Search results for: high speed broadband
20742 Optimum Design of Combine Threshing Cylinder for Soybean Harvest
Authors: Choi Duckkyu, Choi Yong, Kang Taegyoung, Jun Hyeonjong, Choi Ilsu, Hyun Changsik
Abstract:
This study was carried out to develop a soybean combine thresher that enables to reduce the damage rate of soybean threshing and the rate of unthreshing. The combine threshing cylinder was developed with 6 circular axis at each end and fixed with disc plates. It was attached to the prototype combine thresher. A combine thresher that has a cylinder with circular rod type threshing pegs was used for a comparative test. A series of comparative tests were conducted using dae-won soybean. The test of the soybean thresher was performed at the cylinder speeds of 210, 240, 270 and 300 rpm, and with the concave clearance of 10, 13 and 16 mm. The separating positions of soybean after threshing were researched on a separate box with 4 sections. The soybean positions of front, center, rear and rear outside, of 59.5%, 30.6%, 7.8% and 2.2% respectively, were obtained. At the cylinder speeds from 210 rpm to 300 rpm, the damage rate of soybean was increased from 0.1% to 4.2% correspondingly to speeds. The unthreshed rate of soybean under the same condition was increased from 0.9% to 4.1% correspondingly to speeds. 0.7% of the damage rate and 1.5% of the unthreshed rate was achieved at the cylinder speed of 240 rpm and with the concave clearance of 10 mm. For Daewon soybean, an optimum cylinder speed of 240 rpm and the concave clearance of 10 mm were identified. These results will be useful for the design, construction, and operation of soybean threshing harvesters.Keywords: soybean harvest, combine threshing, threshing cylinder, optimum design
Procedia PDF Downloads 53020741 Self Tuning Controller for Reducing Cycle to Cycle Variations in SI Engine
Authors: Alirıza Kaleli, M. Akif Ceviz, Erdoğan Güner, Köksal Erentürk
Abstract:
The cyclic variations in spark ignition engines occurring especially under specific engine operating conditions make the maximum pressure variable for successive in-cylinder pressure cycles. Minimization of cyclic variations has a great importance in effectively operating near to lean limit, or at low speed and load. The cyclic variations may reduce the power output of the engine, lead to operational instabilities, and result in undesirable engine vibrations and noise. In this study, spark timing is controlled in order to reduce the cyclic variations in spark ignition engines. Firstly, an ARMAX model has developed between spark timing and maximum pressure using system identification techniques. By using this model, the maximum pressure of the next cycle has been predicted. Then, self-tuning minimum variance controller has been designed to change the spark timing for consecutive cycles of the first cylinder of test engine to regulate the in-cylinder maximum pressure. The performance of the proposed controller is illustrated in real time and experimental results show that the controller has a reliable effect on cycle to cycle variations of maximum cylinder pressure when the engine works under low speed conditions.Keywords: cyclic variations, cylinder pressure, SI engines, self tuning controller
Procedia PDF Downloads 48120740 Additive Friction Stir Manufacturing Process: Interest in Understanding Thermal Phenomena and Numerical Modeling of the Temperature Rise Phase
Authors: Antoine Lauvray, Fabien Poulhaon, Pierre Michaud, Pierre Joyot, Emmanuel Duc
Abstract:
Additive Friction Stir Manufacturing (AFSM) is a new industrial process that follows the emergence of friction-based processes. The AFSM process is a solid-state additive process using the energy produced by the friction at the interface between a rotating non-consumable tool and a substrate. Friction depends on various parameters like axial force, rotation speed or friction coefficient. The feeder material is a metallic rod that flows through a hole in the tool. Unlike in Friction Stir Welding (FSW) where abundant literature exists and addresses many aspects going from process implementation to characterization and modeling, there are still few research works focusing on AFSM. Therefore, there is still a lack of understanding of the physical phenomena taking place during the process. This research work aims at a better AFSM process understanding and implementation, thanks to numerical simulation and experimental validation performed on a prototype effector. Such an approach is considered a promising way for studying the influence of the process parameters and to finally identify a process window that seems relevant. The deposition of material through the AFSM process takes place in several phases. In chronological order these phases are the docking phase, the dwell time phase, the deposition phase, and the removal phase. The present work focuses on the dwell time phase that enables the temperature rise of the system composed of the tool, the filler material, and the substrate and due to pure friction. Analytic modeling of heat generation based on friction considers as main parameters the rotational speed and the contact pressure. Another parameter considered influential is the friction coefficient assumed to be variable due to the self-lubrication of the system with the rise in temperature or the materials in contact roughness smoothing over time. This study proposes, through numerical modeling followed by experimental validation, to question the influence of the various input parameters on the dwell time phase. Rotation speed, temperature, spindle torque, and axial force are the main monitored parameters during experimentations and serve as reference data for the calibration of the numerical model. This research shows that the geometry of the tool as well as fluctuations of the input parameters like axial force and rotational speed are very influential on the temperature reached and/or the time required to reach the targeted temperature. The main outcome is the prediction of a process window which is a key result for a more efficient process implementation.Keywords: numerical model, additive manufacturing, friction, process
Procedia PDF Downloads 14720739 Extracellular Production of the Oncolytic Enzyme, Glutaminase Free L-Asparaginase, from Newly Isolated Streptomyces Olivaceus NEAE-119: Optimization of Culture Conditions Using Response Surface Methodology
Authors: Noura El-Ahmady El-Naggar
Abstract:
