Search results for: graph recognition
980 Intraventricular Hemorrhage Caused by Subarachnoid Hemorrhage; When Time Is Life
Authors: Devieta Romadhon Saendardy
Abstract:
Introduction: The case of aneurysmal subarachnoid hemorrhage (SAH) associated with intraventricular hemorrhage (IVH) in many way. In general, the anterior communicating artery and posterior circulation aneurysms cause Intraventricular Hemorrhage. The development of intraventricular hemorrhage (IVH) in aneurysmal subarachnoid hemorrhage (aSAH) is linked with higher mortality and poor neurological recovery. Case: This case report presents a 51-year-old female patient who developed IVH following SAH. The patient's Glasgow Coma Scale score was 14, the patient has a severe headache, and there were right extremity hemipharese neurological deficits. A non-contrast head CT scan revealed a massive intraventricular haemorrhage. In an hour, the patient got her headache and pharese worse. Discussion: Intraventricular hemorrhage is a serious complication of subarachnoid hemorrhage, necessitating prompt recognition and management. This case highlights the importance of a time management, medical management and surgical intervention to optimize outcomes in patients with intraventricular hemorrhage caused by subarachnoid hemorrhage. Placement of a shunt system improves clinical outcome in intraventricular hemorrhage.Keywords: Intraventricular hemorrhage, subarachnoid hemorrhage, shunt, time
Procedia PDF Downloads 71979 Using Differentiated Instruction Applying Cognitive Approaches and Strategies for Teaching Diverse Learners
Authors: Jolanta Jonak, Sylvia Tolczyk
Abstract:
Educational systems are tasked with preparing students for future success in academic or work environments. Schools strive to achieve this goal, but often it is challenging as conventional teaching approaches are often ineffective in increasingly diverse educational systems. In today’s ever-increasing global society, educational systems become increasingly diverse in terms of cultural and linguistic differences, learning preferences and styles, ability and disability. Through increased understanding of disabilities and improved identification processes, students having some form of disabilities tend to be identified earlier than in the past, meaning that more students with identified disabilities are being supported in our classrooms. Also, a large majority of students with disabilities are educated in general education environments. Due to cognitive makeup and life experiences, students have varying learning styles and preferences impacting how they receive and express what they are learning. Many students come from bi or multilingual households and with varying proficiencies in the English language, further impacting their learning. All these factors need to be seriously considered when developing learning opportunities for student's. Educators try to adjust their teaching practices as they discover that conventional methods are often ineffective in reaching each student’s potential. Many teachers do not have the necessary educational background or training to know how to teach students whose learning needs are more unique and may vary from the norm. This is further complicated by the fact that many classrooms lack consistent access to interventionists/coaches that are adequately trained in evidence-based approaches to meet the needs of all students, regardless of what their academic needs may be. One evidence-based way for providing successful education for all students is by incorporating cognitive approaches and strategies that tap into affective, recognition, and strategic networks in the student's brain. This can be done through Differentiated Instruction (DI). Differentiated Instruction is increasingly recognized model that is established on the basic principles of Universal Design for Learning. This form of support ensures that regardless of the students’ learning preferences and cognitive learning profiles, they have opportunities to learn through approaches that are suitable to their needs. This approach improves the educational outcomes of students with special needs and it benefits other students as it accommodates learning styles as well as the scope of unique learning needs that are evident in the typical classroom setting. Differentiated Instruction also is recognized as an evidence-based best practice in education and is highly effective when it is implemented within the tiered system of the Response to Intervention (RTI) model. Recognition of DI becomes more common; however, there is still limited understanding of the effective implementation and use of strategies that can create unique learning environments for each student within the same setting. Through employing knowledge of a variety of instructional strategies, general and special education teachers can facilitate optimal learning for all students, with and without a disability. A desired byproduct of DI is that it can eliminate inaccurate perceptions about the students’ learning abilities, unnecessary referrals for special education evaluations, and inaccurate decisions about the presence of a disability.Keywords: differentiated instruction, universal design for learning, special education, diversity
Procedia PDF Downloads 219978 Current Methods for Drug Property Prediction in the Real World
Authors: Jacob Green, Cecilia Cabrera, Maximilian Jakobs, Andrea Dimitracopoulos, Mark van der Wilk, Ryan Greenhalgh
Abstract:
Predicting drug properties is key in drug discovery to enable de-risking of assets before expensive clinical trials and to find highly active compounds faster. Interest from the machine learning community has led to the release of a variety of benchmark datasets and proposed methods. However, it remains unclear for practitioners which method or approach is most suitable, as different papers benchmark on different datasets and methods, leading to varying conclusions that are not easily compared. Our large-scale empirical study links together numerous earlier works on different datasets and methods, thus offering a comprehensive overview of the existing property classes, datasets, and their interactions with different methods. We emphasise the importance of uncertainty quantification and the time and, therefore, cost of applying these methods in the drug development decision-making cycle. To the best of the author's knowledge, it has been observed that the optimal approach varies depending on the dataset and that engineered features with classical machine learning methods often outperform deep learning. Specifically, QSAR datasets are typically best analysed with classical methods such as Gaussian Processes, while ADMET datasets are sometimes better described by Trees or deep learning methods such as Graph Neural Networks or language models. Our work highlights that practitioners do not yet have a straightforward, black-box procedure to rely on and sets a precedent for creating practitioner-relevant benchmarks. Deep learning approaches must be proven on these benchmarks to become the practical method of choice in drug property prediction.Keywords: activity (QSAR), ADMET, classical methods, drug property prediction, empirical study, machine learning
