Search results for: 2D particle image velocimetry
3209 Digital Material Characterization Using the Quantum Fourier Transform
Authors: Felix Givois, Nicolas R. Gauger, Matthias Kabel
Abstract:
The efficient digital material characterization is of great interest to many fields of application. It consists of the following three steps. First, a 3D reconstruction of 2D scans must be performed. Then, the resulting gray-value image of the material sample is enhanced by image processing methods. Finally, partial differential equations (PDE) are solved on the segmented image, and by averaging the resulting solutions fields, effective properties like stiffness or conductivity can be computed. Due to the high resolution of current CT images, the latter is typically performed with matrix-free solvers. Among them, a solver that uses the explicit formula of the Green-Eshelby operator in Fourier space has been proposed by Moulinec and Suquet. Its algorithmic, most complex part is the Fast Fourier Transformation (FFT). In our talk, we will discuss the potential quantum advantage that can be obtained by replacing the FFT with the Quantum Fourier Transformation (QFT). We will especially show that the data transfer for noisy intermediate-scale quantum (NISQ) devices can be improved by using appropriate boundary conditions for the PDE, which also allows using semi-classical versions of the QFT. In the end, we will compare the results of the QFT-based algorithm for simple geometries with the results of the FFT-based homogenization method.Keywords: most likelihood amplitude estimation (MLQAE), numerical homogenization, quantum Fourier transformation (QFT), NISQ devises
Procedia PDF Downloads 753208 On the Quantum Behavior of Nanoparticles: Quantum Theory and Nano-Pharmacology
Authors: Kurudzirayi Robson Musikavanhu
Abstract:
Nanophase particles exhibit quantum behavior by virtue of their small size, being particles of gamma to x-ray wavelength [atomic range]. Such particles exhibit high frequencies, high energy/photon, high penetration power, high ionization power [atomic behavior] and are stable at low energy levels as opposed to bulk phase matter [macro particles] which exhibit higher wavelength [radio wave end] properties, hence lower frequency, lower energy/photon, lower penetration power, lower ionizing power and are less stable at low temperatures. The ‘unique’ behavioral motion of Nano systems will remain a mystery as long as quantum theory remains a mystery, and for pharmacology, pharmacovigilance profiling of Nano systems becomes virtually impossible. Quantum theory is the 4 – 3 – 5 electromagnetic law of life and life motion systems on planet earth. Electromagnetic [wave-particle] properties of all particulate matter changes as mass [bulkiness] changes from one phase to the next [Nano-phase to micro-phase to milli-phase to meter-phase to kilometer phase etc.] and the subsequent electromagnetic effect of one phase particle on bulk matter [different phase] changes from one phase to another. All matter exhibit electromagnetic properties [wave-particle duality] in behavior and the lower the wavelength [and the lesser the bulkiness] the higher the gamma ray end properties exhibited and the higher the wavelength [and the greater the bulkiness], the more the radio-wave end properties are exhibited. Quantum theory is the 4 [moon] – 3[sun] – [earth] 5 law of the Electromagnetic spectrum [solar system]. 4 + 3 = 7; 4 + 3 + 5 = 12; 4 * 3 * 5 = 60; 42 + 32 = 52; 43 + 33 + 53 = 63. Quantum age is overdue.Keywords: electromagnetic solar system, nano-material, nano pharmacology, pharmacovigilance, quantum theory
Procedia PDF Downloads 4493207 View Synthesis of Kinetic Depth Imagery for 3D Security X-Ray Imaging
Authors: O. Abusaeeda, J. P. O. Evans, D. Downes
Abstract:
We demonstrate the synthesis of intermediary views within a sequence of X-ray images that exhibit depth from motion or kinetic depth effect in a visual display. Each synthetic image replaces the requirement for a linear X-ray detector array during the image acquisition process. Scale invariant feature transform, SIFT, in combination with epipolar morphing is employed to produce synthetic imagery. Comparison between synthetic and ground truth images is reported to quantify the performance of the approach. Our work is a key aspect in the development of a 3D imaging modality for the screening of luggage at airport checkpoints. This programme of research is in collaboration with the UK Home Office and the US Dept. of Homeland Security.Keywords: X-ray, kinetic depth, KDE, view synthesis
Procedia PDF Downloads 2633206 Famotidine Loaded Solid Lipid Nanoparticles (SLN) for Oral Delivery System
Authors: Rachmat Mauludin, Novita R. Kusuma, Diky Mudhakir
Abstract:
Famotidine (FMT) is one of used substances in the treatment of hiperacidity and peptic ulcer, administered orally and parenterally via intravenous injection. Oral administration, which is more favorable, has been reported to have many obstacles in the process of the treatment, includes decreasing the bioavailability of FMT. This research was aimed to prepare FMT in form of solid lipid nanoparticles (SLN) with size ranging between 100-200 nm. The research was carried out also by optimizing factors that may affect physical stability of SLN. Formulation of Famotidine SLN was carried out by optimizing factors, such as duration of homogenization and sonication, lipid concentration, stabilizer composition and stabilizer concentration. SLN physical stability was evaluated (particle size distribution) for 42 days in 3 diferent temperatures. Entrapment efficiency and drug loading was determined indirectly and directly. The morphology of SLN was visualized by transmission electron microscope (TEM). In vitro release study of FMT was conducted in 2 mediums, at pH of 1.2 and 7.4. Chemical stability of FMT was determined by quantifying the concentration of FMT within 42 days. Famotidin SLN consisted of GMS as lipid and poloxamer 188, lecithin, and polysorbate 80 as stabilizers. Homogenization and sonication was performed for 5 minutes and 10 minutes. Physyical stability of nanoparticles at 3 different temperatures was no significant difference. The best formula was physically stable until 42 days with mean particle size below 200 nm. Nanoparticles produced was able to entrap FMT until 86.6%. Evaluation by TEM showed that nanoparticles was spherical and solid. In medium pH of 1.2, FMT was released only 30% during 4 hour. On the other hand, within 4 hours SLN could release FMT completely in medium pH of 7.4. The FMT concentration in nanoparticles dispersion was maintained until 95% in 42 days (40oC, RH 75%). Famotidine SLN was able to be produced with mean particle size ranging between 100-200 nm and physically stable for 42 days. SLN could be loaded by 86,6% of FMT. Morphologically, obtained SLN was spheric and solid. During 4 hours in medium pH of 1.2 and 7.4, FMT was released until 30% and 100%, respectively.Keywords: solid lipid nanoparticle (SLN), famotidine (FMT), physicochemical properties, release study
Procedia PDF Downloads 3593205 Secondary Charged Fragments Tracking for On-Line Beam Range Monitoring in Particle Therapy
Authors: G. Traini, G. Battistoni, F. Collamati, E. De Lucia, R. Faccini, C. Mancini-Terracciano, M. Marafini, I. Mattei, S. Muraro, A. Sarti, A. Sciubba, E. Solfaroli Camillocci, M. Toppi, S. M. Valle, C. Voena, V. Patera
Abstract:
In Particle Therapy (PT) treatments a large amount of secondary particles, whose emission point is correlated to the dose released in the crossed tissues, is produced. The measurement of the secondary charged fragments component could represent a valid technique to monitor the beam range during the PT treatments, that is a still missing item in the clinical practice. A sub-millimetrical precision on the beam range measurement is required to significantly optimise the technique and to improve the treatment quality. In this contribution, a detector, named Dose Profiler (DP), is presented. It is specifically planned to monitor on-line the beam range exploiting the secondary charged particles produced in PT Carbon ions treatment. In particular, the DP is designed to track the secondary fragments emitted at large angles with respect to the beam direction (mainly protons), with the aim to reconstruct the spatial coordinates of the fragment emission point extrapolating the measured track toward the beam axis. The DP is currently under development within of the INSIDE collaboration (Innovative Solutions for In-beam Dosimetry in hadrontherapy). The tracker is made by six layers (20 × 20 cm²) of BCF-12 square scintillating fibres (500 μm) coupled to Silicon Photo-Multipliers, followed by two plastic scintillator layers of 6 mm thickness. A system of front-end boards based on FPGAs arranged around the detector provides the data acquisition. The detector characterization with cosmic rays is currently undergoing, and a data taking campaign with protons will take place in May 2017. The DP design and the performances measured with using MIPs and protons beam will be reviewed.Keywords: fragmentation, monitoring, particle therapy, tracking
Procedia PDF Downloads 2323204 Automatic Product Identification Based on Deep-Learning Theory in an Assembly Line
Authors: Fidel Lòpez Saca, Carlos Avilés-Cruz, Miguel Magos-Rivera, José Antonio Lara-Chávez
Abstract:
Automated object recognition and identification systems are widely used throughout the world, particularly in assembly lines, where they perform quality control and automatic part selection tasks. This article presents the design and implementation of an object recognition system in an assembly line. The proposed shapes-color recognition system is based on deep learning theory in a specially designed convolutional network architecture. The used methodology involve stages such as: image capturing, color filtering, location of object mass centers, horizontal and vertical object boundaries, and object clipping. Once the objects are cut out, they are sent to a convolutional neural network, which automatically identifies the type of figure. The identification system works in real-time. The implementation was done on a Raspberry Pi 3 system and on a Jetson-Nano device. The proposal is used in an assembly course of bachelor’s degree in industrial engineering. The results presented include studying the efficiency of the recognition and processing time.Keywords: deep-learning, image classification, image identification, industrial engineering.