Among the antitumour drugs, bacterial enzyme L-asparaginase has been employed as the most effective chemotherapeutic agent in pediatric oncotherapy especially for acute lymphoblastic leukemia. Glutaminase free L-asparaginase producing actinomycetes were isolated from soil samples collected from Egypt. Among them, a potential culture, strain NEAE-119, was selected and identified on the basis of morphological, cultural, physiological and biochemical properties, together with 16S rDNA sequence as Streptomyces olivaceus NEAE-119 and sequencing product(1509 bp) was deposited in the GenBank database under accession number KJ200342. The optimization of different process parameters for L-asparaginase production by Streptomyces olivaceus NEAE-119 using Plackett–Burman experimental design and response surface methodology was carried out. Fifteen nutritional variables (temperature, pH, incubation time, inoculum size, inoculum age, agitation speed, dextrose, starch, L-asparagine, KNO3, yeast extract, K2HPO4, MgSO4.7H2O, NaCl and FeSO4. 7H2O) were screened using Plackett–Burman experimental design. The most positive significant independent variables affecting enzyme production (temperature, inoculum age and agitation speed) were further optimized by the central composite face-centered design -response surface methodology. As a result, a medium of the following formula is the optimum for producing an extracellular L-asparaginase in the culture filtrate of Streptomyces olivaceus NEAE-119: Dextrose 3g, starch 20g, L-asparagine 10g, KNO3 1g, K2HPO4 1g, MgSO4.7H2O 0.1g, NaCl 0.1g, pH 7, temperature 37°C, agitation speed 200 rpm/min, inoculum size 4%, v/v, inoculum age 72 h and fermentation period 5 days.Keywords: Streptomyces olivaceus NEAE-119, glutaminase free L-asparaginase, production, Plackett-Burman design, central composite face-centered design, 16S rRNA, scanning electron microscope
Procedia PDF Downloads 36520738 Mixing Behaviors of Shear-Thinning Fluids in Serpentine-Channel Micromixers
Authors: Rei-Tang Tsai, Chih-Yang Wu, Chia-Yuan Chang, Ming-Ying Kuo
Abstract:
This study aims to investigate the mixing behaviors of deionized (DI) water and carboxymethyl cellulose (CMC) solutions in C-shaped serpentine micromixers over a wide range of flow conditions. The flow of CMC solutions exhibits shear-thinning behaviors. Numerical simulations are performed to investigate the effects of the mean flow speed, fluid properties and geometry parameters on flow and mixing in the micromixers with serpentine channel of the same overall channel length. From the results, we can find the following trends. When fluid mixing is dominated by convection, the curvature-induced vortices enhance fluid mixing effectively. The mixing efficiency of a micromixer consisting of semicircular C-shaped repeating units with a smaller center-line radius is better than that of a micromixer consisting of major-segment repeating units with a larger center-line radius. The viscosity of DI water is less than the overall average apparent viscosity of CMC solutions, and so the effect of curvature-induced vortices on fluid mixing in DI water is larger than that in CMC solutions for the cases with the same mean flow speed.Keywords: curved channel, microfluidics, mixing, non-newtonian fluids, vortex
Procedia PDF Downloads 44120737 Plackett-Burman Design to Evaluate the Influence of Operating Parameters on Anaerobic Orthophosphate Release from Enhanced Biological Phosphorus Removal Sludge
Authors: Reza Salehi, Peter L. Dold, Yves Comeau
Abstract:
The aim of the present study was to investigate the effect of a total of 6 operating parameters including pH (X1), temperature (X2), stirring speed (X3), chemical oxygen demand (COD) (X4), volatile suspended solids (VSS) (X5) and time (X6) on anaerobic orthophosphate release from enhanced biological phosphorus removal (EBPR) sludge. An 8-run Plackett Burman design was applied and the statistical analysis of the experimental data was performed using Minitab16.2.4 software package. The Analysis of variance (ANOVA) results revealed that temperature, COD, VSS and time had a significant effect with p-values of less than 0.05 whereas pH and stirring speed were identified as non-significant parameters, but influenced orthophosphate release from the EBPR sludge. The mathematic expression obtained by the first-order multiple linear regression model between orthophosphate release from the EBPR sludge (Y) and the operating parameters (X1-X6) was Y=18.59+1.16X1-3.11X2-0.81X3+3.79X4+9.89X5+4.01X6. The model p-value and coefficient of determination (R2) value were 0.026 and of 99.87%, respectively, which indicates the model is significant and the predicted values of orthophosphate release from the EBPR sludge have been excellently correlated with the observed values.Keywords: anaerobic, operating parameters, orthophosphate release, Plackett-Burman design
Procedia PDF Downloads 27920736 Internet Use and Academic Procrastination Behavior in High School Students
Authors: Endah Mastuti, Prihastuti Sudaryono
Abstract:
The rapid development of Internet usage and technology influences the academic behavior of students in high schools. One of the consequences is the emergence of academic procrastination behavior. Academic procrastination behavior is students’ procrastinate behavior in completing assignments. This study aimed to see whether there are differences in the duration of using the internet with academic procrastinate behavior among high school students in Surabaya. The number of research subject is 498 high school students. Instruments of the research are academic procrastination scale and duration of the internet usage questionnaire. The results from One Way Anova shows F value 0.241 with a significance level of 0.868 This demonstrates that there is no difference between the duration of the use of the Internet with academic procrastination behavior in high school students.Keywords: academic procrastination, duration of internet usage, students, senior high school
Procedia PDF Downloads 36020735 Time-Frequency Modelling and Analysis of Faulty Rotor
Authors: B. X. Tchomeni, A. A. Alugongo, T. B. Tengen
Abstract:
In this paper, de Laval rotor system has been characterized by a hinge model and its transient response numerically treated for a dynamic solution. The effect of the ensuing non-linear disturbances namely rub and breathing crack is numerically simulated. Subsequently, three analysis methods: Orbit Analysis, Fast Fourier Transform (FFT) and Wavelet Transform (WT) are employed to extract features of the vibration signal of the faulty system. An analysis of the system response orbits clearly indicates the perturbations due to the rotor-to-stator contact. The sensitivities of WT to the variation in system speed have been investigated by Continuous Wavelet Transform (CWT). The analysis reveals that features of crack, rubs and unbalance in vibration response can be useful for condition monitoring. WT reveals its ability to detect non-linear signal, and obtained results provide a useful tool method for detecting machinery faults.Keywords: Continuous wavelet, crack, discrete wavelet, high acceleration, low acceleration, nonlinear, rotor-stator, rub