Procedia PDF Downloads 81977 ICT in Education – A Quest for Quality Learning in the 21st Century
Authors: Adam Johnbull
Abstract:
The paper discusses ICT in Education as a quest for quality learning in the 21st century. Education is the key that unlock the door to development, without adequate education of the citizenry, the development of a nation becomes a sham. Information Communication Technologies (ICTs) has revolutionized the way people work today and are now transforming education systems. As a result, if schools train children in yesterday’s skills and technologies they may not be effective and fit in tomorrow’s world. This is a sufficient reason for ICT’s to win global recognition and attention and thus ensure desire quality in our school system. Thus, the purpose of the paper is to discuss amongst others, what is ICT. The roles of ICT’s in education, limitation and key challenges of integrating ICT to education in the enhancement of student learning and experiences in other to encourage policy makers, school administrators and teachers pay the required attention to integrate this technology in the education system. The paper concludes that regardless of all the limitation characterizing it. ICT benefit education system to provide quality education in the 21st century.Keywords: ICTs, quest, information, global, sham, century
Procedia PDF Downloads 426976 Accelerating Molecular Dynamics Simulations of Electrolytes with Neural Network: Bridging the Gap between Ab Initio Molecular Dynamics and Classical Molecular Dynamics
Authors: Po-Ting Chen, Santhanamoorthi Nachimuthu, Jyh-Chiang Jiang
Abstract:
Classical molecular dynamics (CMD) simulations are highly efficient for material simulations but have limited accuracy. In contrast, ab initio molecular dynamics (AIMD) provides high precision by solving the Kohn–Sham equations yet requires significant computational resources, restricting the size of systems and time scales that can be simulated. To address these challenges, we employed NequIP, a machine learning model based on an E(3)-equivariant graph neural network, to accelerate molecular dynamics simulations of a 1M LiPF6 in EC/EMC (v/v 3:7) for Li battery applications. AIMD calculations were initially conducted using the Vienna Ab initio Simulation Package (VASP) to generate highly accurate atomic positions, forces, and energies. This data was then used to train the NequIP model, which efficiently learns from the provided data. NequIP achieved AIMD-level accuracy with significantly less training data. After training, NequIP was integrated into the LAMMPS software to enable molecular dynamics simulations of larger systems over longer time scales. This method overcomes the computational limitations of AIMD while improving the accuracy limitations of CMD, providing an efficient and precise computational framework. This study showcases NequIP’s applicability to electrolyte systems, particularly for simulating the dynamics of LiPF6 ionic mixtures. The results demonstrate substantial improvements in both computational efficiency and simulation accuracy, highlighting the potential of machine learning models to enhance molecular dynamics simulations.Keywords: lithium-ion batteries, electrolyte simulation, molecular dynamics, neural network
Procedia PDF Downloads 18975 Law as a Means to Address Conflict
Authors: Tim Bakken
Abstract:
The paper will discuss to what extent political polarization contributes to censorship, lack of civil discourse, and even violence. Most researchers have been unable to identify precisely what factors or processes contribute significantly to conflict. Absent such recognition, we have been unable to select effective remedies to address conflict. Through this paper, it will consider whether legal remedies can help to reduce conflict and polarization. My sense is that many current conflicts cannot be remedied primarily by law. But, there is little research on this hypothesis. Absent research and findings, nations may be looking to law for relief when, in fact, they should be looking at conditions underlying the formation of law or the absence of a more precise and effective legal remedy. It is hypothesized that the underlying reasons for conflict include sub-groups’ separation from the larger democratic society; misplaced loyalty to members of sub-groups; a culture of silence when recognizing wrongdoing; and retaliation against people who speak up. In sum, the greater distance citizens or institutions place between themselves and democratic norms, the more likely the members of a sub-group or institution will be to adopt conflict, even violence, as a method to obtain personal goals.Keywords: constitutional law, conflict, criminal law, polarization
Procedia PDF Downloads 76974 The Relationship between Brand Recall and Brand Attitude in Advergame
Authors: Azaze-Azizi Abdul Adis, Hyung Jun Kim, Mohamad Rizwan Abdul Majid, Zaiton Osman, Izyanti Awang Razli
Abstract:
The increase of online advertising, specifically advergame has become a popular method of strengthening consumer brand recognition by inserting attractive characters and enhancing entertainment value. There have been several remarkable studies on spokes-characters in advertising effectiveness. However, few studies have examined the link between character presence and consumers' brand recall and attitude in advergame. Moreover, how the entertainment value of an advergame influences brand recall and brand attitude and the mediating role of brand recall in influencing character presence and entertainment on brand attitude are still lacking in the advergaming literature. An online survey was conducted with 366 Malaysian gamers. Using structural equation modeling, the results showed that character presence had no influence but entertainment value had a positive influence on brand recall and brand attitude. This study confirmed the role of brand recall as a mediator of the effect of between entertainment and brand attitude in advergame.Keywords: character presence, entertainment, brand recall, brand attitude, advergame
Procedia PDF Downloads 536973 Attitudes, Knowledge and Perceptions towards Cervical Cancer Messages among Female University Students
Authors: Anne Nattembo