Procedia PDF Downloads 1583203 A Framework of Product Information Service System Using Mobile Image Retrieval and Text Mining Techniques
Authors: Mei-Yi Wu, Shang-Ming Huang
Abstract:
The online shoppers nowadays often search the product information on the Internet using some keywords of products. To use this kind of information searching model, shoppers should have a preliminary understanding about their interesting products and choose the correct keywords. However, if the products are first contact (for example, the worn clothes or backpack of passengers which you do not have any idea about the brands), these products cannot be retrieved due to insufficient information. In this paper, we discuss and study the applications in E-commerce using image retrieval and text mining techniques. We design a reasonable E-commerce application system containing three layers in the architecture to provide users product information. The system can automatically search and retrieval similar images and corresponding web pages on Internet according to the target pictures which taken by users. Then text mining techniques are applied to extract important keywords from these retrieval web pages and search the prices on different online shopping stores with these keywords using a web crawler. Finally, the users can obtain the product information including photos and prices of their favorite products. The experiments shows the efficiency of proposed system.Keywords: mobile image retrieval, text mining, product information service system, online marketing
Procedia PDF Downloads 3573202 Artificial Neural Network-Based Short-Term Load Forecasting for Mymensingh Area of Bangladesh
Authors: S. M. Anowarul Haque, Md. Asiful Islam
Abstract:
Electrical load forecasting is considered to be one of the most indispensable parts of a modern-day electrical power system. To ensure a reliable and efficient supply of electric energy, special emphasis should have been put on the predictive feature of electricity supply. Artificial Neural Network-based approaches have emerged to be a significant area of interest for electric load forecasting research. This paper proposed an Artificial Neural Network model based on the particle swarm optimization algorithm for improved electric load forecasting for Mymensingh, Bangladesh. The forecasting model is developed and simulated on the MATLAB environment with a large number of training datasets. The model is trained based on eight input parameters including historical load and weather data. The predicted load data are then compared with an available dataset for validation. The proposed neural network model is proved to be more reliable in terms of day-wise load forecasting for Mymensingh, Bangladesh.Keywords: load forecasting, artificial neural network, particle swarm optimization
Procedia PDF Downloads 1693201 Training a Neural Network to Segment, Detect and Recognize Numbers
Authors: Abhisek Dash
Abstract:
This study had three neural networks, one for number segmentation, one for number detection and one for number recognition all of which are coupled to one another. All networks were trained on the MNIST dataset and were convolutional. It was assumed that the images had lighter background and darker foreground. The segmentation network took 28x28 images as input and had sixteen outputs. Segmentation training starts when a dark pixel is encountered. Taking a window(7x7) over that pixel as focus, the eight neighborhood of the focus was checked for further dark pixels. The segmentation network was then trained to move in those directions which had dark pixels. To this end the segmentation network had 16 outputs. They were arranged as “go east”, ”don’t go east ”, “go south east”, “don’t go south east”, “go south”, “don’t go south” and so on w.r.t focus window. The focus window was resized into a 28x28 image and the network was trained to consider those neighborhoods which had dark pixels. The neighborhoods which had dark pixels were pushed into a queue in a particular order. The neighborhoods were then popped one at a time stitched to the existing partial image of the number one at a time and trained on which neighborhoods to consider when the new partial image was presented. The above process was repeated until the image was fully covered by the 7x7 neighborhoods and there were no more uncovered black pixels. During testing the network scans and looks for the first dark pixel. From here on the network predicts which neighborhoods to consider and segments the image. After this step the group of neighborhoods are passed into the detection network. The detection network took 28x28 images as input and had two outputs denoting whether a number was detected or not. Since the ground truth of the bounds of a number was known during training the detection network outputted in favor of number not found until the bounds were not met and vice versa. The recognition network was a standard CNN that also took 28x28 images and had 10 outputs for recognition of numbers from 0 to 9. This network was activated only when the detection network votes in favor of number detected. The above methodology could segment connected and overlapping numbers. Additionally the recognition unit was only invoked when a number was detected which minimized false positives. It also eliminated the need for rules of thumb as segmentation is learned. The strategy can also be extended to other characters as well.Keywords: convolutional neural networks, OCR, text detection, text segmentation