Procedia PDF Downloads 34920734 Analysis on Solar Panel Performance and PV-Inverter Configuration for Tropical Region
Authors: Eko Adhi Setiawan, Duli Asih Siregar, Aiman Setiawan
Abstract:
Solar energy is abundant in nature, particularly in the tropics which have peak sun hour that can reach 8 hours per day. In the fabrication process, Photovoltaic’s (PV) performance are tested in standard test conditions (STC). It specifies a module temperature of 25°C, an irradiance of 1000 W/ m² with an air mass 1.5 (AM1.5) spectrum and zero wind speed. Thus, the results of the performance testing of PV at STC conditions cannot fully represent the performance of PV in the tropics. For example Indonesia, which has a temperature of 20-40°C. In this paper, the effect of temperature on the choice of the 5 kW AC inverter topology on the PV system such as the Central Inverter, String Inverter and AC-Module specifically for the tropics will be discussed. The proper inverter topology can be determined by analysis of the effect of temperature and irradiation on the PV panel. The effect of temperature and irradiation will be represented in the characteristics of I-V and P-V curves. PV’s characteristics on high temperature would be analyzed using Solar panel modeling through MATLAB Simulink based on mathematical equations that form Solar panel’s characteristic curve. Based on PV simulation, it is known then that temperature coefficients of short circuit current (ISC), open circuit voltage (VOC), and maximum output power (PMAX) consecutively as high as 0.56%/oC, -0.31%/oC and -0.4%/oC. Those coefficients can be used to calculate PV’s electrical parameters such as ISC, VOC, and PMAX in certain earth’s surface’s certain point. Then, from the parameters, the utility of the 5 kW AC inverter system can be determined. As the result, for tropical area, string inverter topology has the highest utility rates with 98, 80 %. On the other hand, central inverter and AC-Module Topology has utility rates of 92.69 % and 87.7 % eventually.Keywords: Photovoltaic, PV-Inverter Configuration, PV Modeling, Solar Panel Characteristics.
Procedia PDF Downloads 37920733 Experimental Correlation for Erythrocyte Aggregation Rate in Population Balance Modeling
Authors: Erfan Niazi, Marianne Fenech
Abstract:
Red Blood Cells (RBCs) or erythrocytes tend to form chain-like aggregates under low shear rate called rouleaux. This is a reversible process and rouleaux disaggregate in high shear rates. Therefore, RBCs aggregation occurs in the microcirculation where low shear rates are present but does not occur under normal physiological conditions in large arteries. Numerical modeling of RBCs interactions is fundamental in analytical models of a blood flow in microcirculation. Population Balance Modeling (PBM) is particularly useful for studying problems where particles agglomerate and break in a two phase flow systems to find flow characteristics. In this method, the elementary particles lose their individual identity due to continuous destructions and recreations by break-up and agglomeration. The aim of this study is to find RBCs aggregation in a dynamic situation. Simplified PBM was used previously to find the aggregation rate on a static observation of the RBCs aggregation in a drop of blood under the microscope. To find aggregation rate in a dynamic situation we propose an experimental set up testing RBCs sedimentation. In this test, RBCs interact and aggregate to form rouleaux. In this configuration, disaggregation can be neglected due to low shear stress. A high-speed camera is used to acquire video-microscopic pictures of the process. The sizes of the aggregates and velocity of sedimentation are extracted using an image processing techniques. Based on the data collection from 5 healthy human blood samples, the aggregation rate was estimated as 2.7x103(±0.3 x103) 1/s.Keywords: red blood cell, rouleaux, microfluidics, image processing, population balance modeling
Procedia PDF Downloads 35520732 Association between Noise Levels, Particulate Matter Concentrations and Traffic Intensities in a Near-Highway Urban Area
Authors: Mohammad Javad Afroughi, Vahid Hosseini, Jason S. Olfert
Abstract:
Both traffic-generated particles and noise have been associated with the development of cardiovascular diseases, especially in near-highway environments. Although noise and particulate matters (PM) have different mechanisms of dispersion, sharing the same emission source in urban areas (road traffics) can result in a similar degree of variability in their levels. This study investigated the temporal variation of and correlation between noise levels, PM concentrations and traffic intensities near a major highway in Tehran, Iran. Tehran particulate concentration is highly influenced by road traffic. Additionally, Tehran ultrafine particles (UFP, PM<0.1 µm) are mostly emitted from combustion processes of motor vehicles. This gives a high possibility of a strong association between traffic-related noise and UFP in near-highway environments of this megacity. Hourly average of equivalent continuous sound pressure level (Leq), total number concentration of UFPs, mass concentration of PM2.5 and PM10, as well as traffic count and speed were simultaneously measured over a period of three days in winter. Additionally, meteorological data including temperature, relative humidity, wind speed and direction were collected in a weather station, located 3 km from the monitoring site. Noise levels showed relatively low temporal variability in near-highway environments compared to PM concentrations. Hourly average of Leq ranged from 63.8 to 69.9 dB(A) (mean ~ 68 dB(A)), while hourly concentration of particles varied from 30,800 to 108,800 cm-3 for UFP (mean ~ 64,500 cm-3), 41 to 75 µg m-3 for PM2.5 (mean ~ 53 µg m-3), and 62 to 112 µg m-3 for PM10 (mean ~ 88 µg m-3). The Pearson correlation coefficient revealed strong relationship between noise and UFP (r ~ 0.61) overall. Under downwind conditions, UFP number concentration showed the strongest association with noise level (r ~ 0.63). The coefficient decreased to a lesser degree under upwind conditions (r ~ 0.24) due to the significant role of wind and humidity in UFP dynamics. Furthermore, PM2.5 and PM10 correlated moderately with noise (r ~ 0.52 and 0.44 respectively). In general, traffic counts were more strongly associated with noise and PM compared to traffic speeds. It was concluded that noise level combined with meteorological data can be used as a proxy to estimate PM concentrations (specifically UFP number concentration) in near-highway environments of Tehran. However, it is important to measure joint variability of noise and particles to study their health effects in epidemiological studies.Keywords: noise, particulate matter, PM10, PM2.5, ultrafine particle
