂ emissions. To make CCS a widely implemented technology in, e.g. the power sector, the reduction of costs is crucial. For a large cost reduction, every part of the CCS chain must contribute. By increasing the heat transfer efficiency during liquefaction of CO₂, which is a necessary step, e.g. ship transportation, the costs associated with the process are reduced. Heat transfer rates during dropwise condensation are up to one order of magnitude higher than during filmwise condensation. Dropwise condensation usually occurs on a non-wetting surface (Superlyophobic surface). The vapour condenses in discrete droplets, and the non-wetting nature of the surface reduces the adhesion forces and results in shedding of condensed droplets. This, again, results in fresh nucleation sites for further droplet condensation, effectively increasing the liquefaction efficiency. In addition, the droplets in themselves have a smaller heat transfer resistance than a liquid film, resulting in increased heat transfer rates from vapour to solid. Surface tension is a crucial parameter for dropwise condensation, due to its impact on the solid-liquid contact angle. A low surface tension usually results in a low contact angle, and again to spreading of the condensed liquid on the surface. CO₂ has very low surface tension compared to water. However, at relevant temperatures and pressures for CO₂ condensation, the surface tension is comparable to organic compounds such as pentane, a dropwise condensation of CO₂ is a completely new field of research. Therefore, knowledge of several important parameters such as contact angle and drop size distribution must be gained in order to understand the nature of the condensation. A new setup has been built to measure these relevant parameters. The main parts of the experimental setup is a pressure chamber in which the condensation occurs, and a high- speed camera. The process of CO₂ condensation is visually monitored, and one can determine the contact angle, contact angle hysteresis and hence, the surface adhesion of the liquid. CO₂ condensation on different surfaces can be analysed, e.g. copper, aluminium and stainless steel. The experimental setup is built for accurate measurements of the temperature difference between the surface and the condensing vapour and accurate pressure measurements in the vapour. The temperature will be measured directly underneath the condensing surface. The next step of the project will be to fabricate nanostructured surfaces for inducing superlyophobicity. Roughness is a key feature to achieve contact angles above 150° (limit for superlyophobicity) and controlled, and periodical roughness on the nanoscale is beneficial. Surfaces that are non- wetting towards organic non-polar liquids are candidates surface structures for dropwise condensation of CO₂.Keywords: CCS, dropwise condensation, low surface tension liquid, superlyophobic surfaces
Procedia PDF Downloads 2784306 Hysteresis Effect in Organometallic Perovskite Solar Cells with Mesoscopic NiO as a Hole Transport Layer
Authors: D. C. Asebiah, D. Saranin, S. Karazhanov, A. R. Tameev, M. Kah
Abstract:
In this paper, the mesoscopic NiO was used as a hole transport layer in the inverted planar organometallic hybrid perovskite solar cell to study the effect of hysteresis. The devices we fabricated have the structures Fluorine Tin Oxide (FTO)/mesoscopic NiO/perovskite/[6,6]-phenyl C₆₁-butyric acid methyl ester (PC₆₁BM) photovoltaic device. The perovskite solar cell was done by toluene air (TLA) method and horn sonication for the dispersion of the NiO nanoparticles in deionized water. The power conversion efficiency was 12.07% under 1.5 AM illumination. We report hysteresis in the in current-voltage dependence of the solar cells with mesoscopic NiO as a hole transport layer.Keywords: perovskite, mesoscopic, hysteresis, toluene air
Procedia PDF Downloads 1704305 A Dissipative Particle Dynamics Study of a Capsule in Microfluidic Intracellular Delivery System
Authors: Nishanthi N. S., Srikanth Vedantam
Abstract:
Intracellular delivery of materials has always proved to be a challenge in research and therapeutic applications. Usually, vector-based methods, such as liposomes and polymeric materials, and physical methods, such as electroporation and sonoporation have been used for introducing nucleic acids or proteins. Reliance on exogenous materials, toxicity, off-target effects was the short-comings of these methods. Microinjection was an alternative process which addressed the above drawbacks. However, its low throughput had hindered its adoption widely. Mechanical deformation of cells by squeezing them through constriction channel can cause the temporary development of pores that would facilitate non-targeted diffusion of materials. Advantages of this method include high efficiency in intracellular delivery, a wide choice of materials, improved viability and high throughput. This cell squeezing process can be studied deeper by employing simple models and efficient computational procedures. In our current work, we present a finite sized dissipative particle dynamics (FDPD) model to simulate the dynamics of the cell flowing through a constricted channel. The cell is modeled as a capsule with FDPD particles connected through a spring network to represent the membrane. The total energy of the capsule is associated with linear and radial springs in addition to constraint of the fixed area. By performing detailed simulations, we studied the strain on the membrane of the capsule for channels with varying constriction heights. The strain on the capsule membrane was found to be similar though the constriction heights vary. When strain on the membrane was correlated to the development of pores, we found higher porosity in capsule flowing in wider channel. This is due to localization of strain to a smaller region in the narrow constriction channel. But the residence time of the capsule increased as the channel constriction narrowed indicating that strain for an increased time will cause less cell viability.Keywords: capsule, cell squeezing, dissipative particle dynamics, intracellular delivery, microfluidics, numerical simulations
Procedia PDF Downloads 1414304 Negative Pressure Waves in Hydraulic Systems
Authors: Fuad H. Veliev
Abstract:
Negative pressure phenomenon appears in many thermodynamic, geophysical and biophysical processes in the Nature and technological systems. For more than 100 years of the laboratory researches beginning from F. M. Donny’s tests, the great values of negative pressure have been achieved. But this phenomenon has not been practically applied, being only a nice lab toy due to the special demands for the purity and homogeneity of the liquids for its appearance. The possibility of creation of direct wave of negative pressure in real heterogeneous liquid systems was confirmed experimentally under the certain kinetic and hydraulic conditions. The negative pressure can be considered as the factor of both useful and destroying energies. The new approach to generation of the negative pressure waves in impure, unclean fluids has allowed the creation of principally new energy saving technologies and installations to increase the effectiveness and efficiency of different production processes. It was proved that the negative pressure is one of the main factors causing hard troubles in some technological and natural processes. Received results emphasize the necessity to take into account the role of the negative pressure as an energy factor in evaluation of many transient thermohydrodynamic processes in the Nature and production systems.Keywords: liquid systems, negative pressure, temperature, wave, metastable state
Procedia PDF Downloads 4174303 Development of Noninvasive Method to Analyze Dynamic Changes of Matrix Stiffness and Elasticity Characteristics
Authors: Elena Petersen, Inna Kornienko, Svetlana Guryeva, Sergey Dobdin, Anatoly Skripal, Andrey Usanov, Dmitry Usanov
Abstract:
One of the most important unsolved problems in modern medicine is the increase of chronic diseases that lead to organ dysfunction or even complete loss of function. Current methods of treatment do not result in decreased mortality and disability statistics. Currently, the best treatment for many patients is still transplantation of organs and/or tissues. Therefore, finding a way of correct artificial matrix biofabrication in case of limited number of natural organs for transplantation is a critical task. One important problem that needs to be solved is development of a nondestructive and noninvasive method to analyze dynamic changes of mechanical characteristics of a matrix with minimal side effects on the growing cells. This research was focused on investigating the properties of matrix as a marker of graft condition. In this study, the collagen gel with human primary dermal fibroblasts in suspension (60, 120, 240*103 cells/mL) and collagen gel with cell spheroids were used as model objects. The stiffness and elasticity characteristics were evaluated by a semiconductor laser autodyne. The time and cell concentration dependency of the stiffness and elasticity were investigated. It was shown that these properties changed in a non-linear manner with respect to cell concentration. The maximum matrix stiffness was observed in the collagen gel with the cell concentration of 120*103 cells/mL. This study proved the opportunity to use the mechanical properties of matrix as a marker of graft condition, which can be measured by noninvasive semiconductor laser autodyne technique.Keywords: graft, matrix, noninvasive method, regenerative medicine, semiconductor laser autodyne
Procedia PDF Downloads 3444302 Performance of the Photovoltaic Module under Different Shading Patterns
Authors: E. T. El Shenawy, O. N. A. Esmail, Adel A. Elbaset, Hesham F. A. Hamed
Abstract:
Generation of the electrical energy based on photovoltaic (PV) technology has been increased over the world due to either the continuous reduction in the traditional energy sources in addition to the pollution problems related to their usage, or the clean nature and safe usage of the PV technology. Also, PV systems can generate clean electricity in the site of use without any transmission, which can be considered cost effective than other generation systems. The performance of the PV system is highly affected by the amount of solar radiation incident on it. Completely or partially shaded PV systems can affect its output. The PV system can be shaded by trees, buildings, dust, incorrect system configuration, or other obstacles. The present paper studies the effect of the partial shading on the performance of a thin film PV module under climatic conditions of Cairo, Egypt. This effect was measured and evaluated according to practical measurement of the characteristic curves such as current-voltage and power-voltage for two identical PV modules (with and without shading) placed at the same time on one mechanical structure for comparison. The measurements have been carried out for the following shading patterns; half cell (bottom, middle, and top of the PV module); complete cell; and two adjacent cells. The results showed that partially shading the PV module changes the shapes of the I-V and P-V curves and produces more than one maximum power point, that can disturb the traditional maximum power point trackers. Also, the output power from the module decreased according to the incomplete solar radiation reaching the PV module due to shadow patterns. The power loss due shading was 7%, 22%, and 41% for shading of half-cell, one cell, and two adjacent cells of the PV module, respectively.Keywords: I-V measurements, PV module characteristics, PV module power loss, PV module shading
Procedia PDF Downloads 1384301 Comparative Study of Scheduling Algorithms for LTE Networks
Authors: Samia Dardouri, Ridha Bouallegue
Abstract:
Scheduling is the process of dynamically allocating physical resources to User Equipment (UE) based on scheduling algorithms implemented at the LTE base station. Various algorithms have been proposed by network researchers as the implementation of scheduling algorithm which represents an open issue in Long Term Evolution (LTE) standard. This paper makes an attempt to study and compare the performance of PF, MLWDF and EXP/PF scheduling algorithms. The evaluation is considered for a single cell with interference scenario for different flows such as Best effort, Video and VoIP in a pedestrian and vehicular environment using the LTE-Sim network simulator. The comparative study is conducted in terms of system throughput, fairness index, delay, packet loss ratio (PLR) and total cell spectral efficiency.Keywords: LTE, multimedia flows, scheduling algorithms, mobile computing