Abstract:
Cervical cancer remains a major public health problem in developing countries, especially in Africa. Effective cervical cancer prevention communication requires identification of behaviors, attitudes and increasing awareness of a given population; thus this study focused on investigating awareness, attitudes, and behavior among female university students towards cervical cancer messages. The study objectives sought to investigate the communication behavior of young adults towards cervical cancer, to understand female students recognition of cervical cancer as a problem, to identify the frames related to cervical cancer and their impact towards audience communication and participation behaviors, to identify the factors that influence behavioral intentions and level of involvement towards cervical cancer services and to make recommendations on how to improve cervical cancer communication towards female university students. The researcher obtained data using semi-structured interviews and focus group discussions targeting 90 respondents. The semi-structured in-depth interviews were carried out through one-on-one discussions basis using a set of prepared questions among 53 respondents. All interviews were audio-tape recorded. Each interview was directly typed into Microsoft Word. 4 focus group discussions were conducted with a total of 37 respondents; 2 female only groups with 10 respondents in one and 9 respondents in another, 1 mixed with 12 participants 5 of whom were male, and 1 male only group with 6 participants. The key findings show that the participants preferred to receive and access cervical cancer information from doctors although they were mainly receiving information from the radio. In regards to the type of public the respondents represent, majority of the respondents were non-publics in the sense that they did not have knowledge about cervical cancer, had low levels of involvement and had high constraint recognition their cervical cancer knowledge levels. The researcher identified the most salient audience frames among female university students towards cervical cancer and these included; death, loss, and fear. These frames did not necessarily make cervical cancer an issue of concern among the female university students but rather an issue they distanced themselves from as they did not perceive it as a risk. The study also identified the constraints respondents face in responding to cervical cancer campaign calls-to-action which included; stigma, lack of knowledge and access to services as well as lack of recommendation from doctors. In regards to sex differences, females had more knowledge about cervical cancer than the males. In conclusion the study highlights the importance of interpersonal communication in risk or health communication with a focus on health providers proactively sharing cervical cancer prevention information with their patients. Health provider’s involvement in cervical cancer is very important in influencing behavior and compliance of cervical cancer calls-to-action. The study also provides recommendations for designing effective cervical cancer campaigns that will positively impact on the audience such as packaging cervical cancer messages that also target the males as a way of increasing their involvement and more campaigns to increase awareness of cervical cancer as well as designing positive framed messages to counter the negative audience frames towards cervical cancer.Keywords: cervical cancer communication, health communication, university students, risk communication
Procedia PDF Downloads 231972 Streamlines: Paths of Fluid Flow through Sandstone Samples Based on Computed Microtomography
Authors: Ł. Kaczmarek, T. Wejrzanowski, M. Maksimczuk
Abstract:
The study presents the use of the numerical calculations based on high-resolution computed microtomography in analysis of fluid flow through Miocene sandstones. Therefore, the permeability studies of rocks were performed. Miocene samples were taken from well S-3, located in the eastern part of the Carpathian Foredeep. For aforementioned analysis, two series of X-ray irradiation were performed. The first set of samples was selected to obtain the spatial distribution of grains and pores. At this stage of the study length of voxel side amounted 27 microns. The next set of X-ray irradation enabled recognition of microstructural components as well as petrophysical features. The length of voxel side in this stage was up to 2 µm. Based on this study, the samples were broken down into two distinct groups. The first one represents conventional reservoir deposits, in opposite to second one - unconventional type. Appropriate identification of petrophysical parameters such as porosity and permeability of the formation is a key element for optimization of the reservoir development.Keywords: grains, permeability, pores, pressure distribution
Procedia PDF Downloads 253971 The Impact of the Cross Race Effect on Eyewitness Identification
Authors: Leah Wilck
Abstract:
Eyewitness identification is arguably one of the most utilized practices within our legal system; however, exoneration cases indicate that this practice may lead to accuracy and conviction errors. The purpose of this study was to examine the effects of the cross-race effect, the phenomena in which people are able to more easily and accurately identify faces from within their racial category, on the accuracy of eyewitness identification. Participants watched three separate videos of a perpetrator trying to steal a bicycle. In each video, the perpetrator was of a different race and gender. Participants watched a video where the perpetrator was a Black male, a White male, and a White female. Following the completion of watching each video, participants were asked to recall everything they could about the perpetrator they witnessed. The initial results of the study did not find the expected cross-race effect impacted the eyewitness identification accuracy. These surprising results are discussed in terms of cross-race bias and recognition theory as well as applied implications.Keywords: cross race effect, eyewitness identification, own-race bias, racial profiling
Procedia PDF Downloads 164970 Facial Pose Classification Using Hilbert Space Filling Curve and Multidimensional Scaling
Authors: Mekamı Hayet, Bounoua Nacer, Benabderrahmane Sidahmed, Taleb Ahmed
Abstract:
Pose estimation is an important task in computer vision. Though the majority of the existing solutions provide good accuracy results, they are often overly complex and computationally expensive. In this perspective, we propose the use of dimensionality reduction techniques to address the problem of facial pose estimation. Firstly, a face image is converted into one-dimensional time series using Hilbert space filling curve, then the approach converts these time series data to a symbolic representation. Furthermore, a distance matrix is calculated between symbolic series of an input learning dataset of images, to generate classifiers of frontal vs. profile face pose. The proposed method is evaluated with three public datasets. Experimental results have shown that our approach is able to achieve a correct classification rate exceeding 97% with K-NN algorithm.Keywords: machine learning, pattern recognition, facial pose classification, time series
Procedia PDF Downloads 350969 A Survey of Feature Selection and Feature Extraction Techniques in Machine Learning
Authors: Samina Khalid, Shamila Nasreen
Abstract:
Dimensionality reduction as a preprocessing step to machine learning is effective in removing irrelevant and redundant data, increasing learning accuracy, and improving result comprehensibility. However, the recent increase of dimensionality of data poses a severe challenge to many existing feature selection and feature extraction methods with respect to efficiency and effectiveness. In the field of machine learning and pattern recognition, dimensionality reduction is important area, where many approaches have been proposed. In this paper, some widely used feature selection and feature extraction techniques have analyzed with the purpose of how effectively these techniques can be used to achieve high performance of learning algorithms that ultimately improves predictive accuracy of classifier. An endeavor to analyze dimensionality reduction techniques briefly with the purpose to investigate strengths and weaknesses of some widely used dimensionality reduction methods is presented.Keywords: age related macular degeneration, feature selection feature subset selection feature extraction/transformation, FSA’s, relief, correlation based method, PCA, ICA
Procedia PDF Downloads 496968 Investor’s Psychology in Investment Decision Making in Context of Behavioural Finance
Authors: Jhansi Rani Boda, G. Sunitha
Abstract:
Worldwide, the financial markets are influenced by several factors such as the changes in economic and political processes that occur in the country and the globe, information diffusion and approachability and so on. Yet, the foremost important factor is the investor’s reaction and perception. For an individual investor, decision-making process can be perceived as a continuous process that has significant impact of their psychology while making investment decisions. Behavioral finance relies on research of human and social recognition and emotional tolerance studies to identify and understand the investment decisions. This article aims to report the research of individual investor’s financial behavior in a historical perspective. This article uncovers the investor’s psychology in investment decision making focusing on the investor’s rationality with an explanation of psychological and emotional factors that affect investing. The results of the study are revealed by means of Graphical visualization.Keywords: behavioral finance, psychology, investor’s behavior, psychological and emotional factors
Procedia PDF Downloads 300967 Dynamical Models for Enviromental Effect Depuration for Structural Health Monitoring of Bridges
Authors: Francesco Morgan Bono, Simone Cinquemani
Abstract:
This research aims to enhance bridge monitoring by employing innovative techniques that incorporate exogenous factors into the modeling of sensor signals, thereby improving long-term predictability beyond traditional static methods. Using real datasets from two different bridges equipped with Linear Variable Displacement Transducer (LVDT) sensors, the study investigates the fundamental principles governing sensor behavior for more precise long-term forecasts. Additionally, the research evaluates performance on noisy and synthetically damaged data, proposing a residual-based alarm system to detect anomalies in the bridge. In summary, this novel approach combines advanced modeling, exogenous factors, and anomaly detection to extend prediction horizons and improve preemptive damage recognition, significantly advancing structural health monitoring practices.Keywords: structural health monitoring, dynamic models, sindy, railway bridges
Procedia PDF Downloads 38966 Human Motion Capture: New Innovations in the Field of Computer Vision
Authors: Najm Alotaibi
Abstract:
Human motion capture has become one of the major area of interest in the field of computer vision. Some of the major application areas that have been rapidly evolving include the advanced human interfaces, virtual reality and security/surveillance systems. This study provides a brief overview of the techniques and applications used for the markerless human motion capture, which deals with analyzing the human motion in the form of mathematical formulations. The major contribution of this research is that it classifies the computer vision based techniques of human motion capture based on the taxonomy, and then breaks its down into four systematically different categories of tracking, initialization, pose estimation and recognition. The detailed descriptions and the relationships descriptions are given for the techniques of tracking and pose estimation. The subcategories of each process are further described. Various hypotheses have been used by the researchers in this domain are surveyed and the evolution of these techniques have been explained. It has been concluded in the survey that most researchers have focused on using the mathematical body models for the markerless motion capture.Keywords: human motion capture, computer vision, vision-based, tracking
Procedia PDF Downloads 319965 A Neuro-Automata Decision Support System for the Control of Late Blight in Tomato Crops
Authors: Gizelle K. Vianna, Gustavo S. Oliveira, Gabriel V. Cunha
Abstract:
The use of decision support systems in agriculture may help monitoring large fields of crops by automatically detecting the symptoms of foliage diseases. In our work, we designed and implemented a decision support system for small tomatoes producers. This work investigates ways to recognize the late blight disease from the analysis of digital images of tomatoes, using a pair of multilayer perceptron neural networks. The networks outputs are used to generate repainted tomato images in which the injuries on the plant are highlighted, and to calculate the damage level of each plant. Those levels are then used to construct a situation map of a farm where a cellular automata simulates the outbreak evolution over the fields. The simulator can test different pesticides actions, helping in the decision on when to start the spraying and in the analysis of losses and gains of each choice of action.Keywords: artificial neural networks, cellular automata, decision support system, pattern recognition
