Search results for: genetic algorithms
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3425

Search results for: genetic algorithms

2285 Housing Prices and Travel Costs: Insights from Origin-Destination Demand Estimation in Taiwan’s Science Parks

Authors: Kai-Wei Ji, Dung-Ying Lin

Abstract:

This study investigates the impact of transportation on housing prices in regions surrounding Taiwan's science parks. As these parks evolve into crucial economic and population growth centers, they attract an increasing number of residents and workers, significantly influencing local housing markets. This demographic shift raises important questions about the role of transportation in shaping real estate values. Our research examines four major science parks in Taiwan, providing a comparative analysis of how transportation conditions and population dynamics interact to affect housing price premiums. We employ an origin-destination (OD) matrix derived from pervasive traffic data to model travel patterns and their effects on real estate values. The methodology utilizes a bi-level framework: a genetic algorithm optimizes OD demand estimation at the upper level, while a user equilibrium (UE) model simulates traffic flow at the lower level. This approach enables a nuanced exploration of how population growth impacts transportation conditions and housing price premiums. By analyzing the interplay between travel costs based on OD demand estimation and housing prices, we offer valuable insights for urban planners and policymakers. These findings are crucial for informed decision-making in rapidly developing areas, where understanding the relationship between mobility and real estate values is essential for sustainable urban development.

Keywords: demand estimation, genetic algorithm, housing price, transportation

Procedia PDF Downloads 20
2284 A Study of Using Multiple Subproblems in Dantzig-Wolfe Decomposition of Linear Programming

Authors: William Chung

Abstract:

This paper is to study the use of multiple subproblems in Dantzig-Wolfe decomposition of linear programming (DW-LP). Traditionally, the decomposed LP consists of one LP master problem and one LP subproblem. The master problem and the subproblem is solved alternatively by exchanging the dual prices of the master problem and the proposals of the subproblem until the LP is solved. It is well known that convergence is slow with a long tail of near-optimal solutions (asymptotic convergence). Hence, the performance of DW-LP highly depends upon the number of decomposition steps. If the decomposition steps can be greatly reduced, the performance of DW-LP can be improved significantly. To reduce the number of decomposition steps, one of the methods is to increase the number of proposals from the subproblem to the master problem. To do so, we propose to add a quadratic approximation function to the LP subproblem in order to develop a set of approximate-LP subproblems (multiple subproblems). Consequently, in each decomposition step, multiple subproblems are solved for providing multiple proposals to the master problem. The number of decomposition steps can be reduced greatly. Note that each approximate-LP subproblem is nonlinear programming, and solving the LP subproblem must faster than solving the nonlinear multiple subproblems. Hence, using multiple subproblems in DW-LP is the tradeoff between the number of approximate-LP subproblems being formed and the decomposition steps. In this paper, we derive the corresponding algorithms and provide some simple computational results. Some properties of the resulting algorithms are also given.

Keywords: approximate subproblem, Dantzig-Wolfe decomposition, large-scale models, multiple subproblems

Procedia PDF Downloads 166
2283 Efficacy of Preimplantation Genetic Screening in Women with a Spontaneous Abortion History with Eukaryotic or Aneuploidy Abortus

Authors: Jayeon Kim, Eunjung Yu, Taeki Yoon

Abstract:

Most spontaneous miscarriage is believed to be a consequence of embryo aneuploidies. Transferring eukaryotic embryos selected by PGS is expected to decrease the miscarriage rate. Current PGS indications include advanced maternal age, recurrent pregnancy loss, repeated implantation failure. Recently, use of PGS for healthy women without above indications for the purpose of improving in vitro fertilization (IVF) outcomes is on the rise. However, it is still controversy about the beneficial effect of PGS in this population, especially, in women with a history of no more than 2 miscarriages or miscarriage of eukaryotic abortus. This study aimed to investigate if karyotyping result of abortus is a good indicator of preimplantation genetic screening (PGS) in subsequent IVF cycle in women with a history of spontaneous abortion. A single-center retrospective cohort study was performed. Women who had spontaneous abortion(s) (less than 3) and dilatation and evacuation, and subsequent IVF from January 2016 to November 2016 were included. Their medical information was extracted from the charts. Clinical pregnancy was defined as presence of a gestational sac with fetal heart beat detected on ultrasound in week 7. Statistical analysis was performed using SPSS software. Total 234 women were included. 121 out of 234 (51.7%) underwent karyotyping of the abortus, and 113 did not have the abortus karyotyped. Embryo biopsy was performed on 3 or 5 days after oocyte retrieval, followed by embryo transfer (ET) on a fresh or frozen cycle. The biopsied materials were subjected to microarray comparative genomic hybridization. Clinical pregnancy rate per ET was compared between PGS and non-PGS group in each study group. Patients were grouped by two criteria: karyotype of the abortus from previous miscarriage (unknown fetal karyotype (n=89, Group 1), eukaryotic abortus (n=36, Group 2) or aneuploidy abortus (n=67, Group 3)), and pursuing PGS in subsequent IVF cycle (pursuing PGS (PGS group, n=105) or not pursuing PGS (non-PGS group, n=87)). The PGS group was significantly older and had higher number of retrieved oocytes and prior miscarriages compared to non-PGS group. There were no differences in BMI and AMH level between those two groups. In PGS group, the mean number of transferable embryos (eukaryotic embryo) was 1.3 ± 0.7, 1.5 ± 0.5 and 1.4 ± 0.5, respectively (p = 0.049). In 42 cases, ET was cancelled because all embryos biopsied turned out to be abnormal. In all three groups (group 1, 2, and 3), clinical pregnancy rates were not statistically different between PGS and non-PGS group (Group 1: 48.8% vs. 52.2% (p=0.858), Group 2: 70% vs. 73.1% (p=0.730), Group 3: 42.3% vs. 46.7% (p=0.640), in PGS and non-PGS group, respectively). In both groups who had miscarriage with eukaryotic and aneuploidy abortus, the clinical pregnancy rate between IVF cycles with and without PGS was not different. When we compare miscarriage and ongoing pregnancy rate, there were no significant differences between PGS and non-PGS group in all three groups. Our results show that the routine application of PGS in women who had less than 3 miscarriages would not be beneficial, even in cases that previous miscarriage had been caused by fetal aneuploidy.