Procedia PDF Downloads 3854300 3D Microscopy, Image Processing, and Analysis of Lymphangiogenesis in Biological Models
Authors: Thomas Louis, Irina Primac, Florent Morfoisse, Tania Durre, Silvia Blacher, Agnes Noel
Abstract:
In vitro and in vivo lymphangiogenesis assays are essential for the identification of potential lymphangiogenic agents and the screening of pharmacological inhibitors. In the present study, we analyse three biological models: in vitro lymphatic endothelial cell spheroids, in vivo ear sponge assay, and in vivo lymph node colonisation by tumour cells. These assays provide suitable 3D models to test pro- and anti-lymphangiogenic factors or drugs. 3D images were acquired by confocal laser scanning and light sheet fluorescence microscopy. Virtual scan microscopy followed by 3D reconstruction by image aligning methods was also used to obtain 3D images of whole large sponge and ganglion samples. 3D reconstruction, image segmentation, skeletonisation, and other image processing algorithms are described. Fixed and time-lapse imaging techniques are used to analyse lymphatic endothelial cell spheroids behaviour. The study of cell spatial distribution in spheroid models enables to detect interactions between cells and to identify invasion hierarchy and guidance patterns. Global measurements such as volume, length, and density of lymphatic vessels are measured in both in vivo models. Branching density and tortuosity evaluation are also proposed to determine structure complexity. Those properties combined with vessel spatial distribution are evaluated in order to determine lymphangiogenesis extent. Lymphatic endothelial cell invasion and lymphangiogenesis were evaluated under various experimental conditions. The comparison of these conditions enables to identify lymphangiogenic agents and to better comprehend their roles in the lymphangiogenesis process. The proposed methodology is validated by its application on the three presented models.Keywords: 3D image segmentation, 3D image skeletonisation, cell invasion, confocal microscopy, ear sponges, light sheet microscopy, lymph nodes, lymphangiogenesis, spheroids
Procedia PDF Downloads 3804299 Potential Activities of Human Endogenous Retroviral kDNA in Melanoma Pathogenesis and HIV-1 Infection
Authors: Jianli Dong, Fangling Xu, Gengming Huang
Abstract:
Human endogenous retroviral elements (HERVs) comprise approximately 8% of the human genome. They are thought to be germline-integrated genetic remnants of retroviral infections. Although HERV sequences are highly defective, some, especially the K type (HERV-K), have been shown to be expressed and may have biological activities in the pathogenesis of cancer, chronic inflammation and autoimmune diseases. We found that HERV-K GAG and ENV proteins were strongly expressed in pleomorphic melanoma cells. We also detected a critical role of HERV-K ENV in mediating intercellular fusion and colony formation of melanoma cells. Interestingly, we found that levels of HERV-K GAG and ENV expression correlated with the activation of ERK and loss of p16INK4A in melanoma cells, and inhibition of MEK or CDK4, especially in combination, reduced HERV-K expression in melanoma cells. We also performed a reverse transcription-polymerase chain reaction (RT-PCR) assay using DNase I digestion to remove “contaminating” HERV-K genomic DNA and examined HERV-K RNA expression in plasma samples from HIV-1 infected individuals. We found a covariation between HERV-K RNA expression and CD4 cell counts in HIV-1 positive samples. Although a causal link between HERV-K activation and melanoma development, and between HERV-K activation, HIV-1 infection and CD4 cell count have yet to be determined, existing data support the further research efforts in HERV-K.Keywords: CD4 cell, HERV-K, HIV-1, melanoma
Procedia PDF Downloads 2324298 Optimization of Samarium Extraction via Nanofluid-Based Emulsion Liquid Membrane Using Cyanex 272 as Mobile Carrier
Authors: Maliheh Raji, Hossein Abolghasemi, Jaber Safdari, Ali Kargari
Abstract:
Samarium as a rare-earth element is playing a growing important role in high technology. Traditional methods for extraction of rare earth metals such as ion exchange and solvent extraction have disadvantages of high investment and high energy consumption. Emulsion liquid membrane (ELM) as an improved solvent extraction technique is an effective transport method for separation of various compounds from aqueous solutions. In this work, the extraction of samarium from aqueous solutions by ELM was investigated using response surface methodology (RSM). The organic membrane phase of the ELM was a nanofluid consisted of multiwalled carbon nanotubes (MWCNT), Span80 as surfactant, Cyanex 272 as mobile carrier, and kerosene as base fluid. 1 M nitric acid solution was used as internal aqueous phase. The effects of the important process parameters on samarium extraction were investigated, and the values of these parameters were optimized using the Central Composition Design (CCD) of RSM. These parameters were the concentration of MWCNT in nanofluid, the carrier concentration, and the volume ratio of organic membrane phase to internal phase (Roi). The three-dimensional (3D) response surfaces of samarium extraction efficiency were obtained to visualize the individual and interactive effects of the process variables. A regression model for % extraction was developed, and its adequacy was evaluated. The result shows that % extraction improves by using MWCNT nanofluid in organic membrane phase and extraction efficiency of 98.92% can be achieved under the optimum conditions. In addition, demulsification was successfully performed and the recycled membrane phase was proved to be effective in the optimum condition.Keywords: Cyanex 272, emulsion liquid membrane, MWCNT nanofluid, response surface methology, Samarium
Procedia PDF Downloads 4254297 Klotho Level as a Marker of Low Bone Mineral Density in Egyptian Sickle Cell Disease Patients
Authors: Mona Hamdy, Iman Shaheen, Hadeel Seif Eldin, Basma Ali, Omnia Abdeldayem
Abstract:
Summary: Bone involvement of sickle cell disease (SCD) patients varies from acute clinical manifestations of painful vaso-occlusive crises or osteomyelitis to more chronic affection of bone mineral density (BMD) and debilitating osteonecrosis and osteoporosis. Secreted klotho protein is involved in calcium (Ca) reabsorption in the kidney. This study aimed to measure serum klotho levels in children with SCD to determine the possibility of using it as a marker of low BMD in children with SCD in correlation with a dual-energy radiograph absorptiometry scan. This study included 60 sickle disease patients and 30 age-matched and sex-matched control participants without SCD. A highly statistically significant difference was found between patients with normal BMD and those with low BMD, with serum Ca and klotho levels being lower in the latter group. Klotho serum level correlated positively with both serum Ca and BMD. Serum klotho level showed 94.9% sensitivity and 95.2% specificity in the detection of low BMD. Both serum Ca and klotho serum levels may be useful markers for detection of low BMD related to SCD with high sensitivity and specificity; however, klotho may be a better indicator as it is less affected by the nutritional and endocrinal status of patients or by intake of Ca supplements.Keywords: sickle cell disease, BMD, osteoporosis, DEXA, klotho
Procedia PDF Downloads 1044296 Lipid Extraction from Microbial Cell by Electroporation Technique and Its Influence on Direct Transesterification for Biodiesel Synthesis
Authors: Abu Yousuf, Maksudur Rahman Khan, Ahasanul Karim, Amirul Islam, Minhaj Uddin Monir, Sharmin Sultana, Domenico Pirozzi
Abstract:
Traditional biodiesel feedstock like edible oils or plant oils, animal fats and cooking waste oil have been replaced by microbial oil in recent research of biodiesel synthesis. The well-known community of microbial oil producers includes microalgae, oleaginous yeast and seaweeds. Conventional transesterification of microbial oil to produce biodiesel is lethargic, energy consuming, cost-ineffective and environmentally unhealthy. This process follows several steps such as microbial biomass drying, cell disruption, oil extraction, solvent recovery, oil separation and transesterification. Therefore, direct transesterification of biodiesel synthesis has been studying for last few years. It combines all the steps in a single reactor and it eliminates the steps of biomass drying, oil extraction and separation from solvent. Apparently, it seems to be cost-effective and faster process but number of difficulties need to be solved to make it large scale applicable. The main challenges are microbial cell disruption in bulk volume and make faster the esterification reaction, because water contents of the medium sluggish the reaction rate. Several methods have been proposed but none of them is up to the level to implement in large scale. It is still a great challenge to extract maximum lipid from microbial cells (yeast, fungi, algae) investing minimum energy. Electroporation technique results a significant increase in cell conductivity and permeability caused due to the application of an external electric field. Electroporation is required to alter the size and structure of the cells to increase their porosity as well as to disrupt the microbial cell walls within few seconds to leak out the intracellular lipid to the solution. Therefore, incorporation of electroporation techniques contributed in direct transesterification of microbial lipids by increasing the efficiency of biodiesel production rate.Keywords: biodiesel, electroporation, microbial lipids, transesterification
Procedia PDF Downloads 2834295 Cybernetic Model-Based Optimization of a Fed-Batch Process for High Cell Density Cultivation of E. Coli In Shake Flasks
Authors: Snehal D. Ganjave, Hardik Dodia, Avinash V. Sunder, Swati Madhu, Pramod P. Wangikar
Abstract:
Batch cultivation of recombinant bacteria in shake flasks results in low cell density due to nutrient depletion. Previous protocols on high cell density cultivation in shake flasks have relied mainly on controlled release mechanisms and extended cultivation protocols. In the present work, we report an optimized fed-batch process for high cell density cultivation of recombinant E. coli BL21(DE3) for protein production. A cybernetic model-based, multi-objective optimization strategy was implemented to obtain the optimum operating variables to achieve maximum biomass and minimized substrate feed rate. A syringe pump was used to feed a mixture of glycerol and yeast extract into the shake flask. Preliminary experiments were conducted with online monitoring of dissolved oxygen (DO) and offline measurements of biomass and glycerol to estimate the model parameters. Multi-objective optimization was performed to obtain the pareto front surface. The selected optimized recipe was tested for a range of proteins that show different extent soluble expression in E. coli. These included eYFP and LkADH, which are largely expressed in soluble fractions, CbFDH and GcanADH , which are partially soluble, and human PDGF, which forms inclusion bodies. The biomass concentrations achieved in 24 h were in the range 19.9-21.5 g/L, while the model predicted value was 19.44 g/L. The process was successfully reproduced in a standard laboratory shake flask without online monitoring of DO and pH. The optimized fed-batch process showed significant improvement in both the biomass and protein production of the tested recombinant proteins compared to batch cultivation. The proposed process will have significant implications in the routine cultivation of E. coli for various applications.Keywords: cybernetic model, E. coli, high cell density cultivation, multi-objective optimization
Procedia PDF Downloads 2594294 Biological Significance of Long Intergenic Noncoding RNA LINC00273 in Lung Cancer Cell Metastasis
Authors: Ipsita Biswas, Arnab Sarkar, Ashikur Rahaman, Gopeswar Mukherjee, Subhrangsu Chatterjee, Shamee Bhattacharjee, Deba Prasad Mandal
Abstract:
One of the major reasons for the high mortality rate of lung cancer is the substantial delays in disease detection at late metastatic stages. It is of utmost importance to understand the detailed molecular signaling and detect the molecular markers that can be used for the early diagnosis of cancer. Several studies explored the emerging roles of long noncoding RNAs (lncRNAs) in various cancers as well as lung cancer. A long non-coding RNA LINC00273 was recently discovered to promote cancer cell migration and invasion, and its positive correlation with the pathological stages of metastasis may prove it to be a potential target for inhibiting cancer cell metastasis. Comparing real-time expression of LINC00273 in various human clinical cancer tissue samples with normal tissue samples revealed significantly higher expression in cancer tissues. This long intergenic noncoding RNA was found to be highly expressed in human liver tumor-initiating cells, human gastric adenocarcinoma AGS cell line, as well as human non-small cell lung cancer A549 cell line. SiRNA and shRNA-induced knockdown of LINC00273 in both in vitro and in vivo nude mice significantly subsided AGS and A549 cancer cell migration and invasion. LINC00273 knockdown also reduced TGF-β induced SNAIL, SLUG, VIMENTIN, ZEB1 expression, and metastasis in A549 cells. Plenty of reports have suggested the role of microRNAs of the miR200 family in reversing epithelial to mesenchymal transition (EMT) by inhibiting ZEB transcription factors. In this study, hsa-miR-200a-3p was predicted via IntaRNA-Freiburg RNA tools to be a potential target of LINC00273 with a negative free binding energy of −8.793 kcal/mol, and this interaction was verified as a confirmed target of LINC00273 by RNA pulldown, real-time PCR and luciferase assay. Mechanistically, LINC00273 accelerated TGF-β induced EMT by sponging hsa-miR-200a-3p which in turn liberated ZEB1 and promoted prometastatic functions in A549 cells in vitro as verified by real-time PCR and western blotting. The similar expression patterns of these EMT regulatory pathway molecules, viz. LINC00273, hsa-miR-200a-3p, ZEB1 and TGF-β, were also detected in various clinical samples like breast cancer tissues, oral cancer tissues, lung cancer tissues, etc. Overall, this LINC00273 mediated EMT regulatory signaling can serve as a potential therapeutic target for the prevention of lung cancer metastasis.Keywords: epithelial to mesenchymal transition, long noncoding RNA, microRNA, non-small-cell lung carcinoma
Procedia PDF Downloads 1574293 Magnetic SF (Silk Fibroin) E-Gel Scaffolds Containing bFGF-Conjugated Fe3O4 Nanoparticles
Authors: Z. Karahaliloğlu, E. Yalçın, M. Demirbilek, E.B. Denkbaş
Abstract:
Critical-sized bone defects caused by trauma, bone diseases, prosthetic implant revision or tumor excision cannot be repaired by physiological regenerative processes. Current orthopedic applications for critical-sized bone defects are to use autologous bone grafts, bone allografts, or synthetic graft materials. However, these strategies are unable to solve completely the problem, and motivate the development of novel effective biological scaffolds for tissue engineering applications and regenerative medicine applications. In particular, scaffolds combined with a variety of bio-agents as fundamental tools emerge to provide the regeneration of damaged bone tissues due to their ability to promote cell growth and function. In this study, a magnetic silk fibroin (SF) hydrogel scaffold was prepared by electrogelation process of the concentrated Bombxy mori silk fibroin (8 %wt) aqueous solution. For enhancement of osteoblast-like cells (SaOS-2) growth and adhesion, basal fibroblast growth factor (bFGF) were conjugated physically to the HSA-coated magnetic nanoparticles (Fe3O4) and magnetic SF e-gel scaffolds were prepared by incorporation of Fe3O4, HSA (human serum albumin)=Fe3O4 and HSA=Fe3O4-bFGF nanoparticles. HSA=Fe3O4, HSA=Fe3O4-bFGF loaded and bare SF e-gels scaffolds were characterized using scanning electron microscopy (SEM.) For cell studies, human osteoblast-like cell line (SaOS-2) was used and an MTT assay was used to assess the cytotoxicity of magnetic silk fibroin e-gel scaffolds and cell density on these surfaces. For the evaluation osteogenic activation, ALP (alkaline phosphatase), the amount of mineralized calcium, total protein and collagen were studied. Fe3O4 nanoparticles were successfully synthesized and bFGF was conjugated to HSA=Fe3O4 nanoparticles with %97.5 of binding yield which has a particle size of 71.52±2.3 nm. Electron microscopy images of the prepared HSA and bFGF incorporated SF e-gel scaffolds showed a 3D porous morphology. In terms of water uptake results, bFGF conjugated HSA=Fe3O4 nanoparticles has the best water absorbability behavior among all groups. In the in-vitro cell culture studies realized using SaOS-2 cell line, the coating of Fe3O4 nanoparticles surface with a protein enhance the cell viability and HSA coating and bFGF conjugation, the both have an inductive effect in the cell proliferation. One of the markers of bone formation and osteoblast differentiation, according to the ALP activity and total protein results, HSA=Fe3O4-bFGF loaded SF e-gels had significantly enhanced ALP activity. Osteoblast cultured HSA=Fe3O4-bFGF loaded SF e-gels deposited more calcium compared with SF e-gel. The proposed magnetic scaffolds seem to be promising for bone tissue regeneration and used in future work for various applications.Keywords: basic fibroblast growth factor (bFGF), e-gel, iron oxide nanoparticles, silk fibroin
Procedia PDF Downloads 2904292 Improving the Bioprocess Phenotype of Chinese Hamster Ovary Cells Using CRISPR/Cas9 and Sponge Decoy Mediated MiRNA Knockdowns
Authors: Kevin Kellner, Nga Lao, Orla Coleman, Paula Meleady, Niall Barron
Abstract:
Chinese Hamster Ovary (CHO) cells are the prominent cell line used in biopharmaceutical production. To improve yields and find beneficial bioprocess phenotypes genetic engineering plays an essential role in recent research. The miR-23 cluster, specifically miR-24 and miR-27, was first identified as differentially expressed during hypothermic conditions suggesting a role in proliferation and productivity in CHO cells. In this study, we used sponge decoy technology to stably deplete the miRNA expression of the cluster. Furthermore, we implemented the CRISPR/Cas9 system to knockdown miRNA expression. Sponge constructs were designed for an imperfect binding of the miRNA target, protecting from RISC mediated cleavage. GuideRNAs for the CRISPR/Cas9 system were designed to target the seed region of the miRNA. The expression of mature miRNA and precursor were confirmed using RT-qPCR. For both approaches stable expressing mixed populations were generated and characterised in batch cultures. It was shown, that CRISPR/Cas9 can be implemented in CHO cells with achieving high knockdown efficacy of every single member of the cluster. Targeting of one miRNA member showed that its genomic paralog is successfully targeted as well. The stable depletion of miR-24 using CRISPR/Cas9 showed increased growth and specific productivity in a CHO-K1 mAb expressing cell line. This phenotype was further characterized using quantitative label-free LC-MS/MS showing 186 proteins differently expressed with 19 involved in proliferation and 26 involved in protein folding/translation. Targeting miR-27 in the same cell line showed increased viability in late stages of the culture compared to the control. To evaluate the phenotype in an industry relevant cell line; the miR-23 cluster, miR-24 and miR-27 were stably depleted in a Fc fusion CHO-S cell line which showed increased batch titers up to 1.5-fold. In this work, we highlighted that the stable depletion of the miR-23 cluster and its members can improve the bioprocess phenotype concerning growth and productivity in two different cell lines. Furthermore, we showed that using CRISPR/Cas9 is comparable to the traditional sponge decoy technology.Keywords: Chinese Hamster ovary cells, CRISPR/Cas9, microRNAs, sponge decoy technology
Procedia PDF Downloads 2004291 PCR Based DNA Analysis in Detecting P53 Mutation in Human Breast Cancer (MDA-468)
Authors: Debbarma Asis, Guha Chandan
Abstract:
Tumor Protein-53 (P53) is one of the tumor suppressor proteins. P53 regulates the cell cycle that conserves stability by preventing genome mutation. It is named so as it runs as 53-kilodalton (kDa) protein on Polyacrylamide gel electrophoresis although the actual mass is 43.7 kDa. Experimental evidence has indicated that P53 cancer mutants loses tumor suppression activity and subsequently gain oncogenic activities to promote tumourigenesis. Tumor-specific DNA has recently been detected in the plasma of breast cancer patients. Detection of tumor-specific genetic materials in cancer patients may provide a unique and valuable tumor marker for diagnosis and prognosis. Commercially available MDA-468 breast cancer cell line was used for the proposed study.Keywords: tumor protein (P53), cancer mutants, MDA-468, tumor suppressor gene
Procedia PDF Downloads 4804290 Human Immuno-Deficiency Virus Co-Infection with Hepatitis B Virus and Baseline Cd4+ T Cell Count among Patients Attending a Tertiary Care Hospital, Nepal
Authors: Soma Kanta Baral
Abstract:
Background: Since 1981, when the first AIDS case was reported, worldwide, more than 34 million people have been infected with HIV. Almost 95 percent of the people infected with HIV live in developing countries. As HBV & HIV share similar routes of transmission by sexual intercourse or drug use by parenteral injection, co-infection is common. Because of the limited access to healthcare & HIV treatment in developing countries, HIV-infected individuals are present late for care. Enumeration of CD4+ T cell count at the time of diagnosis has been useful to initiate the therapy in HIV infected individuals. The baseline CD4+ T cell count shows high immunological variability among patients. Methods: This prospective study was done in the serology section of the Department of Microbiology over a period of one year from august 2012 to July 2013. A total of 13037 individuals subjected for HIV test were included in the study comprising of 4982 males & 8055 females. Blood sample was collected by vein puncture aseptically with standard operational procedure in clean & dry test-tube. All blood samples were screened for HIV as described by WHO algorithm by Immuno-chromatography rapid kits. Further confirmation was done by biokit ELISA method as per the manufacturer’s guidelines. After informed consent, HIV positive individuals were screened for HBsAg by Immuno-chromatography rapid kits (Hepacard). Further confirmation was done by biokit ELISA method as per the manufacturer’s guidelines. EDTA blood samples were collected from the HIV sero-positive individuals for baseline CD4+ T count. Then, CD4+ T cells count was determined by using FACS Calibur Flow Cytometer (BD). Results: Among 13037 individuals screened for HIV, 104 (0.8%) were found to be infected comprising of 69(66.34%) males & 35 (33.65%) females. The study showed that the high infection was noted in housewives (28.7%), active age group (30.76%), rural area (56.7%) & in heterosexual route (80.9%) of transmission. Out of total HIV infected individuals, distribution of HBV co-infection was found to be 6(5.7%). All co- infected individuals were married, male, above the age of 25 years & heterosexual route of transmission. Baseline CD4+ T cell count of HIV infected patient was found higher (mean CD4+ T cell count; 283cells/cu.mm) than HBV co-infected patients (mean CD4+ T cell count; 91 cells/cu.mm). Majority (77.2%) of HIV infected & all co-infected individuals were presented in our center late (CD4+ T cell count;< 350/cu. mm) for diagnosis and care. Majority of co- infected 4 (80%) were late presented with advanced AIDS stage (CD4+ count; <200/cu.mm). Conclusions: The study showed a high percentage of HIV sero-positive & co- infected individuals. Baseline CD4+ T cell count of majority of HIV infected individuals was found to be low. Hence, more sustained and vigorous awareness campaigns & counseling still need to be done in order to promote early diagnosis and management.Keywords: HIV/AIDS, HBsAg, co-infection, CD4+
Procedia PDF Downloads 2174289 Socio-Demographic Characteristics and Psychosocial Consequences of Sickle Cell Disease: The Case of Patients in a Public Hospital in Ghana
Authors: Vincent A. Adzika, Franklin N. Glozah, Collins S. K. Ahorlu
Abstract:
Background: Sickle Cell Disease (SCD) is of major public-health concern globally, with majority of patients living in Africa. Despite its relevance, there is a dearth of research to determine the socio-demographic distribution and psychosocial impact of SCD in Africa. The objective of this study therefore was to examine the socio-demographic distribution and psychosocial consequences of SCD among patients in Ghana and to assess their quality of life and coping mechanisms. Methods: A cross-sectional research design was used, involving the completion of questionnaires on socio-demographic characteristics, quality of life of individuals, anxiety and depression. Participants were 387 male and female patients attending a sickle cell clinic in a public hospital. Results: Results showed no gender and marital status differences in anxiety and depression. However, there were age and level of education variances in depression but not in anxiety. In terms of quality of life, patients were more satisfied by the presence of love, friends, relatives as well as home, community and neighbourhood environment. While pains of varied nature and severity were the major reasons for attending hospital in SCD condition, going to the hospital as well as having Faith in God was the frequently reported mechanisms for coping with an unbearable SCD attacks. Multiple regression analysis showed that some socio-demographic and quality of life indicators had strong associations with anxiety and/or depression. Conclusion: It is recommended that a multi-dimensional intervention strategy incorporating psychosocial dimensions should be considered in the treatment and management of SCD.Keywords: anxiety, depression, sickle cell disease, socio-demographic quality of life, characteristics, Ghana
Procedia PDF Downloads 4794288 Profiling of the Cell-Cycle Related Genes in Response to Efavirenz, a Non-Nucleoside Reverse Transcriptase Inhibitor in Human Lung Cancer
Authors: Rahaba Marima, Clement Penny
Abstract:
The Health-related quality of life (HRQoL) for HIV positive patients has improved since the introduction of the highly active antiretroviral treatment (HAART). However, in the present HAART era, HIV co-morbidities such as lung cancer, a non-AIDS (NAIDS) defining cancer have been documented to be on the rise. Under normal physiological conditions, cells grow, repair and proliferate through the cell-cycle as cellular homeostasis is important in the maintenance and proper regulation of tissues and organs. Contrarily, the deregulation of the cell-cycle is a hallmark of cancer, including lung cancer. The association between lung cancer and the use of HAART components such as Efavirenz (EFV) is poorly understood. This study aimed at elucidating the effects of EFV on the cell-cycle genes’ expression in lung cancer. For this purpose, the human cell-cycle gene array composed of 84 genes was evaluated on both normal lung fibroblasts (MRC-5) cells and adenocarcinoma (A549) lung cells, in response to 13µM EFV or 0.01% vehicle. The ±2 up or down fold change was used as a basis of target selection, with p < 0.05. Additionally, RT-qPCR was done to validate the gene array results. Next, In-silico bio-informatics tools, Search Tool for the Retrieval of Interacting Genes/Proteins (STRING), Reactome, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway and Ingenuity Pathway Analysis (IPA) were used for gene/gene interaction studies as well as to map the molecular and biological pathways influenced by the identified targets. Interestingly, the DNA damage response (DDR) pathway genes such as p53, Ataxia telangiectasia mutated and Rad3 related (ATR), Growth arrest and DNA damage inducible alpha (GADD45A), HUS1 checkpoint homolog (HUS1) and Role of radiation (RAD) genes were shown to be upregulated following EFV treatment, as revealed by STRING analysis. Additionally, functional enrichment analysis by the KEGG pathway revealed that most of the differentially expressed gene targets function at the cell-cycle checkpoint such as p21, Aurora kinase B (AURKB) and Mitotic Arrest Deficient-Like 2 (MAD2L2). Core analysis by IPA revealed that p53 downstream targets such as survivin, Bcl2, and cyclin/cyclin dependent kinases (CDKs) complexes are down-regulated, following exposure to EFV. Furthermore, Reactome analysis showed a significant increase in cellular response to stress genes, DNA repair genes, and apoptosis genes, as observed in both normal and cancerous cells. These findings implicate the genotoxic effects of EFV on lung cells, provoking the DDR pathway. Notably, the constitutive expression of this pathway (DDR) often leads to uncontrolled cell proliferation and eventually tumourigenesis, which could be the attribute of HAART components’ (such as EFV) effect on human cancers. Targeting the cell-cycle and its regulation holds a promising therapeutic intervention to the potential HAART associated carcinogenesis, particularly lung cancer.Keywords: cell-cycle, DNA damage response, Efavirenz, lung cancer
Procedia PDF Downloads 1564287 Rice Husk Silica as an Alternative Material for Renewable Energy
Authors: Benedict O. Ayomanor, Cookey Iyen, Ifeoma S. Iyen
Abstract:
Rice hull (RH) biomass product gives feasible silica for exact temperature and period. The minimal fabrication price turns its best feasible produce to metallurgical grade silicon (MG-Si). In this work, to avoid ecological worries extending from CO₂ release to oil leakage on water and land, or nuclear left-over pollution, all finally add to the immense topics of ecological squalor; high purity silicon > 98.5% emerge set from rice hull ash (RHA) by solid-liquid removal. The RHA derived was purified by nitric and hydrochloric acid solutions. Leached RHA sieved, washed in distilled water, and desiccated at 1010ºC for 4h. Extra cleansing was achieved by carefully mixing the SiO₂ ash through Mg dust at a proportion of 0.9g SiO₂ to 0.9g Mg, galvanised at 1010ºC to formula magnesium silicide. The solid produced was categorised by X-ray fluorescence (XRF), X-ray diffractometer (XRD), and Fourier transformation infrared (FTIR) spectroscopy. Elemental analysis using XRF found the percentage of silicon in the material is approximately 98.6%, main impurities are Mg (0.95%), Ca (0.09%), Fe (0.3%), K (0.25%), and Al (0.40%).Keywords: siliceous, leached, biomass, solid-liquid extraction
Procedia PDF Downloads 704286 Rumen Epithelium Development of Bovine Fetuses and Newborn Calves
Authors: Juliana Shimara Pires Ferrão, Letícia Palmeira Pinto, Francisco Palma Rennó, Francisco Javier Hernandez Blazquez
Abstract:
The ruminant stomach is a complex and multi-chambered organ. Although the true stomach (abomasum) is fully differentiated and functional at birth, the same does not occur with the rumen chamber. At this moment, rumen papillae are small or nonexistent. The papillae only fully develop after weaning and during calf growth. Papillae development and ruminal epithelium specialization during the fetus growth and at birth must be two interdependent processes that will prepare the rumen to adapt to ruminant adult feeding. The microscopic study of rumen epithelium at these early phases of life is important to understand how this structure prepares the rumen to deal with the following weaning processes and its functional activation. Samples of ruminal mucosa of bovine fetuses (110- and 150 day-old) and newborn calves were collected (dorsal and ventral portions) and processed for light and electron microscopy and immunohistochemistry. The basal cell layer of the stratified pavimentous epithelium present in different ruminal portions of the fetuses was thicker than the same portions of newborn calves. The superficial and intermediate epithelial layers of 150 day-old fetuses were thicker than those found in the other 2 studied ages. At this age (150 days), dermal papillae begin to invade the intermediate epithelial layer which gradually disappears in newborn calves. At birth, the ruminal papillae project from the epithelial surface, probably by regression of the epithelial cells (transitory cells) surrounding the dermal papillae. The PCNA cell proliferation index (%) was calculated for all epithelial samples. Fetuses 150 day-old showed increased cell proliferation in basal cell layer (Dorsal Portion: 84.2%; Ventral Portion: 89.8%) compared to other ages studied. Newborn calves showed an intermediate index (Dorsal Portion: 65.1%; Ventral Portion: 48.9%), whereas 110 day-old fetuses had the lowest proliferation index (Dorsal Portion: 57.2%; Ventral Portion: 20.6%). Regarding the transitory epithelium, 110 day-old fetuses showed the lowest proliferation index (Dorsal Portion: 44.6%; Ventral Portion: 20.1%), 150 day-old fetuses showed an intermediate proliferation index (Dorsal Portion: 57.5%; Ventral Portion: 71.1%) and newborn calves presented a higher proliferation index (Dorsal Portion: 75.1%; Ventral Portion: 19.6%). Under TEM, the 110- and 150 day-old fetuses presented thicker and poorly organized basal cell layer, with large nuclei and dense cytoplasm. In newborn calves, the basal cell layer was more organized and with fewer layers, but typically similar in both regions of the rumen. For the transitory epithelium, fetuses displayed larger cells than those found in newborn calves with less electrondense cytoplasm than that found in the basal cells. The ruminal dorsal portion has an overall higher cell proliferation rate than the ventral portion. Thus we can infer that the dorsal portion may have a higher cell activity than the ventral portion during ruminal development. Moreover, the basal cell layer is thicker in the 110- and 150 day-old fetuses than in the newborn calves. The transitory epithelium, which is much reduced, at birth may have a structural support function of the developing dermal papillae. When it regresses or is sheared off, the papillae are “carved out” from the surrounding epithelial layer.Keywords: bovine, calf, epithelium, fetus, hematoxylin-eosin, immunohistochemistry, TEM, Rumen
Procedia PDF Downloads 3884285 Factory Communication System for Customer-Based Production Execution: An Empirical Study on the Manufacturing System Entropy
Authors: Nyashadzashe Chiraga, Anthony Walker, Glen Bright
Abstract:
The manufacturing industry is currently experiencing a paradigm shift into the Fourth Industrial Revolution in which customers are increasingly at the epicentre of production. The high degree of production customization and personalization requires a flexible manufacturing system that will rapidly respond to the dynamic and volatile changes driven by the market. They are a gap in technology that allows for the optimal flow of information and optimal manufacturing operations on the shop floor regardless of the rapid changes in the fixture and part demands. Information is the reduction of uncertainty; it gives meaning and context on the state of each cell. The amount of information needed to describe cellular manufacturing systems is investigated by two measures: the structural entropy and the operational entropy. Structural entropy is the expected amount of information needed to describe scheduled states of a manufacturing system. While operational entropy is the amount of information that describes the scheduled states of a manufacturing system, which occur during the actual manufacturing operation. Using Anylogic simulator a typical manufacturing job shop was set-up with a cellular manufacturing configuration. The cellular make-up of the configuration included; a Material handling cell, 3D Printer cell, Assembly cell, manufacturing cell and Quality control cell. The factory shop provides manufactured parts to a number of clients, and there are substantial variations in the part configurations, new part designs are continually being introduced to the system. Based on the normal expected production schedule, the schedule adherence was calculated from the structural entropy and operation entropy of varying the amounts of information communicated in simulated runs. The structural entropy denotes a system that is in control; the necessary real-time information is readily available to the decision maker at any point in time. For contractive analysis, different out of control scenarios were run, in which changes in the manufacturing environment were not effectively communicated resulting in deviations in the original predetermined schedule. The operational entropy was calculated from the actual operations. From the results obtained in the empirical study, it was seen that increasing, the efficiency of a factory communication system increases the degree of adherence of a job to the expected schedule. The performance of downstream production flow fed from the parallel upstream flow of information on the factory state was increased.Keywords: information entropy, communication in manufacturing, mass customisation, scheduling
Procedia PDF Downloads 247