Procedia PDF Downloads 455964 Low-Cost Embedded Biometric System Based on Fingervein Modality
Authors: Randa Boukhris, Alima Damak, Dorra Sellami
Abstract:
Fingervein biometric authentication is one of the most popular and accurate technologies. However, low cost embedded solution is still an open problem. In this paper, a real-time implementation of fingervein recognition process embedded in Raspberry-Pi has been proposed. The use of Raspberry-Pi reduces overall system cost and size while allowing an easy user interface. Implementation of a target technology has guided to opt some specific parallel and simple processing algorithms. In the proposed system, we use four structural directional kernel elements for filtering finger vein images. Then, a Top-Hat and Bottom-Hat kernel filters are used to enhance the visibility and the appearance of venous images. For feature extraction step, a simple Local Directional Code (LDC) descriptor is applied. The proposed system presents an Error Equal Rate (EER) and Identification Rate (IR), respectively, equal to 0.02 and 98%. Furthermore, experimental results show that real-time operations have good performance.Keywords: biometric, Bottom-Hat, Fingervein, LDC, Rasberry-Pi, ROI, Top-Hat
Procedia PDF Downloads 205963 A Neural Network Classifier for Identifying Duplicate Image Entries in Real-Estate Databases
Authors: Sergey Ermolin, Olga Ermolin
Abstract:
A Deep Convolution Neural Network with Triplet Loss is used to identify duplicate images in real-estate advertisements in the presence of image artifacts such as watermarking, cropping, hue/brightness adjustment, and others. The effects of batch normalization, spatial dropout, and various convergence methodologies on the resulting detection accuracy are discussed. For comparative Return-on-Investment study (per industry request), end-2-end performance is benchmarked on both Nvidia Titan GPUs and Intel’s Xeon CPUs. A new real-estate dataset from San Francisco Bay Area is used for this work. Sufficient duplicate detection accuracy is achieved to supplement other database-grounded methods of duplicate removal. The implemented method is used in a Proof-of-Concept project in the real-estate industry.Keywords: visual recognition, convolutional neural networks, triplet loss, spatial batch normalization with dropout, duplicate removal, advertisement technologies, performance benchmarking
Procedia PDF Downloads 338962 A Methodology to Integrate Data in the Company Based on the Semantic Standard in the Context of Industry 4.0
Authors: Chang Qin, Daham Mustafa, Abderrahmane Khiat, Pierre Bienert, Paulo Zanini
Abstract:
Nowadays, companies are facing lots of challenges in the process of digital transformation, which can be a complex and costly undertaking. Digital transformation involves the collection and analysis of large amounts of data, which can create challenges around data management and governance. Furthermore, it is also challenged to integrate data from multiple systems and technologies. Although with these pains, companies are still pursuing digitalization because by embracing advanced technologies, companies can improve efficiency, quality, decision-making, and customer experience while also creating different business models and revenue streams. In this paper, the issue that data is stored in data silos with different schema and structures is focused. The conventional approaches to addressing this issue involve utilizing data warehousing, data integration tools, data standardization, and business intelligence tools. However, these approaches primarily focus on the grammar and structure of the data and neglect the importance of semantic modeling and semantic standardization, which are essential for achieving data interoperability. In this session, the challenge of data silos in Industry 4.0 is addressed by developing a semantic modeling approach compliant with Asset Administration Shell (AAS) models as an efficient standard for communication in Industry 4.0. The paper highlights how our approach can facilitate the data mapping process and semantic lifting according to existing industry standards such as ECLASS and other industrial dictionaries. It also incorporates the Asset Administration Shell technology to model and map the company’s data and utilize a knowledge graph for data storage and exploration.Keywords: data interoperability in industry 4.0, digital integration, industrial dictionary, semantic modeling
Procedia PDF Downloads 94961 How Western Donors Allocate Official Development Assistance: New Evidence From a Natural Language Processing Approach
Authors: Daniel Benson, Yundan Gong, Hannah Kirk
Abstract:
Advancement in national language processing techniques has led to increased data processing speeds, and reduced the need for cumbersome, manual data processing that is often required when processing data from multilateral organizations for specific purposes. As such, using named entity recognition (NER) modeling and the Organisation of Economically Developed Countries (OECD) Creditor Reporting System database, we present the first geotagged dataset of OECD donor Official Development Assistance (ODA) projects on a global, subnational basis. Our resulting data contains 52,086 ODA projects geocoded to subnational locations across 115 countries, worth a combined $87.9bn. This represents the first global, OECD donor ODA project database with geocoded projects. We use this new data to revisit old questions of how ‘well’ donors allocate ODA to the developing world. This understanding is imperative for policymakers seeking to improve ODA effectiveness.Keywords: international aid, geocoding, subnational data, natural language processing, machine learning
Procedia PDF Downloads 78960 Application of Rapidly Exploring Random Tree Star-Smart and G2 Quintic Pythagorean Hodograph Curves to the UAV Path Planning Problem
Authors: Luiz G. Véras, Felipe L. Medeiros, Lamartine F. Guimarães
Abstract:
This work approaches the automatic planning of paths for Unmanned Aerial Vehicles (UAVs) through the application of the Rapidly Exploring Random Tree Star-Smart (RRT*-Smart) algorithm. RRT*-Smart is a sampling process of positions of a navigation environment through a tree-type graph. The algorithm consists of randomly expanding a tree from an initial position (root node) until one of its branches reaches the final position of the path to be planned. The algorithm ensures the planning of the shortest path, considering the number of iterations tending to infinity. When a new node is inserted into the tree, each neighbor node of the new node is connected to it, if and only if the extension of the path between the root node and that neighbor node, with this new connection, is less than the current extension of the path between those two nodes. RRT*-smart uses an intelligent sampling strategy to plan less extensive routes by spending a smaller number of iterations. This strategy is based on the creation of samples/nodes near to the convex vertices of the navigation environment obstacles. The planned paths are smoothed through the application of the method called quintic pythagorean hodograph curves. The smoothing process converts a route into a dynamically-viable one based on the kinematic constraints of the vehicle. This smoothing method models the hodograph components of a curve with polynomials that obey the Pythagorean Theorem. Its advantage is that the obtained structure allows computation of the curve length in an exact way, without the need for quadratural techniques for the resolution of integrals.Keywords: path planning, path smoothing, Pythagorean hodograph curve, RRT*-Smart
Procedia PDF Downloads 167959 Robust Pattern Recognition via Correntropy Generalized Orthogonal Matching Pursuit
Authors: Yulong Wang, Yuan Yan Tang, Cuiming Zou, Lina Yang
Abstract:
This paper presents a novel sparse representation method for robust pattern classification. Generalized orthogonal matching pursuit (GOMP) is a recently proposed efficient sparse representation technique. However, GOMP adopts the mean square error (MSE) criterion and assign the same weights to all measurements, including both severely and slightly corrupted ones. To reduce the limitation, we propose an information-theoretic GOMP (ITGOMP) method by exploiting the correntropy induced metric. The results show that ITGOMP can adaptively assign small weights on severely contaminated measurements and large weights on clean ones, respectively. An ITGOMP based classifier is further developed for robust pattern classification. The experiments on public real datasets demonstrate the efficacy of the proposed approach.Keywords: correntropy induced metric, matching pursuit, pattern classification, sparse representation
Procedia PDF Downloads 355958 A Multimodal Approach to Improve the Performance of Biometric System
Authors: Chander Kant, Arun Kumar
Abstract:
Biometric systems automatically recognize an individual based on his/her physiological and behavioral characteristics. There are also some traits like weight, age, height etc. that may not provide reliable user recognition because of there common and temporary nature. These traits are called soft bio metric traits. Although soft bio metric traits are lack of permanence to uniquely and reliably identify an individual, yet they provide some beneficial evidence about the user identity and may improve the system performance. Here in this paper, we have proposed an approach for integrating the soft bio metrics with fingerprint and face to improve the performance of personal authentication system. In our approach we have proposed a combined architecture of three different sensors to elevate the system performance. The approach includes, soft bio metrics, fingerprint and face traits. We have also proven the efficiency of proposed system regarding FAR (False Acceptance Ratio) and total response time, with the help of MUBI (Multimodal Bio metrics Integration) software.Keywords: FAR, minutiae point, multimodal bio metrics, primary bio metric, soft bio metric
Procedia PDF Downloads 346957 Behavioral Patterns of Adopting Digitalized Services (E-Sport versus Sports Spectating) Using Agent-Based Modeling
Authors: Justyna P. Majewska, Szymon M. Truskolaski
Abstract:
The growing importance of digitalized services in the so-called new economy, including the e-sports industry, can be observed recently. Various demographic or technological changes lead consumers to modify their needs, not regarding the services themselves but the method of their application (attracting customers, forms of payment, new content, etc.). In the case of leisure-related to competitive spectating activities, there is a growing need to participate in events whose content is not sports competitions but computer games challenge – e-sport. The literature in this area so far focuses on determining the number of e-sport fans with elements of a simple statistical description (mainly concerning demographic characteristics such as age, gender, place of residence). Meanwhile, the development of the industry is influenced by a combination of many different, intertwined demographic, personality and psychosocial characteristics of customers, as well as the characteristics of their environment. Therefore, there is a need for a deeper recognition of the determinants of the behavioral patterns upon selecting digitalized services by customers, which, in the absence of available large data sets, can be achieved by using econometric simulations – multi-agent modeling. The cognitive aim of the study is to reveal internal and external determinants of behavioral patterns of customers taking into account various variants of economic development (the pace of digitization and technological development, socio-demographic changes, etc.). In the paper, an agent-based model with heterogeneous agents (characteristics of customers themselves and their environment) was developed, which allowed identifying a three-stage development scenario: i) initial interest, ii) standardization, and iii) full professionalization. The probabilities regarding the transition process were estimated using the Method of Simulated Moments. The estimation of the agent-based model parameters and sensitivity analysis reveals crucial factors that have driven a rising trend in e-sport spectating and, in a wider perspective, the development of digitalized services. Among the psychosocial characteristics of customers, they are the level of familiarization with the rules of games as well as sports disciplines, active and passive participation history and individual perception of challenging activities. Environmental factors include general reception of games, number and level of recognition of community builders and the level of technological development of streaming as well as community building platforms. However, the crucial factor underlying the good predictive power of the model is the level of professionalization. While in the initial interest phase, the entry barriers for new customers are high. They decrease during the phase of standardization and increase again in the phase of full professionalization when new customers perceive participation history inaccessible. In this case, they are prone to switch to new methods of service application – in the case of e-sport vs. sports to new content and more modern methods of its delivery. In a wider context, the findings in the paper support the idea of a life cycle of services regarding methods of their application from “traditional” to digitalized.Keywords: agent-based modeling, digitalized services, e-sport, spectators motives