Keywords: preimplantation genetic diagnosis, miscarriage, kpryotyping, in vitro fertilization

Procedia PDF Downloads 181
2282 Aggregation Scheduling Algorithms in Wireless Sensor Networks

Authors: Min Kyung An

Abstract:

In Wireless Sensor Networks which consist of tiny wireless sensor nodes with limited battery power, one of the most fundamental applications is data aggregation which collects nearby environmental conditions and aggregates the data to a designated destination, called a sink node. Important issues concerning the data aggregation are time efficiency and energy consumption due to its limited energy, and therefore, the related problem, named Minimum Latency Aggregation Scheduling (MLAS), has been the focus of many researchers. Its objective is to compute the minimum latency schedule, that is, to compute a schedule with the minimum number of timeslots, such that the sink node can receive the aggregated data from all the other nodes without any collision or interference. For the problem, the two interference models, the graph model and the more realistic physical interference model known as Signal-to-Interference-Noise-Ratio (SINR), have been adopted with different power models, uniform-power and non-uniform power (with power control or without power control), and different antenna models, omni-directional antenna and directional antenna models. In this survey article, as the problem has proven to be NP-hard, we present and compare several state-of-the-art approximation algorithms in various models on the basis of latency as its performance measure.

Keywords: data aggregation, convergecast, gathering, approximation, interference, omni-directional, directional

Procedia PDF Downloads 229
2281 Evaluation of Beam Structure Using Non-Destructive Vibration-Based Damage Detection Method

Authors: Bashir Ahmad Aasim, Abdul Khaliq Karimi, Jun Tomiyama

Abstract:

Material aging is one of the vital issues among all the civil, mechanical, and aerospace engineering societies. Sustenance and reliability of concrete, which is the widely used material in the world, is the focal point in civil engineering societies. For few decades, researchers have been able to present some form algorithms that could lead to evaluate a structure globally rather than locally without harming its serviceability and traffic interference. The algorithms could help presenting different methods for evaluating structures non-destructively. In this paper, a non-destructive vibration-based damage detection method is adopted to evaluate two concrete beams, one being in a healthy state while the second one contains a crack on its bottom vicinity. The study discusses that damage in a structure affects modal parameters (natural frequency, mode shape, and damping ratio), which are the function of physical properties (mass, stiffness, and damping). The assessment is carried out to acquire the natural frequency of the sound beam. Next, the vibration response is recorded from the cracked beam. Eventually, both results are compared to know the variation in the natural frequencies of both beams. The study concludes that damage can be detected using vibration characteristics of a structural member considering the decline occurred in the natural frequency of the cracked beam.

Keywords: concrete beam, natural frequency, non-destructive testing, vibration characteristics

Procedia PDF Downloads 112
2280 Estimating Algae Concentration Based on Deep Learning from Satellite Observation in Korea

Authors: Heewon Jeong, Seongpyo Kim, Joon Ha Kim

Abstract:

Over the last few tens of years, the coastal regions of Korea have experienced red tide algal blooms, which are harmful and toxic to both humans and marine organisms due to their potential threat. It was accelerated owing to eutrophication by human activities, certain oceanic processes, and climate change. Previous studies have tried to monitoring and predicting the algae concentration of the ocean with the bio-optical algorithms applied to color images of the satellite. However, the accurate estimation of algal blooms remains problems to challenges because of the complexity of coastal waters. Therefore, this study suggests a new method to identify the concentration of red tide algal bloom from images of geostationary ocean color imager (GOCI) which are representing the water environment of the sea in Korea. The method employed GOCI images, which took the water leaving radiances centered at 443nm, 490nm and 660nm respectively, as well as observed weather data (i.e., humidity, temperature and atmospheric pressure) for the database to apply optical characteristics of algae and train deep learning algorithm. Convolution neural network (CNN) was used to extract the significant features from the images. And then artificial neural network (ANN) was used to estimate the concentration of algae from the extracted features. For training of the deep learning model, backpropagation learning strategy is developed. The established methods were tested and compared with the performances of GOCI data processing system (GDPS), which is based on standard image processing algorithms and optical algorithms. The model had better performance to estimate algae concentration than the GDPS which is impossible to estimate greater than 5mg/m³. Thus, deep learning model trained successfully to assess algae concentration in spite of the complexity of water environment. Furthermore, the results of this system and methodology can be used to improve the performances of remote sensing. Acknowledgement: This work was supported by the 'Climate Technology Development and Application' research project (#K07731) through a grant provided by GIST in 2017.

Keywords: deep learning, algae concentration, remote sensing, satellite

Procedia PDF Downloads 183
2279 Significance of Apolipoprotein E (APOE) and Fat Mass and Obesity-Associated FTO Gene Polymorphisms in Cardiac Autonomic Neuropathy Among Individuals of Kazakh Nationality

Authors: N. Bekenova, A. Aitkaliyev, B. Kassiyeva, T. Vochshenkova

Abstract:

Cardiac autonomic neuropathy is not always detected in diabetes, and its phenotypic manifestations may not be evident. Therefore, the study of genetic markers predisposing to the disease is gaining increasing relevance. Research Objective: The goal is to investigate the association of polymorphisms in the APOE and FTO genes with cardiac autonomic neuropathy among individuals of Kazakh nationality. Materials and Methods: A case-control study included 147 patients with cardiac autonomic neuropathy (cases) and 153 patients without cardiac autonomic neuropathy (controls). 300 individuals of Kazakh nationality were recruited from a hospital affiliated with the RSE ‘Medical Centre Hospital of the President's Affairs Administration of the Republic of Kazakhstan.’ Patients were genotyped for 5 FTO gene polymorphisms (rs17817449, rs1121980, rs11075995, rs9939609, rs12149832) and 2 APOE gene polymorphisms (rs429358, rs7412) using real-time PCR. Statistical analysis involved Chi-square methods and calculation of odds ratios (OR) with 95% confidence intervals (CI) and was performed using the Gen Expert genetic calculator. Results. Our research revealed an association between cardiac autonomic neuropathy and rs12149832 (FTO) and rs429358 (APOE). The AA genotype of the rs12149832 polymorphism was found to double the risk of neuropathy development, while the GA genotype decreased the risk of autonomic neuropathy (2.21 (1.38-3.52) and 0.61 (0.38-0.96), respectively, p=0.003). Additionally, we identified that the TC genotype of rs429358 predisposes individuals to the development of cardiac autonomic neuropathy, while the CC genotype decreases the risk (2.23 (1.18-4.22) and 0.26 (0.03-2.31), respectively). Conclusion. Thus, polymorphisms in the APOE and FTO genes (rs429358 and rs12149832) are associated with a predisposition to cardiac autonomic neuropathy and may play a significant role in the pathogenesis of the disease. Further research with a larger sample size and an assessment of their impact on the phenotype is necessary.

Keywords: polymorphisms, APOE gene, FTO gene, automatic neuropathy, Kazakh population.