Procedia PDF Downloads 19420731 Socio-Cultural Behaviors of Individuals in High-Rise Housing
Authors: Raweyah Al-Sedairawi
Abstract:
While high-rise housing detained massive negative connotations on several societies and well-being, this typology did deliver housing demand efficiently. Despite its adverse reference due to declining precedents, high-rise housing is still in global demand. Yet the suitability of this typology is still questioned. In this research, the suitability of high-rise housing as a socio-culturally sustainable solution to meet housing demands will be examined. By questioning what is the potential of high-rise housing as a socio-culturally sustainable solution for housing demands, the research will examine some high-rise housing practices. Through reviewing the literature on the origins of high-rise housing, how and why they were developed, some unsuccessful cases, and some successful cases, with the identification of factors for successful high-rise living. Thus, the research groundings will materialize from existing patterns of housing demands. Whilst most of the literature covers the housing market from an economic, real estate, and political perspective, there is less amount that discloses occupants’ reactions towards this typology and its appropriateness for the reason that income controls individuals’ choices. To bridge the gap, the prospect of implementing the study would be effective. This will be applied through a mixture of a qualitative and a quantitative methodology by conducting questionnaires and focus groups on existing cases of high-net-worth residential towers.Keywords: architecture, behaviors, high-rise, socio-cultural, sustainability
Procedia PDF Downloads 8820730 Usage of “Flowchart of Diagnosis and Treatment” Software in Medical Education
Authors: Boy Subirosa Sabarguna, Aria Kekalih, Irzan Nurman
Abstract:
Introduction: Software in the form of Clinical Decision Support System could help students in understanding the mind set of decision-making in diagnosis and treatment at the stage of general practitioners. This could accelerate and ease the learning process which previously took place by using books and experience. Method: Gather 1000 members of the National Medical Multimedia Digital Community (NM2DC) who use the “flowchart of diagnosis and treatment” software, and analyse factors related to: display, speed in learning, convenience in learning, helpfulness and usefulness in the learning process, by using the Likert Scale through online questionnaire which will further be processed using percentage. Results and Discussions: Out of the 1000 members of NM2DC, apparently: 97.0% of the members use the software and 87.5% of them are students. In terms of the analysed factors related to: display, speed in learning, convenience in learning, helpfulness and usefulness of the software’s usage, the results indicate a 90.7% of fairly good performance. Therefore, the “Flowchart of Diagnosis and Treatment” software has helped students in understanding the decision-making of diagnosis and treatment. Conclusion: the use of “Flowchart of Diagnosis and Treatment” software indicates a positive role in helping students understand decision-making of diagnosis and treatment.Keywords: usage, software, diagnosis and treatment, medical education
Procedia PDF Downloads 35920729 Effect of Noise Reduction Algorithms on Temporal Splitting of Speech Signal to Improve Speech Perception for Binaural Hearing Aids
Authors: Rajani S. Pujar, Pandurangarao N. Kulkarni
Abstract:
Increased temporal masking affects the speech perception in persons with sensorineural hearing impairment especially under adverse listening conditions. This paper presents a cascaded scheme, which employs a noise reduction algorithm as well as temporal splitting of the speech signal. Earlier investigations have shown that by splitting the speech temporally and presenting alternate segments to the two ears help in reducing the effect of temporal masking. In this technique, the speech signal is processed by two fading functions, complementary to each other, and presented to left and right ears for binaural dichotic presentation. In the present study, half cosine signal is used as a fading function with crossover gain of 6 dB for the perceptual balance of loudness. Temporal splitting is combined with noise reduction algorithm to improve speech perception in the background noise. Two noise reduction schemes, namely spectral subtraction and Wiener filter are used. Listening tests were conducted on six normal-hearing subjects, with sensorineural loss simulated by adding broadband noise to the speech signal at different signal-to-noise ratios (∞, 3, 0, and -3 dB). Objective evaluation using PESQ was also carried out. The MOS score for VCV syllable /asha/ for SNR values of ∞, 3, 0, and -3 dB were 5, 4.46, 4.4 and 4.05 respectively, while the corresponding MOS scores for unprocessed speech were 5, 1.2, 0.9 and 0.65, indicating significant improvement in the perceived speech quality for the proposed scheme compared to the unprocessed speech.Keywords: MOS, PESQ, spectral subtraction, temporal splitting, wiener filter
Procedia PDF Downloads 32720728 Investigating the Steam Generation Potential of Lithium Bromide Based CuO Nanofluid under Simulated Solar Flux
Authors: Tamseela Habib, Muhammad Amjad, Muhammad Edokali, Masome Moeni, Olivia Pickup, Ali Hassanpour
Abstract:
Nanofluid-assisted steam generation is rapidly attracting attention amongst the scientific community since it can be applied in a wide range of industrial processes. Because of its high absorption rate of solar energy, nanoparticle-based solar steam generation could be a major contributor to many applications, including water desalination, sterilization and power generation. Lithium bromide-based iron oxide nanofluids have been previously studied in steam generation, which showed promising results. However, the efficiency of the system could be improved if a more heat-conductive nanofluid system could be utilised. In the current paper, we report on an experimental investigation of the photothermal conversion properties of functionalised Copper oxide (CuO) nanoparticles used in Lithium Bromide salt solutions. CuO binary nanofluid was prepared by chemical functionalization with polyethyleneimine (PEI). Long-term stability evaluation of prepared binary nanofluid was done by a high-speed centrifuge analyser which showed a 0.06 Instability index suggesting low agglomeration and sedimentation tendencies. This stability is also supported by the measurements from dynamic light scattering (DLS), transmission electron microscope (TEM), and ultraviolet-visible (UV-Vis) spectrophotometer. The fluid rheology is also characterised, which suggests the system exhibits a Newtonian fluid behavior. The photothermal conversion efficiency of different concentrations of CuO was experimentally investigated under a solar simulator. Experimental results reveal that the binary nanofluid in this study can remarkably increase the solar energy trapping efficiency and evaporation rate as compared to conventional fluids due to localized solar energy harvesting by the surface of the nanofluid. It was found that 0.1wt% CuO NP is the optimum nanofluid concentration for enhanced sensible and latent heat efficiencies.Keywords: nanofluids, vapor absorption refrigeration system, steam generation, high salinity