Procedia PDF Downloads 172956 Using Classifiers to Predict Student Outcome at Higher Institute of Telecommunication
Authors: Fuad M. Alkoot
Abstract:
We aim at highlighting the benefits of classifier systems especially in supporting educational management decisions. The paper aims at using classifiers in an educational application where an outcome is predicted based on given input parameters that represent various conditions at the institute. We present a classifier system that is designed using a limited training set with data for only one semester. The achieved system is able to reach at previously known outcomes accurately. It is also tested on new input parameters representing variations of input conditions to see its prediction on the possible outcome value. Given the supervised expectation of the outcome for the new input we find the system is able to predict the correct outcome. Experiments were conducted on one semester data from two departments only, Switching and Mathematics. Future work on other departments with larger training sets and wider input variations will show additional benefits of classifier systems in supporting the management decisions at an educational institute.Keywords: machine learning, pattern recognition, classifier design, educational management, outcome estimation
Procedia PDF Downloads 278955 Legal Pluralism and Ideology: The Recognition of the Indigenous Justice Administration in Bolivia through the "Indigenismo" and "Decolonisation" Discourses
Authors: Adriana Pereira Arteaga
Abstract:
In many Latin American countries the transition towards legal pluralism - has developed as part of what is called Latin-American-Constitutionalism over the last thirty years. The aim of this paper is to discuss how legal pluralism in its current form in Bolivia may produce exclusion and violence. Legal sources and discourse analysis - as an approach to examine written language on discourse documentation- will be used to develop this paper. With the constitution of 2009, Bolivia was symbolically "re-founded" into a multi-nation state. This shift goes hand in hand with the "indigenista" and "decolonisation" ideologies developing since the early 20th century. Discourses based on these ideologies reflect the rejection of liberal and western premises on which the Bolivian republic was originally built after independence. According to the "indigenista" movements, the liberal nation-state generates institutions corresponding to a homogenous society. These liberal institutions not only ignore the Bolivian multi-nation reality, but also maintain the social structures originating form the colony times, based on prejudices against the indigenous. The described statements were elaborated through the image: the indigenous people humiliated by a cruel western system as highlighted by the constitution's preamble. This narrative had a considerable impact on the sensitivity of people and received great social support. Therefore the proposal for changing structures of the nation-state, is charged with an emancipatory message of restoring even the pre-Columbian order. An order at times romantically described as the perfect order. Legally this connotes a rejection of the positivistic national legal system based on individual rights and the promotion of constitutional recognition of indigenous justice administration. The pluralistic Constitution is supposed to promote tolerance and a peaceful coexistence among nations, so that the unity and integrity of the country could be maintained. In its current form, legal pluralism in Bolivia is justified on pre-existing rights contained for example in the International - Labour - Organization - Convention 169, but it is more developed on the described discursive constructions. Over time these discursive constructions created inconsistencies in terms of putting indigenous justice administration into practice: First, because legal pluralism has been more developed on level of political discourse, so a real interaction between the national and the indigenous jurisdiction cannot be observed. There are no clear coordination and cooperation mechanisms. Second, since the recently reformed constitution is based on deep sensitive experiences, little is said about the general legal principles on which a pluralistic administration of justice in Bolivia should be based. Third, basic rights, liberties, and constitutional guarantees are also affected by the antagonized image of the national justice administration. As a result, fundamental rights could be violated on a large scale because many indigenous justice administration practices run counter to these constitutional rules. These problems are not merely Bolivian but may also be encountered in other regional countries with similar backgrounds, like Ecuador.Keywords: discourse, indigenous justice, legal pluralism, multi-nation
Procedia PDF Downloads 445954 Modern Technology-Based Methods in Neurorehabilitation for Social Competence Deficit in Children with Acquired Brain Injury
Authors: M. Saard, A. Kolk, K. Sepp, L. Pertens, L. Reinart, C. Kööp
Abstract:
Introduction: Social competence is often impaired in children with acquired brain injury (ABI), but evidence-based rehabilitation for social skills has remained undeveloped. Modern technology-based methods create effective and safe learning environments for pediatric social skills remediation. The aim of the study was to implement our structured model of neuro rehab for socio-cognitive deficit using multitouch-multiuser tabletop (MMT) computer-based platforms and virtual reality (VR) technology. Methods: 40 children aged 8-13 years (yrs) have participated in the pilot study: 30 with ABI -epilepsy, traumatic brain injury and/or tic disorder- and 10 healthy age-matched controls. From the patients, 12 have completed the training (M = 11.10 yrs, SD = 1.543) and 20 are still in training or in the waiting-list group (M = 10.69 yrs, SD = 1.704). All children performed the first individual and paired assessments. For patients, second evaluations were performed after the intervention period. Two interactive applications were implemented into rehabilitation design: Snowflake software on MMT tabletop and NoProblem on DiamondTouch Table (DTT), which allowed paired training (2 children at once). Also, in individual training sessions, HTC Vive VR device was used with VR metaphors of difficult social situations to treat