Procedia PDF Downloads 23
2278 Evolutionary Analysis of Influenza A (H1N1) Pdm 09 in Post Pandemic Period in Pakistan

Authors: Nazish Badar

Abstract:

In early 2009, Pandemic type A (H1N1) Influenza virus emerged globally. Since then, it has continued circulation causing considerable morbidity and mortality. The purpose of this study was to evaluate the evolutionary changes in Influenza A (H1N1) pdm09 viruses from 2009-15 and their relevance with the current vaccine viruses. Methods: Respiratory specimens were collected with influenza-like illness and Severe Acute Respiratory Illness. Samples were processed according to CDC protocol. Sequencing and phylogenetic analysis of Haemagglutinin (HA) and neuraminidase (NA) genes was carried out comparing representative isolates from Pakistan viruses. Results: Between Jan2009 - Feb 2016, 1870 (13.2%) samples were positive for influenza A out of 14086. During the pandemic period (2009–10), Influenza A/ H1N1pdm 09 was the dominant strain with 366 (45%) of total influenza positives. In the post-pandemic period (2011–2016), a total of 1066 (59.6%) cases were positive Influenza A/ H1N1pdm 09 with co-circulation of different Influenza A subtypes. Overall, the Pakistan A(H1N1) pdm09 viruses grouped in two genetic clades. Influenza A(H1N1)pdm09 viruses only ascribed to Clade 7 during the pandemic period whereas viruses belong to clade 7 (2011) and clade 6B (2015) during the post-pandemic years. Amino acid analysis of the HA gene revealed mutations at positions S220T, I338V and P100S specially associated with outbreaks in all the analyzed strains. Sequence analyses of post-pandemic A(H1N1)pdm09 viruses showed additional substitutions at antigenic sites; S179N,K180Q (SA), D185N, D239G (CA), S202A (SB) and at receptor binding sites; A13T, S200P when compared with pandemic period. Substitution at Genetic markers; A273T (69%), S200P/T (15%) and D239G (7.6%) associated with severity and E391K (69%) associated with virulence was identified in viruses isolated during 2015. Analysis of NA gene revealed outbreak markers; V106I (23%) among pandemic and N248D (100%) during post-pandemic Pakistan viruses. Additional N-Glycosylation site; HA S179N (23%), NA I23T(7.6%) and N44S (77%) in place of N386K(77%) were only found in post-pandemic viruses. All isolates showed histidine (H) at position 275 in NA indicating sensitivity to neuraminidase inhibitors. Conclusion: This study shows that the Influenza A(H1N1)pdm09 viruses from Pakistan clustered into two genetic clades, with co-circulation of some variants. Certain key substitutions in the receptor binding site and few changes indicative of virulence were also detected in post-pandemic strains. Therefore, it is imperative to continue monitoring of the viruses for early identification of potential variants of high virulence or emergence of drug-resistant variants.

Keywords: Influenza A (H1N1) pdm09, evolutionary analysis, post pandemic period, Pakistan

Procedia PDF Downloads 207
2277 High Resolution Image Generation Algorithm for Archaeology Drawings

Authors: Xiaolin Zeng, Lei Cheng, Zhirong Li, Xueping Liu

Abstract:

Aiming at the problem of low accuracy and susceptibility to cultural relic diseases in the generation of high-resolution archaeology drawings by current image generation algorithms, an archaeology drawings generation algorithm based on a conditional generative adversarial network is proposed. An attention mechanism is added into the high-resolution image generation network as the backbone network, which enhances the line feature extraction capability and improves the accuracy of line drawing generation. A dual-branch parallel architecture consisting of two backbone networks is implemented, where the semantic translation branch extracts semantic features from orthophotographs of cultural relics, and the gradient screening branch extracts effective gradient features. Finally, the fusion fine-tuning module combines these two types of features to achieve the generation of high-quality and high-resolution archaeology drawings. Experimental results on the self-constructed archaeology drawings dataset of grotto temple statues show that the proposed algorithm outperforms current mainstream image generation algorithms in terms of pixel accuracy (PA), structural similarity (SSIM), and peak signal-to-noise ratio (PSNR) and can be used to assist in drawing archaeology drawings.

Keywords: archaeology drawings, digital heritage, image generation, deep learning

Procedia PDF Downloads 59
2276 Analysis of Intra-Varietal Diversity for Some Lebanese Grapevine Cultivars

Authors: Stephanie Khater, Ali Chehade, Lamis Chalak

Abstract:

The progressive replacement of the Lebanese autochthonous grapevine cultivars during the last decade by the imported foreign varieties almost resulted in the genetic erosion of the local germplasm and the confusion with cultivars' names. Hence there is a need to characterize these local cultivars and to assess the possible existing variability at the cultivar level. This work was conducted in an attempt to evaluate the intra-varietal diversity within Lebanese traditional cultivars 'Aswad', 'Maghdoushe', 'Maryame', 'Merweh', 'Meksese' and 'Obeide'. A total of 50 accessions distributed over five main geographical areas in Lebanon were collected and submitted to both ampelographic description and ISSR DNA analysis. A set of 35 ampelographic descriptors previously established by the International Office of Vine and Wine and related to leaf, bunch, berry, and phenological stages, were examined. Variability was observed between accessions within cultivars for blade shape, density of prostrate and erect hairs, teeth shape, berry shape, size and color, cluster shape and size, and flesh juiciness. At the molecular level, nine ISSR (inter-simple sequence repeat) primers, previously developed for grapevine, were used in this study. These primers generated a total of 35 bands, of which 30 (85.7%) were polymorphic. Totally, 29 genetic profiles were differentiated, of which 9 revealed within 'Obeide', 6 for 'Maghdoushe', 5 for 'Merweh', 4 within 'Maryame', 3 for 'Aswad' and 2 within 'Meksese'. Findings of this study indicate the existence of several genotypes that form the basis of the main indigenous cultivars grown in Lebanon and which should be further considered in the establishment of new vineyards and selection programs.

Keywords: ampelography, autochthonous cultivars, ISSR markers, Lebanon, Vitis vinifera L.