Procedia PDF Downloads 8420727 Visco - Plastic Transition and Transfer of Plastic Material with SGF in case of Linear Dry Friction Contact on Steel Surfaces
Authors: Lucian Capitanu, Virgil Florescu
Abstract:
Often for the laboratory studies, modeling of specific tribological processes raises special problems. One such problem is the modeling of some temperatures and extremely high contact pressures, allowing modeling of temperatures and pressures at which the injection or extrusion processing of thermoplastic materials takes place. Tribological problems occur mainly in thermoplastics materials reinforced with glass fibers. They produce an advanced wear to the barrels and screws of processing machines, in short time. Obtaining temperatures around 210 °C and higher, as well as pressures around 100 MPa is very difficult in the laboratory. This paper reports a simple and convenient solution to get these conditions, using friction sliding couples with linear contact, cylindrical liner plastic filled with glass fibers on plate steel samples, polished and super-finished. C120 steel, which is a steel for moulds and Rp3 steel, high speed steel for tools, were used. Obtaining the pressure was achieved by continuous request of the liner in rotational movement up to its elasticity limits, when the dry friction coefficient reaches or exceeds the hardness value of 0.5 HB. By dissipation of the power lost by friction on flat steel sample, are reached contact temperatures at the metal surface that reach and exceed 230 °C, being placed in the range temperature values of the injection. Contact pressures (in load and materials conditions used) ranging from 16.3-36.4 MPa were obtained depending on the plastic material used and the glass fibers content.Keywords: plastics with glass fibers, dry friction, linear contact, contact temperature, contact pressure, experimental simulation
Procedia PDF Downloads 30220726 Investigation on the Effect of Welding Parameters in Additive Friction Stir Welding of Glass Fiber Reinforced Polyamide 66 Composite
Authors: Nandhini Ravi, Muthukumaran Shanmugam
Abstract:
Metals are being replaced by thermoplastic polymer composites in automotive industries because of their low density, easiness to fabricate, low cost and good wear resistance. Complex polymer components consist of assemblies of smaller parts which can be joined by friction stir welding. This study deals with the additive friction stir welding of 15 wt.% glass fiber reinforced polyamide 66 composite which is a modified technique of the conventional friction stir welding by the addition of a filler plate for the heating of the composite work piece through the tool during the welding process. Welding at different combinations of tool rotational speed, travel speed and tool plunge depth was done after which the tensile strength of the respective experiments was determined. The maximum tensile strength obtained was 77 MPa which was 80% of the strength of the base material. The process parameters were optimized using the L9 orthogonal array and also the effect of individual welding parameter on the tensile strength was studied. The optimum parameter combination was determined with the help of ANOVA studies. The hardness of the welded joints was studied with the help of Shore Durometer which yielded the maximum of D 75.Keywords: additive friction stir welding, polyamide 66, process parameters, thermoplastic polymer composite
Procedia PDF Downloads 15920725 Modeling of Cold Tube Drawing with a Fixed Plug by Finite Element Method and Determination of Optimum Drawing Parameters
Authors: E. Yarar, E. A. Guven, S. Karabay
Abstract:
In this study, a comprehensive simulation was made for the cold tube drawing with fixed plug. The cold tube drawing process is preferred due to its high surface quality and the high mechanical properties. In drawing processes applied to materials with low plastic deformability, cracks can occur on the surfaces and the process efficiency decreases. The aim of the work is to investigate the effects of different drawing parameters on drawing forces and stresses. In the simulations, optimum conditions were investigated for four different materials, Ti64Al4V, AA5052, AISI4140, and C365. One of the most important parameters for the cold drawing process is the die angle. Three dies were designed for the analysis with semi die angles of 5°, 10°, and 15°. Three different parameters were used for the friction coefficient between die and the material. In the simulations, reduction of area and the drawing speed is kept constant. Drawing is done in one pass. According to the simulation results, the highest drawing forces were obtained in Ti64Al4V. As the semi die angle increases, the drawing forces decrease. The change in semi die angle was most effective on Ti64Al4V. Increasing the coefficient of friction is another effect that increases the drawing forces. The increase in the friction coefficient has also increased in drawing stresses. The increase in die angle also increased the drawing stress distribution for the other three materials outside C365. According to the results of the analysis, it is found that the designed drawing die is suitable for drawing. The lowest drawing stress distribution and drawing forces were obtained for AA5052. Drawing die parameters have a direct effect on the results. In addition, lubricants used for drawing have a significant effect on drawing forces.Keywords: cold tube drawing, drawing force, drawing stress, semi die angle
Procedia PDF Downloads 16620724 Air-Blast Ultrafast Disconnectors and Solid-State Medium Voltage DC Breaker: A Modified Version to Lower Losses and Higher Speed
Authors: Ali Kadivar, Kaveh Niayesh
Abstract:
MVDC markets for green power generations, Navy, subsea oil and gas electrification, and transportation electrification are extending rapidly. The lack of fast and powerful DC circuit breakers (CB) is the most significant barrier to realizing the medium voltage DC (MVDC) networks. A concept of hybrid circuit breakers (HCBs) benefiting from ultrafast disconnectors (UFD) is proposed. A set of mechanical switches substitute the power electronic commutation switches to reduce the losses during normal operation in HCB. The success of current commutation in such breakers relies on the behaviour of elongated, wall constricted arcs during the opening across the contacts inside the UFD. The arc voltage dependencies on the contact speed of UFDs is discussed through multiphysics simulations contact opening speeds of 10, 20 and 40 m/s. The arc voltage at a given current increases exponentially with the contact opening velocity. An empirical equation for the dynamic arc characteristics is presented for the tested UFD, and the experimentally verfied characteristics for voltage-current are utilized for the current commutation simulation prior to apply on a 14 kV experimental setup. Different failures scenarios due to the current commutation are investigatedKeywords: MVDC breakers, DC circuit breaker, fast operating breaker, ultra-fast elongated arc
Procedia PDF Downloads 8320723 Study on the Process of Detumbling Space Target by Laser
Authors: Zhang Pinliang, Chen Chuan, Song Guangming, Wu Qiang, Gong Zizheng, Li Ming
Abstract:
The active removal of space debris and asteroid defense are important issues in human space activities. Both of them need a detumbling process, for almost all space debris and asteroid are in a rotating state, and it`s hard and dangerous to capture or remove a target with a relatively high tumbling rate. So it`s necessary to find a method to reduce the angular rate first. The laser ablation method is an efficient way to tackle this detumbling problem, for it`s a contactless technique and can work at a safe distance. In existing research, a laser rotational control strategy based on the estimation of the instantaneous angular velocity of the target has been presented. But their calculation of control torque produced by a laser, which is very important in detumbling operation, is not accurate enough, for the method they used is only suitable for the plane or regularly shaped target, and they did not consider the influence of irregular shape and the size of the spot. In this paper, based on the triangulation reconstruction of the target surface, we propose a new method to calculate the impulse of the irregularly shaped target under both the covered irradiation and spot irradiation of the laser and verify its accuracy by theoretical formula calculation and impulse measurement experiment. Then we use it to study the process of detumbling cylinder and asteroid by laser. The result shows that the new method is universally practical and has high precision; it will take more than 13.9 hours to stop the rotation of Bennu with 1E+05kJ laser pulse energy; the speed of the detumbling process depends on the distance between the spot and the centroid of the target, which can be found an optimal value in every particular case.Keywords: detumbling, laser ablation drive, space target, space debris remove
Procedia PDF Downloads 8520722 Experimental Study on the Heating Characteristics of Transcritical CO₂ Heat Pumps
Authors: Lingxiao Yang, Xin Wang, Bo Xu, Zhenqian Chen
Abstract:
Due to its outstanding environmental performance, higher heating temperature and excellent low-temperature performance, transcritical carbon dioxide (CO₂) heat pumps are receiving more and more attention. However, improperly set operating parameters have a serious negative impact on the performance of the transcritical CO₂ heat pump due to the properties of CO₂. In this study, the heat transfer characteristics of the gas cooler are studied based on the modified “three-stage” gas cooler, then the effect of three operating parameters, compressor speed, gas cooler water-inlet flowrate and gas cooler water-inlet temperature, on the heating process of the system are investigated from the perspective of thermal quality and heat capacity. The results shows that: In the heat transfer process of gas cooler, the temperature distribution of CO₂ and water shows a typical “two region” and “three zone” pattern; The rise in the cooling pressure of CO₂ serves to increase the thermal quality on the CO₂ side of the gas cooler, which in turn improves the heating temperature of the system; Nevertheless, the elevated thermal quality on the CO₂ side can exacerbate the mismatch of heat capacity on both sides of the gas cooler, thereby adversely affecting the system coefficient of performance (COP); Furthermore, increasing compressor speed mitigates the mismatch in heat capacity caused by elevated thermal quality, which is exacerbated by decreasing gas cooler water-inlet flowrate and rising gas cooler water-inlet temperature; As a delegate, the varying compressor speed results in a 7.1°C increase in heating temperature within the experimental range, accompanied by a 10.01% decrease in COP and an 11.36% increase in heating capacity. This study can not only provide an important reference for the theoretical analysis and control strategy of the transcritical CO₂ heat pump, but also guide the related simulation and the design of the gas cooler. However, the range of experimental parameters in the current study is small and the conclusions drawn are not further analysed quantitatively. Therefore, expanding the range of parameters studied and proposing corresponding quantitative conclusions and indicators with universal applicability could greatly increase the practical applicability of this study. This is also the goal of our next research.Keywords: transcritical CO₂ heat pump, gas cooler, heat capacity, thermal quality
Procedia PDF Downloads 2020721 Solar Energy Potential Studies of Sindh Province, Pakistan for Power Generation
Authors: M. Akhlaque Ahmed, Sidra A. Shaikh, Maliha Afshan Siddiqui
Abstract:
Solar radiation studies of Sindh province have been studied to evaluate the solar energy potential of the area. Global and diffuse solar radiation on horizontal surface over five cities namely Karachi, Hyderabad, Nawabshah, Chore and Padidan of Sindh province were carried out using sun shine hour data of the area to assess the feasibility of solar energy utilization. The result obtained shows a large variation of direct and diffuse component of solar radiation in winter and summer months. 50% direct and 50% diffuse solar radiation for Karachi and Hyderabad were observed and for Chore in summer month July and August the diffuse radiation is about 33 to 39%. For other areas of Sindh such as Nawabshah and Patidan the contribution of direct solar radiation is high throughout the year. The Kt values for Nawabshah and Patidan indicates a clear sky almost throughout the year. In Nawabshah area the percentage of diffuse radiation does not exceed more than 29%. The appearance of cloud is rare even in the monsoon months July and August whereas Karachi and Hyderabad and Chore has low solar potential during the monsoon months. During the monsoon period Karachi and Hyderabad can utilize hybrid system with wind power as wind speed is higher. From the point of view of power generation the estimated values indicate that Karachi and Hyderabad and chore has low solar potential for July and August while Nawabshah, and Padidan has high solar potential Throughout the year.Keywords: global and diffuse solar radiation, province of Sindh, solar energy potential, solar radiation studies for power generation
Procedia PDF Downloads 26020720 The Influence of Knowledge Spillovers on High-Impact Firm Growth: A Comparison of Indigenous and Foreign Firms
Authors: Yazid Abdullahi Abubakar, Jay Mitra
Abstract:
This paper is concerned with entrepreneurial high-impact firms, which are firms that generate ‘both’ disproportionate levels of employment and sales growth, and have high levels of innovative activity. It investigates differences in factors influencing high-impact growth between indigenous and foreign firms. The study is based on an analysis of data from United Kingdom (UK) Innovation Scoreboard on 865 firms, which were divided into high-impact firms (those achieving positive growth in both sales and employment) and low-impact firms (negative or no growth in sales or employment); in order to identifying the critical differences in regional, sectorial and size related factors that facilitate knowledge spillovers and high-impact growth between indigenous and foreign firms. The findings suggest that: 1) Firms’ access to regional knowledge spillovers (from businesses and higher education institutions) is more significantly associated with high-impact growth of UK firms in comparison to foreign firms, 2) Because high-tech sectors have greater use of knowledge spillovers (compared to low-tech sectors), high-tech sectors are more associated with high-impact growth, but the relationship is stronger for UK firms compared to foreign firms, 3) Because small firms have greater need for knowledge spillovers (relative to large firms), there is a negative relationship between firm size and high-impact growth, but the negative relationship is greater for UK firms in comparison to foreign firms.Keywords: entrepreneurship, high-growth, indigenous firms, foreign firms, small firms, large firms
Procedia PDF Downloads 42920719 Research of Street Aspect Ratio on a Wind Environmental Perspective
Authors: Qi Kan, Xiaoyu Ying
Abstract:
With a rapid urbanization in China, the high-density new urban-center districts have already changed the microclimate in the city. Because of the using characters of building the commercial pedestrian streets which have emerged massively making a large number of pedestrians appear in there, pedestrian comfort in the commercial streets of the new urban-center districts requires more attention. The different street spatial layout will change the wind environment in the street and then influence the pedestrian comfort. Computational fluid dynamics (CFD) models are used to study the correlation between the street aspect ratio and wind environment, under the simulation with relevant weather conditions. The results show that the wind speed in the city streets is inversely proportional to the street aspect ratio. The conclusion will provide an evaluation basis for urban planners and architects at the beginning stage of the design to effectively avoid the potential poor physical environment.Keywords: street spatial layout, wind environment, street aspect ratio, pedestrian comfort
Procedia PDF Downloads 19520718 Temperature Distribution in Friction Stir Welding Using Finite Element Method
Authors: Armansyah, I. P. Almanar, M. Saiful Bahari Shaari, M. Shamil Jaffarullah, Nur’amirah Busu, M. Arif Fadzleen Zainal Abidin, M. Amlie A. Kasim
Abstract:
Temperature distribution in Friction Stir Welding (FSW) of 6061-T6 Aluminum Alloy is modeled using the Finite Element Method (FEM). In order to obtain temperature distribution in the welded aluminum plates during welding operation, transient thermal finite element analyses are performed. Heat input from tool shoulder and tool pin are considered in the model. A moving heat source with a heat distribution simulating the heat generated by frictions between tool shoulder and workpiece is used in the analysis. Three-dimensional model for simulated process is carried out by using Altair HyperWork, a commercially available software. Transient thermal finite element analyses are performed in order to obtain the temperature distribution in the welded Aluminum plates during welding operation. The developed model was then used to show the effect of various input parameters such as total rate of welding speed and rotational speed on temperature distribution in the workpiece.Keywords: frictions stir welding, temperature distribution, finite element method, altair hyperwork
Procedia PDF Downloads 54320717 The Effects of Billboard Content and Visible Distance on Driver Behavior
Authors: Arsalan Hassan Pour, Mansoureh Jeihani, Samira Ahangari
Abstract:
Distracted driving has been one of the most integral concerns surrounding our daily use of vehicles since the invention of the automobile. While much attention has been recently given to cell phones related distraction, commercial billboards along roads are also candidates for drivers' visual and cognitive distractions, as they may take drivers’ eyes from the road and their minds off the driving task to see, perceive and think about the billboard’s content. Using a driving simulator and a head-mounted eye-tracking system, speed change, acceleration, deceleration, throttle response, collision, lane changing, and offset from the center of the lane data along with gaze fixation duration and frequency data were collected in this study. Some 92 participants from a fairly diverse sociodemographic background drove on a simulated freeway in Baltimore, Maryland area and were exposed to three different billboards to investigate the effects of billboards on drivers’ behavior. Participants glanced at the billboards several times with different frequencies, the maximum of which occurred on the billboard with the highest cognitive load. About 74% of the participants didn’t look at billboards for more than two seconds at each glance except for the billboard with a short visible area. Analysis of variance (ANOVA) was performed to find the variations in driving behavior when they are invisible, readable, and post billboards area. The results show a slight difference in speed, throttle, brake, steering velocity, and lane changing, among different areas. Brake force and deviation from the center of the lane increased in the readable area in comparison with the visible area, and speed increased right after each billboard. The results indicated that billboards have a significant effect on driving performance and visual attention based on their content and visibility status. Generalized linear model (GLM) analysis showed no connection between participants’ age and driving experience with gaze duration. However, the visible distance of the billboard, gender, and billboard content had a significant effect on gaze duration.Keywords: ANOVA, billboards, distracted driving, drivers' behavior, driving simulator, eye-Tracking system, GLM