social anxiety and train social skills. Results: At baseline (B) evaluations, patients had higher deficits in executive functions on the BRIEF parents’ questionnaire (M = 117, SD = 23.594) compared to healthy controls (M = 22, SD = 18.385). The most impaired components of social competence were emotion recognition, Theory of Mind skills (ToM), cooperation, verbal/non-verbal communication, and pragmatics (Friendship Observation Scale scores only 25-50% out of 100% for patients). In Sentence Completion Task and Spence Anxiety Scale, the patients reported a lack of friends, behavioral problems, bullying in school, and social anxiety. Outcome evaluations: Snowflake on MMT improved executive and cooperation skills and DTT developed communication skills, metacognitive skills, and coping. VR, video modelling and role-plays improved social attention, emotional attitude, gestural behaviors, and decreased social anxiety. NEPSY-II showed improvement in Affect Recognition [B = 7, SD = 5.01 vs outcome (O) = 10, SD = 5.85], Verbal ToM (B = 8, SD = 3.06 vs O = 10, SD = 4.08), Contextual ToM (B = 8, SD = 3.15 vs O = 11, SD = 2.87). ToM Stories test showed an improved understanding of Intentional Lying (B = 7, SD = 2.20 vs O = 10, SD = 0.50), and Sarcasm (B=6, SD = 2.20 vs O = 7, SD = 2.50). Conclusion: Neurorehabilitation based on the Structured Model of Neurorehab for Socio-Cognitive Deficit in children with ABI were effective in social skills remediation. The model helps to understand theoretical connections between components of social competence and modern interactive computerized platforms. We encourage therapists to implement these next-generation devices into the rehabilitation process as MMT and VR interfaces are motivating for children, thus ensuring good compliance. Improving children’s social skills is important for their and their families’ quality of life and social capital.Keywords: acquired brain injury, children, social skills deficit, technology-based neurorehabilitation
Procedia PDF Downloads 120953 The Role of Polar Body in the Female Gamete
Authors: Parsa Sheikhzadeh
Abstract:
Polar bodies are cells that form by oogenesis in meiosis which differentiate and develop from oocytes. Although in many animals, these cells often die following meiotic maturation of the oocyte. Oocyte activation is during mammalian fertilization, sperm is fused with the oocyte's membrane, triggering the resumption of meiosis from the metaphase II arrest, the extrusion of the second polar body, and the exocytosis of cortical granules. The origin recognition complex proteins 4 (ORC4) forms a cage around the set of chromosomes that will be extruded during polar body formation before it binds to the chromatin shortly before zygotic DNA replication. One unique feature of the female gamete is that the polar bodies can provide beneficial information about the genetic background of the oocyte without potentially destroying it. Testing at the polar body (PB) stage was the least accurate, mainly due to the high incidence of post-zygotic events. On the other hand, the results from PB1-MII oocyte pair validated that PB1 contains nearly the same methylome (average Pearson correlation is 0.92) with sibling MII oocyte. In this article, we comprehensively examine the role of polar bodies in female human gametes.Keywords: polar bodies, ORC4, oocyte, genetic, methylome, gamete, female
Procedia PDF Downloads 94952 The Location Problem of Electric Vehicle Charging Stations: A Case Study of Istanbul
Authors: Müjde Erol Genevois, Hatice Kocaman
Abstract:
Growing concerns about the increasing consumption of fossil energy and the improved recognition of environmental protection require sustainable road transportation technology. Electric vehicles (EVs) can contribute to improve environmental sustainability and to solve the energy problem with the right infrastructure. The problem of where to locate electric vehicle charging station can be grouped as decision-making problems because of including many criteria and alternatives that have to be considered simultaneously. The purpose of this paper is to present an integrated AHP and TOPSIS model to rank the optimal sites of EVs charging station in Istanbul, Turkey. Ten different candidate points and three decision criteria are identified. The performances of each candidate points with respect to criteria are obtained according to AHP calculations. These performances are used as an input for TOPSIS method to rank the candidate points. It is obtained accurate and robust results by integrating AHP and TOPSIS methods.Keywords: electric vehicle charging station (EVCS), AHP, TOPSIS, location selection
Procedia PDF Downloads 324951 Protective Effect of Diosgenin against Silica-Induced Tuberculosis in Rat Model
Authors: Williams A. Adu, Cynthia A. Danquah, Paul P. S. Ossei, Selase Ativui, Michael Ofori, James Asenso, George Owusu
Abstract:
Background Silicosis is an occupational disease of the lung that is caused by chronic exposure to silica dust. There is a higher frequency of co-existence of silicosis with tuberculosis (TB), ultimately resulting in lung fibrosis and respiratory failure. Chronic intake of synthetic drugs has resulted in undesirable side effects. Diosgenin is a steroidal saponin that has been shown to exert a therapeutic effect on lung injury. Therefore, we investigated the ability of diosgenin to reduce the susceptibility of silica-induced TB in rats. Method Silicosis was induced by intratracheal instillation of 50 mg/kg crystalline silica in Sprague Dawley rats. Different doses of diosgenin (1, 10, and 100 mg/kg), Mycobacterium smegmatis and saline were administered for 30 days. Afterwards, 5 of the rats from each group were sacrificed, and the 5 remaining rats in each group, except the control, received Mycobacterium smegmatis. Treatment of diosgenin continued until the 50th day, and the rats were sacrificed at the end of the experiment. The result was analysed using a one-way analysis of variance (ANOVA) with a Graph-pad prism Result At a half-maximal inhibition concentration of 48.27 µM, diosgenin inhibited the growth of Mycobacterium smegmatis. There was a marked decline in the levels of immune cell infiltration and cytokines production. Lactate dehydrogenase and total protein levels were significantly reduced compared to control. There was an increase in the survival rate of the treatment group compared to the control. Conclusion Diosgenin ameliorated silica-induced pulmonary tuberculosis by declining the levels of inflammatory and pro-inflammatory cytokines and, in effect, significantly reduced the susceptibility of rats to pulmonary TB.Keywords: silicosis, tuberculosis, diosgenin, fibrosis, crystalline silica
Procedia PDF Downloads 65