Procedia PDF Downloads 141
2275 Amino Acid Responses of Wheat Cultivars under Glasshouse Drought Accurately Predict Yield-Based Drought Tolerance in the Field

Authors: Arun K. Yadav, Adam J. Carroll, Gonzalo M. Estavillo, Greg J. Rebetzke, Barry J. Pogson

Abstract:

Water limits crop productivity, so selecting for minimal yield-gap in drier environments is critical to mitigate against climate change and land-use pressures. To date, no markers measured in glasshouses have been reported to predict field-based drought tolerance. In the field, the best measure of drought tolerance is yield-gap; but this requires multisite trials that are an order of magnitude more resource intensive and can be impacted by weather variation. We investigated the responses of relative water content (RWC), stomatal conductance (gs), chlorophyll content and metabolites in flag leaves of commercial wheat (Triticum aestivum L.) cultivars to three drought treatments in the glasshouse and field environments. We observed strong genetic associations between glasshouse-based RWC, metabolites and Yield gap-based Drought Tolerance (YDT): the ratio of yield in water-limited versus well-watered conditions across 24 field environments spanning sites and seasons. Critically, RWC response to glasshouse drought was strongly associated with both YDT (r2 = 0.85, p < 8E-6) and RWC under field drought (r2 = 0.77, p < 0.05). Multiple regression analyses revealed that 98% of genetic YDT variance was explained by drought responses of four metabolites: serine, asparagine, methionine and lysine (R2 = 0.98; p < 0.01). Fitted coefficients suggested that, for given levels of serine and asparagine, stronger methionine and lysine accumulation was associated with higher YDT. Collectively, our results demonstrate that high-throughput, targeted metabolic phenotyping of glasshouse-grown plants may be an effective tool for the selection of wheat cultivars with high YDT in the field.

Keywords: drought stress, grain yield, metabolomics, stomatal conductance, wheat

Procedia PDF Downloads 266
2274 Fraud Detection in Credit Cards with Machine Learning

Authors: Anjali Chouksey, Riya Nimje, Jahanvi Saraf

Abstract:

Online transactions have increased dramatically in this new ‘social-distancing’ era. With online transactions, Fraud in online payments has also increased significantly. Frauds are a significant problem in various industries like insurance companies, baking, etc. These frauds include leaking sensitive information related to the credit card, which can be easily misused. Due to the government also pushing online transactions, E-commerce is on a boom. But due to increasing frauds in online payments, these E-commerce industries are suffering a great loss of trust from their customers. These companies are finding credit card fraud to be a big problem. People have started using online payment options and thus are becoming easy targets of credit card fraud. In this research paper, we will be discussing machine learning algorithms. We have used a decision tree, XGBOOST, k-nearest neighbour, logistic-regression, random forest, and SVM on a dataset in which there are transactions done online mode using credit cards. We will test all these algorithms for detecting fraud cases using the confusion matrix, F1 score, and calculating the accuracy score for each model to identify which algorithm can be used in detecting frauds.

Keywords: machine learning, fraud detection, artificial intelligence, decision tree, k nearest neighbour, random forest, XGBOOST, logistic regression, support vector machine

Procedia PDF Downloads 148
2273 Agroecological and Socioeconomic Determinants of Conserving Diversity On-Farm: The Case of Wheat Genetic Resources in Ethiopia

Authors: Bedilu Tafesse

Abstract:

Conservation of crop genetic resources presents a challenge of identifying specific determinants driving maintenance of diversity at farm and agroecosystems. The objectives of this study were to identify socioeconomic, market and agroecological determinants of farmers’ maintenance of wheat diversity at the household level and derive implications for policies in designing on-farm conservation programs. We assess wheat diversity at farm level using household survey data. A household decision making model is conceptualized using microeconomic theory to assess and identify factors influencing on-farm rice diversity. The model is then tested econometrically by using various factors affecting farmers’ variety choice and diversity decisions. The findings show that household-specific socioeconomic, agroecological and market factors are important in determining on-farm wheat diversity. The significant variables in explaining richness and evenness of wheat diversity include distance to the nearest market, subsistence ratio, modern variety sold, land types and adult labour working in agriculture. The statistical signs of the factors determining wheat diversity are consistent in explaining the richness, dominance and evenness among rice varieties. Finally, the study implies that the cost-effective means of promoting and sustaining on-farm conservation programmes is to target them in market isolated geographic locations of high crop diversity where farm households have more heterogeneity of agroecological conditions and more active family adult labour working on-farm.

Keywords: diversity indices, dominance, evenness, on-farm conservation, wheat diversity, richness

Procedia PDF Downloads 308
2272 To Ensure Maximum Voter Privacy in E-Voting Using Blockchain, Convolutional Neural Network, and Quantum Key Distribution

Authors: Bhaumik Tyagi, Mandeep Kaur, Kanika Singla

Abstract:

The advancement of blockchain has facilitated scholars to remodel e-voting systems for future generations. Server-side attacks like SQL injection attacks and DOS attacks are the most common attacks nowadays, where malicious codes are injected into the system through user input fields by illicit users, which leads to data leakage in the worst scenarios. Besides, quantum attacks are also there which manipulate the transactional data. In order to deal with all the above-mentioned attacks, integration of blockchain, convolutional neural network (CNN), and Quantum Key Distribution is done in this very research. The utilization of blockchain technology in e-voting applications is not a novel concept. But privacy and security issues are still there in a public and private blockchains. To solve this, the use of a hybrid blockchain is done in this research. This research proposed cryptographic signatures and blockchain algorithms to validate the origin and integrity of the votes. The convolutional neural network (CNN), a normalized version of the multilayer perceptron, is also applied in the system to analyze visual descriptions upon registration in a direction to enhance the privacy of voters and the e-voting system. Quantum Key Distribution is being implemented in order to secure a blockchain-based e-voting system from quantum attacks using quantum algorithms. Implementation of e-voting blockchain D-app and providing a proposed solution for the privacy of voters in e-voting using Blockchain, CNN, and Quantum Key Distribution is done.

Keywords: hybrid blockchain, secure e-voting system, convolutional neural networks, quantum key distribution, one-time pad

Procedia PDF Downloads 94
2271 Classification of Land Cover Usage from Satellite Images Using Deep Learning Algorithms

Authors: Shaik Ayesha Fathima, Shaik Noor Jahan, Duvvada Rajeswara Rao

Abstract:

Earth's environment and its evolution can be seen through satellite images in near real-time. Through satellite imagery, remote sensing data provide crucial information that can be used for a variety of applications, including image fusion, change detection, land cover classification, agriculture, mining, disaster mitigation, and monitoring climate change. The objective of this project is to propose a method for classifying satellite images according to multiple predefined land cover classes. The proposed approach involves collecting data in image format. The data is then pre-processed using data pre-processing techniques. The processed data is fed into the proposed algorithm and the obtained result is analyzed. Some of the algorithms used in satellite imagery classification are U-Net, Random Forest, Deep Labv3, CNN, ANN, Resnet etc. In this project, we are using the DeepLabv3 (Atrous convolution) algorithm for land cover classification. The dataset used is the deep globe land cover classification dataset. DeepLabv3 is a semantic segmentation system that uses atrous convolution to capture multi-scale context by adopting multiple atrous rates in cascade or in parallel to determine the scale of segments.