Procedia PDF Downloads 12820716 The Effects of Sleep Deprivation on Vigilance, Fatigue, and Performance during Simulated Train Driving
Authors: Clara Theresia, Hardianto Iridiastadi
Abstract:
Drowsiness is one of the main factors that contribute to the occurrence of accidents, particularly in the transportation sector. While the effects of sleep deprivation on cognitive functions have been reported, the exact relationships remain a critical issue. This study aimed at quantifying the effects of extreme sleep deprivation on vigilance, fatigue, and performance during simulated train driving. A total of 12 participants were asked to drive a train simulator continuously for 4 hours, either in a sleep deprived condition (2-hr of sleep) or normal (8-hr of sleep) condition. Dependent variables obtained during the task included Psychomotor Vigilance Task (PVT) parameters, degree of fatigue (assessed via Visual Analogue Scale/VAS) and sleepiness (reported using Karolinska Sleepiness Scale/KSS), and driving performance (the number of speed limit violations). Findings from this study demonstrated substantial decrements in vigilance in the sleep-deprived condition. This condition also resulted in 75% increase in speed violation and a two-fold increase in the degree of fatigue and sleepiness. Extreme sleep deprivation was clearly associated with substantially poorer response. The exact effects, however, were dependent upon the types of responses.Keywords: cognitive function, psychomotor vigilance task, sleep deprivation, train simulator
Procedia PDF Downloads 18620715 Health Care using Queuing Theory
Authors: S. Vadivukkarasi, K. Karthi, M. Karthick, C. Dinesh, S. Santhosh, A. Yogaraj
Abstract:
The appointment system was designed to minimize patient’s idle time overlooking patients waiting time in hospitals. This is no longer valid in today’s consumer oriented society. Long waiting times for treatment in the outpatient department followed by short consultations has long been a complaint. Nowadays, customers use waiting time as a decisive factor in choosing a service provider. Queuing theory constitutes a very powerful tool because queuing models require relatively little data and are simple and fast to use. Because of this simplicity and speed, modelers can be used to quickly evaluate and compare various alternatives for providing service. The application of queuing models in the analysis of health care systems is increasingly accepted by health care decision makers. Timely access to care is a key component of high-quality health care. However, patient delays are prevalent throughout health care systems, resulting in dissatisfaction and adverse clinical consequences for patients as well as potentially higher costs and wasted capacity for providers. Arguably, the most critical delays for health care are the ones associated with health care emergencies. The allocation of resources can be divided into three general areas: bed management, staff management, and room facility management. Effective and efficient patient flow is indicated by high patient throughput, low patient waiting times, a short length of stay at the hospital and overtime, while simultaneously maintaining adequate staff utilization rates and low patient’s idle times.Keywords: appointment system, patient scheduling, bed management, queueing calculation, system analysis
Procedia PDF Downloads 30020714 The Load Balancing Algorithm for the Star Interconnection Network
Authors: Ahmad M. Awwad, Jehad Al-Sadi
Abstract:
The star network is one of the promising interconnection networks for future high speed parallel computers, it is expected to be one of the future-generation networks. The star network is both edge and vertex symmetry, it was shown to have many gorgeous topological proprieties also it is owns hierarchical structure framework. Although much of the research work has been done on this promising network in literature, it still suffers from having enough algorithms for load balancing problem. In this paper we try to work on this issue by investigating and proposing an efficient algorithm for load balancing problem for the star network. The proposed algorithm is called Star Clustered Dimension Exchange Method SCDEM to be implemented on the star network. The proposed algorithm is based on the Clustered Dimension Exchange Method (CDEM). The SCDEM algorithm is shown to be efficient in redistributing the load balancing as evenly as possible among all nodes of different factor networks.Keywords: load balancing, star network, interconnection networks, algorithm
Procedia PDF Downloads 31920713 Bubbling in Gas Solids Fluidization at a Strouhal Number Tuned for Low Energy Dissipation
Authors: Chenxi Zhang, Weizhong Qian, Fei Wei
Abstract:
Gas solids multiphase flow is common in many engineering and environmental applications. Turbulence and multiphase flows are two of the most challenging topics in fluid mechanics, and when combined they pose a formidable challenge, even in the dilute dispersed regime. Dimensionless numbers are important in mechanics because their constancy can imply dynamic similarity between systems, despite possible differences in medium or scale. In the fluid mechanics literature, the Strouhal number is usually associated with the dimensionless shedding frequency of a von Karman wake; here we introduce this dimensionless number to investigate bubbling in gas solids fluidization. St=fA/U, which divides stroke frequency (f) and amplitude (A) by forward speed (U). The bubble behavior in a large two-dimensional bubbling fluidized bed (500mm×30mm×6000mm) is investigated. Our result indicates that propulsive efficiency is high and energy dissipation is low over a narrow range of St and usually within the interval 0.2