Keywords: area calculation, atrous convolution, deep globe land cover classification, deepLabv3, land cover classification, resnet 50

Procedia PDF Downloads 140
2270 On the End-of-Life Inventory Problem

Authors: Hans Frenk, Sonya Javadi, Semih Onur Sezer

Abstract:

We consider the so-called end of life inventory problem for the supplier of a product in its final phase of the service life cycle. This phase starts when the production of the items stops and continues until the warranty of the last sold item expires. At the beginning of this phase, the supplier places a final order for spare parts to serve customers coming with defective items. At any time during the final phase, the supplier may also decide to switch to an alternative and more cost-effective policy. This alternative policy may be in the form of replacing a defective item with a substitutable product or offering discounts / rebates on new generation products. In this setup, the objective is to find a final order quantity and also a switching time which will minimize the total expected discounted cost. We study this problem under a general cost structure in a continuous-time framework where arrivals of defective items are given by a non-homogeneous Poisson process. We consider four formulations which differ by the nature of the switching time. These formulations are studied in detail and properties of the objective function are derived in each case. Using these properties, we provide exact algorithms for efficient numerical implementations. Numerical examples are provided illustrating the application of these algorithms. In these examples, we also compare the costs associated with these different formulations.

Keywords: End-of-life inventory control, martingales, optimization, service parts

Procedia PDF Downloads 335
2269 Symbolic Computation via Grobner Basis

Authors: Haohao Wang

Abstract:

The purpose of this paper is to find elimination ideals via Grobner basis. We first introduce the concept of Grobner bases, and then, we provide computational algorithms to applications for curves and surfaces.

Keywords: curves, surfaces, Grobner basis, elimination

Procedia PDF Downloads 299
2268 The GRIT Study: Getting Global Rare Disease Insights Through Technology Study

Authors: Aneal Khan, Elleine Allapitan, Desmond Koo, Katherine-Ann Piedalue, Shaneel Pathak, Utkarsh Subnis

Abstract:

Background: Disease management of metabolic, genetic disorders is long-term and can be cumbersome to patients and caregivers. Patient-Reported Outcome Measures (PROMs) have been a useful tool in capturing patient perspectives to help enhance treatment compliance and engagement with health care providers, reduce utilization of emergency services, and increase satisfaction with their treatment choices. Currently, however, PROMs are collected during infrequent and decontextualized clinic visits, which makes translation of patient experiences challenging over time. The GRIT study aims to evaluate a digital health journal application called Zamplo that provides a personalized health diary to record self-reported health outcomes accurately and efficiently in patients with metabolic, genetic disorders. Methods: This is a randomized controlled trial (RCT) (1:1) that assesses the efficacy of Zamplo to increase patient activation (primary outcome), improve healthcare satisfaction and confidence to manage medications (secondary outcomes), and reduce costs to the healthcare system (exploratory). Using standardized online surveys, assessments will be collected at baseline, 1 month, 3 months, 6 months, and 12 months. Outcomes will be compared between patients who were given access to the application versus those with no access. Results: Seventy-seven patients were recruited as of November 30, 2021. Recruitment for the study commenced in November 2020 with a target of n=150 patients. The accrual rate was 50% from those eligible and invited for the study, with the majority of patients having Fabry disease (n=48) and the remaining having Pompe disease and mitochondrial disease. Real-time clinical responses, such as pain, are being measured and correlated to disease-modifying therapies, supportive treatments like pain medications, and lifestyle interventions. Engagement with the application, along with compliance metrics of surveys and journal entries, are being analyzed. An interim analysis of the engagement data along with preliminary findings from this pilot RCT, and qualitative patient feedback will be presented. Conclusions: The digital self-care journal provides a unique approach to disease management, allowing patients direct access to their progress and actively participating in their care. Findings from the study can help serve the virtual care needs of patients with metabolic, genetic disorders in North America and the world over.

Keywords: eHealth, mobile health, rare disease, patient outcomes, quality of life (QoL), pain, Fabry disease, Pompe disease

Procedia PDF Downloads 151
2267 Genomic and Transcriptomic Analysis of Antibiotic Resistance Genes in Biological Wastewater Treatment Systems Treating Domestic and Hospital Effluents

Authors: Thobela Conco, Sheena Kumari, Chika Nnadozie, Mahmoud Nasr, Thor A. Stenström, Mushal Ali, Arshad Ismail, Faizal Bux

Abstract:

The discharge of antibiotics and its residues into the wastewater treatment plants (WWTP’s) create a conducive environment for the development of antibiotic resistant pathogens. This presents a risk of potential dissemination of antibiotic resistant pathogens and antibiotic resistance genes into the environment. It is, therefore, necessary to study the level of antibiotic resistance genes (ARG’s) among bacterial pathogens that proliferate in biological wastewater treatment systems. In the current study, metagenomic and meta-transcriptomic sequences of samples collected from the influents, secondary effluents and post chlorinated effluents of three wastewater treatment plants treating domestic and hospital effluents in Durban, South Africa, were analyzed for profiling of ARG’s among bacterial pathogens. Results show that a variety of ARG’s, mostly, aminoglycoside, β-lactamases, tetracycline and sulfonamide resistance genes were harbored by diverse bacterial genera found at different stages of treatment. A significant variation in diversity of pathogen and ARGs between the treatment plant was observed; however, treated final effluent samples from all three plants showed a significant reduction in bacterial pathogens and detected ARG’s. Both pre- and post-chlorinated samples showed the presence of mobile genetic elements (MGE’s), indicating the inefficiency of chlorination to remove of ARG’s integrated with MGE’s. In conclusion, the study showed the wastewater treatment plant efficiently caused the reduction and removal of certain ARG’s, even though the initial focus was the removal of biological nutrients.

Keywords: antibiotic resistance, mobile genetic elements, wastewater, wastewater treatment plants

Procedia PDF Downloads 219
2266 White Clover Trifolium repens L. Genetic Diversity and Salt Tolerance in Urban Area of Riga

Authors: Dace Grauda, Gunta Cekstere, Inta Belogrudova, Andis Karlsons, Isaak Rashal

Abstract:

Trifolium repens L. (white or Dutch clover) is a perennial herb, belongs to legume family (Leguminosae Juss.), spread extensively by stolons and seeds. The species is cultivated worldwide and was naturalized in many countries in meadows, yards, gardens, along roads and streets etc., especially in temperate regions. It is widespread also in grasslands throughout Riga, the capital of Latvia. The goal of this study was to investigate genetic structure of white clover population in Riga and to evaluate influence of different salt concentration on plants. For this purpose universal retrotranspozone based IRAP (Inter-Retrotransposon Amplified Polymorphism) method was used. The plant material was collected in different regions of Riga and in several urban areas of Latvia. Plant DNA was isolated from in silicogel dried leaves of using 1% CTAB (cetyltrimet-ammonium bromide) buffer DNA extraction procedure. Genetic structure of city population and wild populations were compared. Soil salinization is an important issue associated with low water resources and highly urbanized areas in aride and semi-aride climate conditions, as well as de-icing salt application to prevent ice formation on roads in winter. The T. repens variety ‘Daile’ (form giganteum), one of the often used component of urban greeneries, was studied in this investigation. Plants were grown from seeds and cultivated in the light conditions (18-25 C, 16h/8h of day/night, light intensity 3000 lx) in plastic pots (200 ml), filled with commercial neutralized (pH 5.9 ± 0.3) peat substrate with mineral nutrients. To analyse the impact of increased soil salinity treatments with gradually rising NaCl (0; 20; 40; 60; 80; 100 mM) levels were arranged. Plants were watered when necessary with deionised water to provide optimum substrate moisture 60-70%. The experiment was terminated six weeks after establishment. For analysis of mineral nutrients, dry plant material (above ground part and roots) was used. Decrease of Na content can be significant under elevated salinity till 20 mM NaCl. High NaCl concentrations in the substrate increase Na, Cl, Cu, Fe, and Mn accumulation, but reduce S, Mg, K content in the plant above ground parts. Abiotic stresses generally changes the levels of DNA metilation. Several candidate gene for salt tolerance will be analysed for DNA metilation level using Pyromark-Q24 advanced.

Keywords: DNA metilation, IRAP, soil salinization, white clover

Procedia PDF Downloads 364
2265 Describing the Fine Electronic Structure and Predicting Properties of Materials with ATOMIC MATTERS Computation System

Authors: Rafal Michalski, Jakub Zygadlo

Abstract:

We present the concept and scientific methods and algorithms of our computation system called ATOMIC MATTERS. This is the first presentation of the new computer package, that allows its user to describe physical properties of atomic localized electron systems subject to electromagnetic interactions. Our solution applies to situations where an unclosed electron 2p/3p/3d/4d/5d/4f/5f subshell interacts with an electrostatic potential of definable symmetry and external magnetic field. Our methods are based on Crystal Electric Field (CEF) approach, which takes into consideration the electrostatic ligands field as well as the magnetic Zeeman effect. The application allowed us to predict macroscopic properties of materials such as: Magnetic, spectral and calorimetric as a result of physical properties of their fine electronic structure. We emphasize the importance of symmetry of charge surroundings of atom/ion, spin-orbit interactions (spin-orbit coupling) and the use of complex number matrices in the definition of the Hamiltonian. Calculation methods, algorithms and convention recalculation tools collected in ATOMIC MATTERS were chosen to permit the prediction of magnetic and spectral properties of materials in isostructural series.

Keywords: atomic matters, crystal electric field (CEF) spin-orbit coupling, localized states, electron subshell, fine electronic structure

Procedia PDF Downloads 319
2264 Proposed Framework based on Classification of Vertical Handover Decision Strategies in Heterogeneous Wireless Networks

Authors: Shidrokh Goudarzi, Wan Haslina Hassan

Abstract:

Heterogeneous wireless networks are converging towards an all-IP network as part of the so-called next-generation network. In this paradigm, different access technologies need to be interconnected; thus, vertical handovers or vertical handoffs are necessary for seamless mobility. In this paper, we conduct a review of existing vertical handover decision-making mechanisms that aim to provide ubiquitous connectivity to mobile users. To offer a systematic comparison, we categorize these vertical handover measurement and decision structures based on their respective methodology and parameters. Subsequently, we analyze several vertical handover approaches in the literature and compare them according to their advantages and weaknesses. The paper compares the algorithms based on the network selection methods, complexity of the technologies used and efficiency in order to introduce our vertical handover decision framework. We find that vertical handovers on heterogeneous wireless networks suffer from the lack of a standard and efficient method to satisfy both user and network quality of service requirements at different levels including architectural, decision-making and protocols. Also, the consolidation of network terminal, cross-layer information, multi packet casting and intelligent network selection algorithm appears to be an optimum solution for achieving seamless service continuity in order to facilitate seamless connectivity.

Keywords: heterogeneous wireless networks, vertical handovers, vertical handover metric, decision-making algorithms

Procedia PDF Downloads 393
2263 Optimal Hybrid Linear and Nonlinear Control for a Quadcopter Drone

Authors: Xinhuang Wu, Yousef Sardahi

Abstract:

A hybrid and optimal multi-loop control structure combining linear and nonlinear control algorithms are introduced in this paper to regulate the position of a quadcopter unmanned aerial vehicle (UAV) driven by four brushless DC motors. To this end, a nonlinear mathematical model of the UAV is derived and then linearized around one of its operating points. Using the nonlinear version of the model, a sliding mode control is used to derive the control laws of the motor thrust forces required to drive the UAV to a certain position. The linear model is used to design two controllers, XG-controller and YG-controller, responsible for calculating the required roll and pitch to maneuver the vehicle to the desired X and Y position. Three attitude controllers are designed to calculate the desired angular rates of rotors, assuming that the Euler angles are minimal. After that, a many-objective optimization problem involving 20 design parameters and ten objective functions is formulated and solved by HypE (Hypervolume estimation algorithm), one of the widely used many-objective optimization algorithms approaches. Both stability and performance constraints are imposed on the optimization problem. The optimization results in terms of Pareto sets and fronts are obtained and show that some of the design objectives are competing. That is, when one objective goes down, the other goes up. Also, Numerical simulations conducted on the nonlinear UAV model show that the proposed optimization method is quite effective.

Keywords: optimal control, many-objective optimization, sliding mode control, linear control, cascade controllers, UAV, drones

Procedia PDF Downloads 73
2262 Linguistic Cyberbullying, a Legislative Approach

Authors: Simona Maria Ignat

Abstract:

Bullying online has been an increasing studied topic during the last years. Different approaches, psychological, linguistic, or computational, have been applied. To our best knowledge, a definition and a set of characteristics of phenomenon agreed internationally as a common framework are still waiting for answers. Thus, the objectives of this paper are the identification of bullying utterances on Twitter and their algorithms. This research paper is focused on the identification of words or groups of words, categorized as “utterances”, with bullying effect, from Twitter platform, extracted on a set of legislative criteria. This set is the result of analysis followed by synthesis of law documents on bullying(online) from United States of America, European Union, and Ireland. The outcome is a linguistic corpus with approximatively 10,000 entries. The methods applied to the first objective have been the following. The discourse analysis has been applied in identification of keywords with bullying effect in texts from Google search engine, Images link. Transcription and anonymization have been applied on texts grouped in CL1 (Corpus linguistics 1). The keywords search method and the legislative criteria have been used for identifying bullying utterances from Twitter. The texts with at least 30 representations on Twitter have been grouped. They form the second corpus linguistics, Bullying utterances from Twitter (CL2). The entries have been identified by using the legislative criteria on the the BoW method principle. The BoW is a method of extracting words or group of words with same meaning in any context. The methods applied for reaching the second objective is the conversion of parts of speech to alphabetical and numerical symbols and writing the bullying utterances as algorithms. The converted form of parts of speech has been chosen on the criterion of relevance within bullying message. The inductive reasoning approach has been applied in sampling and identifying the algorithms. The results are groups with interchangeable elements. The outcomes convey two aspects of bullying: the form and the content or meaning. The form conveys the intentional intimidation against somebody, expressed at the level of texts by grammatical and lexical marks. This outcome has applicability in the forensic linguistics for establishing the intentionality of an action. Another outcome of form is a complex of graphemic variations essential in detecting harmful texts online. This research enriches the lexicon already known on the topic. The second aspect, the content, revealed the topics like threat, harassment, assault, or suicide. They are subcategories of a broader harmful content which is a constant concern for task forces and legislators at national and international levels. These topic – outcomes of the dataset are a valuable source of detection. The analysis of content revealed algorithms and lexicons which could be applied to other harmful contents. A third outcome of content are the conveyances of Stylistics, which is a rich source of discourse analysis of social media platforms. In conclusion, this corpus linguistics is structured on legislative criteria and could be used in various fields.

Keywords: corpus linguistics, cyberbullying, legislation, natural language processing, twitter

Procedia PDF Downloads 86
2261 Morphological and Molecular Abnormalities of the Skeletal Muscle Tissue from Pediatric Patient Affected by a Rare Genetic Chaperonopathy Associated with Motor Neuropathy

Authors: Leila Noori, Rosario Barone, Francesca Rappa, Antonella Marino Gammazza, Alessandra Maria Vitale, Giuseppe Donato Mangano, Giusy Sentiero, Filippo Macaluso, Kathryn H. Myburgh, Francesco Cappello, Federica Scalia

Abstract:

The neuromuscular system controls, directs, and allows movement of the body through the action of neural circuits, which include motor neurons, sensory neurons, and skeletal muscle fibers. Protein homeostasis of the involved cytotypes appears crucial to maintain the correct and prolonged functions of the neuromuscular system, and both neuronal cells and skeletal muscle fibers express significant quantities of protein chaperones, the molecular machinery responsible to maintain the protein turnover. Genetic mutations or defective post-translational modifications of molecular chaperones (i.e., genetic or acquired chaperonopathies) may lead to neuromuscular disorders called as neurochaperonopathies. The limited knowledge of the effects of the defective chaperones on skeletal muscle fibers and neurons impedes the progression of therapeutic approaches. A distinct genetic variation of CCT5 gene encoding for the subunit 5 of the chaperonin CCT (Chaperonin Containing TCP1; also known as TRiC, TCP1 Ring Complex) was recently described associated with severe distal motor neuropathy by our team. In this study, we investigated the histopathological abnormalities of the skeletal muscle biopsy of the pediatric patient affected by the mutation Leu224Val in the CCT5 subunit. We provide molecular and structural features of the diseased skeletal muscle tissue that we believe may be useful to identify undiagnosed cases of this rare genetic disorder. We investigated the histological abnormalities of the affected tissue via hematoxylin and eosin staining. Then we used immunofluorescence and qPCR techniques to explore the expression and distribution of CCT5 in diseased and healthy skeletal muscle tissue. Immunofluorescence and immunohistochemistry assays were performed to study the sarcomeric and structural proteins of skeletal muscle, including actin, myosin, tubulin, troponin-T, telethonin, and titin. We performed Western blot to examine the protein expression of CCT5 and some heat shock proteins, Hsp90, Hsp60, Hsp27, and α-B crystallin, along with the main client proteins of the CCT5, actin, and tubulin. Our findings revealed muscular atrophy, abnormal morphology, and different sizes of muscle fibers in affected tissue. The swollen nuclei and wide interfiber spaces were seen. Expression of CCT5 had been decreased and showed a different distribution pattern in the affected tissue. Altered expression, distribution, and bandage pattern were detected by confocal microscopy for the interested muscular proteins in tissue from the patient compared to the healthy control. Protein levels of the studied Hsps normally located at the Z-disk were reduced. Western blot results showed increased levels of the actin and tubulin proteins in the diseased skeletal muscle biopsy compared to healthy tissue. Chaperones must be expressed at high levels in skeletal muscle to counteract various stressors such as mechanical, oxidative, and thermal crises; therefore, it seems relevant that defects of molecular chaperones may result in damaged skeletal muscle fibers. So far, several chaperones or cochaperones involved in neuromuscular disorders have been defined. Our study shows that alteration of the CCT5 subunit is associated with the damaged structure of skeletal muscle fibers and alterations of chaperone system components and paves the way to explore possible alternative substrates of chaperonin CCT. However, further studies are underway to investigate the CCT mechanisms of action to design applicable therapeutic strategies.

Keywords: molecular chaperones, neurochaperonopathy, neuromuscular system, protein homeostasis

Procedia PDF Downloads 71
2260 Improvements in Double Q-Learning for Anomalous Radiation Source Searching

Authors: Bo-Bin Xiaoa, Chia-Yi Liua

Abstract:

In the task of searching for anomalous radiation sources, personnel holding radiation detectors to search for radiation sources may be exposed to unnecessary radiation risk, and automated search using machines becomes a required project. The research uses various sophisticated algorithms, which are double Q learning, dueling network, and NoisyNet, of deep reinforcement learning to search for radiation sources. The simulation environment, which is a 10*10 grid and one shielding wall setting in it, improves the development of the AI model by training 1 million episodes. In each episode of training, the radiation source position, the radiation source intensity, agent position, shielding wall position, and shielding wall length are all set randomly. The three algorithms are applied to run AI model training in four environments where the training shielding wall is a full-shielding wall, a lead wall, a concrete wall, and a lead wall or a concrete wall appearing randomly. The 12 best performance AI models are selected by observing the reward value during the training period and are evaluated by comparing these AI models with the gradient search algorithm. The results show that the performance of the AI model, no matter which one algorithm, is far better than the gradient search algorithm. In addition, the simulation environment becomes more complex, the AI model which applied Double DQN combined Dueling and NosiyNet algorithm performs better.

Keywords: double Q learning, dueling network, NoisyNet, source searching

Procedia PDF Downloads 113
2259 Pre-Service Mathematics Teachers’ Mental Construction in Solving Equations and Inequalities Using ACE Teaching Cycle

Authors: Abera Kotu, Girma Tesema, Mitiku Tadesse

Abstract:

This study investigated ACE supported instruction and pre-service mathematics teachers’ mental construction in solving equations and inequalities. A mixed approach with concurrent parallel design was employed. It was conducted on two intact groups of regular first-year pre-service mathematics teachers at Fiche College of Teachers’ Education in which one group was assigned as an intervention group and the other group as a comparison group using the lottery method. There were 33 participants in the intervention and 32 participants in the comparison. Six pre-service mathematics teachers were selected for interview using purposive sampling based on pre-test results. An instruction supported with ACE cycle was given to the intervention group for two weeks duration of time. Written tasks, interviews, and observations were used to collect data. Data collected from written tasks were analyzed quantitatively using independent samples t-test and effect size. Data collected from interviews and observations were analyzed narratively. The findings of the study uncovered that ACE-supported instruction has a moderate effect on Pre-service Mathematics Teachers’ levels of conceptualizations of action, process, object, ad schema. Moreover, the ACE supported group out scored and performed better than the usual traditional method supported groups across the levels of conceptualization. The majority of pre-service mathematics teachers’ levels of conceptualizations were at action and process levels and their levels of conceptualization were linked with genetic decomposition more at action and object levels than object and schema. The use of ACE supported instruction is recommended to improve pre-service mathematics teachers’ mental construction.

Keywords: ACE teaching cycle, APOS theory, mental construction, genetic composition

Procedia PDF Downloads 16
2258 Lockit: A Logic Locking Automation Software

Authors: Nemanja Kajtez, Yue Zhan, Basel Halak

Abstract:

The significant rise in the cost of manufacturing of nanoscale integrated circuits (IC) has led the majority of IC design companies to outsource the fabrication of their products to other companies, often located in different countries. This multinational nature of the hardware supply chain has led to a host of security threats, including IP piracy, IC overproduction, and Trojan insertion. To combat that, researchers have proposed logic locking techniques to protect the intellectual properties of the design and increase the difficulty of malicious modification of its functionality. However, the adoption of logic locking approaches is rather slow due to the lack of the integration with IC production process and the lack of efficacy of existing algorithms. This work automates the logic locking process by developing software using Python that performs the locking on a gate-level netlist and can be integrated with the existing digital synthesis tools. Analysis of the latest logic locking algorithms has demonstrated that the SFLL-HD algorithm is one of the most secure and versatile in trading-off levels of protection against different types of attacks and was thus selected for implementation. The presented tool can also be expanded to incorporate the latest locking mechanisms to keep up with the fast-paced development in this field. The paper also presents a case study to demonstrate the functionality of the tool and how it could be used to explore the design space and compare different locking solutions. The source code of this tool is available freely from (https://www.researchgate.net/publication/353195333_Source_Code_for_The_Lockit_Tool).

Keywords: design automation, hardware security, IP piracy, logic locking

Procedia PDF Downloads 182
2257 From Electroencephalogram to Epileptic Seizures Detection by Using Artificial Neural Networks

Authors: Gaetano Zazzaro, Angelo Martone, Roberto V. Montaquila, Luigi Pavone

Abstract:

Seizure is the main factor that affects the quality of life of epileptic patients. The diagnosis of epilepsy, and hence the identification of epileptogenic zone, is commonly made by using continuous Electroencephalogram (EEG) signal monitoring. Seizure identification on EEG signals is made manually by epileptologists and this process is usually very long and error prone. The aim of this paper is to describe an automated method able to detect seizures in EEG signals, using knowledge discovery in database process and data mining methods and algorithms, which can support physicians during the seizure detection process. Our detection method is based on Artificial Neural Network classifier, trained by applying the multilayer perceptron algorithm, and by using a software application, called Training Builder that has been developed for the massive extraction of features from EEG signals. This tool is able to cover all the data preparation steps ranging from signal processing to data analysis techniques, including the sliding window paradigm, the dimensionality reduction algorithms, information theory, and feature selection measures. The final model shows excellent performances, reaching an accuracy of over 99% during tests on data of a single patient retrieved from a publicly available EEG dataset.

Keywords: artificial neural network, data mining, electroencephalogram, epilepsy, feature extraction, seizure detection, signal processing

Procedia PDF Downloads 188
2256 Effect of Phaseolus vulgaris Inoculation on P. vulgaris and Zea mays Growth and Yield Cultivated in Intercropping

Authors: Nour Elhouda Abed, Bedj Mimi, Wahid Slimani, Mourad Atif, Abdelhakim Ouzzane, Hocine Irekti, Abdelkader Bekki

Abstract:

The most frequent system of cereal production in Algeria is fallow-wheat. This is an extensive system that meets only the half needs some cereals and fodder demand. Resorption of fallow has become a strategic necessity to ensure food security in response to the instability of supply and the persistence of higher food prices on the world market. Despite several attempts to replace the fallow by crop cultures, choosing the best crop remains. Today, the agronomic and economic interests of legumes are demonstrated. However, their crop culture remains marginalized because of the weakness and instability of their performance. In the context of improving legumes and cereals crops as well as fallow resorption, we undertook to test, in the field, the effect of rhizobial inoculation of Phaseolus vulgaris in association with Zea Mays. We firstly studied the genetic diversity of rhizobial strains that nodulate P.vulgaris isolated from fifteen (15) different regions. ARDRA had shown 18 different genetic profiles. Symbiotic characterization highlighted a strain that highly significantly improved the fresh and dry weight of the host plant, in comparison to the negative control (un-inoculated) and the positive control (inoculated with the reference strain CIAT 899). In the field, the selected strain increased significantly the growth and yield of P.vulgaris and Zea Mays comparing to the non-inoculated control. However, the mix inoculation (selected strain+ Ciat 899) had not given the best parameters showing, thus, no synergy between the strains. These results indicate the replacing fallow by a crop legume in intercropping with cereals crops.

Keywords: fallow, intercropping, inoculation, legumes-cereals

Procedia PDF Downloads 366