Procedia PDF Downloads 1603200 Determination of Elements and Minerals Present in Harmattan Dust Using Particle Induced X-Ray Emission (PIXE) and X-Ray Fluorescence (XRF) Across Selected Nigerian Stations
Authors: Aweda Francis Olatunbosun, Falaiye Oluwasesan Adeniran
Abstract:
The suspended harmattan dust was collected at seven different stations in Nigeria: Iwo (7º 63'N, 4º 19'E), Oyo (8º 12'N, 3º 42'E), Ilorin (8º36'N, 4º 35'E), Minna (9º36'N, 06º35'E), Abuja (09º 09'N, 07º 11'E), Lafia (08º 49'N, 07º50'E), and Jos (9º55'N, 8º55'E), which were analyzed to determine elements and minerals present in the sample using X-Ray Fluorescence (XRF), and Particle Induced X-Ray Emission (PIXE). The collected sample results show the elemental concentration of the sample in various forms across each station. Cr, Ce, Mo, Zr, Sr, V, Ti, K, As, Ni, Mn, Ca, Pb, Fe, Zn, and Cu were found in the sample using an XRF machine. The minerals discovered in the sample include, but are not limited to, Corundum [Al₂O₃], Periclase [MgO], Rutile [TiO₂], and Quartz [SiO₂] in various proportions. Furthermore, the results revealed the enrichment factor for Iwo (1.3998 μg/m³), Oyo (1.3998 μg/m³), Ilorin (1.79765 μg/m³), Minna (1.737325 μg/m³), Abuja (1.635425 μg/m³), Lafia (1.409695 μg/m³), and Jos (1.787075 μg/m³). The study concluded that the sample contains sixteen (16) elements and minerals in varying percentages and concentrations. It is therefore recommended that appropriate safety procedures be put in place to raise community awareness of the presence of elements in harmattan dust.Keywords: elements, minerals, harmattan dust, XRF, PIXE
Procedia PDF Downloads 3423199 [Keynote]: No-Trust-Zone Architecture for Securing Supervisory Control and Data Acquisition
Authors: Michael Okeke, Andrew Blyth
Abstract:
Supervisory Control And Data Acquisition (SCADA) as the state of the art Industrial Control Systems (ICS) are used in many different critical infrastructures, from smart home to energy systems and from locomotives train system to planes. Security of SCADA systems is vital since many lives depend on it for daily activities and deviation from normal operation could be disastrous to the environment as well as lives. This paper describes how No-Trust-Zone (NTZ) architecture could be incorporated into SCADA Systems in order to reduce the chances of malicious intent. The architecture is made up of two distinctive parts which are; the field devices such as; sensors, PLCs pumps, and actuators. The second part of the architecture is designed following lambda architecture, which is made up of a detection algorithm based on Particle Swarm Optimization (PSO) and Hadoop framework for data processing and storage. Apache Spark will be a part of the lambda architecture for real-time analysis of packets for anomalies detection.Keywords: industrial control system (ics, no-trust-zone (ntz), particle swarm optimisation (pso), supervisory control and data acquisition (scada), swarm intelligence (SI)
Procedia PDF Downloads 3443198 Effect of Powder Shape on Physical Properties of Porous Coatings
Authors: M. Moayeri, A. Kaflou
Abstract:
Decreasing the size of heat exchangers in industries is favorable due to a reduction in the initial costs and maintenance. This can be achieved generally by increasing the heat transfer coefficient, which can be done by increasing tube surface by passive methods named “porous coat”. Since these coatings are often in contact with the fluid, mechanical strength of coatings should be considered as main concept beside permeability and porosity in design, especially in high velocity services. Powder shape affected mechanical property more than other factors. So in this study, the Copper powder with three different shapes (spherical, dendritic and irregular) was coated on Cu-Ni base metal with thickness of ~300µm in a reduction atmosphere (5% H2-N2) and programmable furnace. The morphology and physical properties of coatings, such as porosity, permeability and mechanical strength were investigated. Results show although irregular particle have maximum porosity and permeability but strength level close to spherical powder, in addition, mentioned particle has low production cost, so for creating porous coats in high velocity services these powder recommended.Keywords: porous coat, permeability, mechanical strength, porosity
Procedia PDF Downloads 3523197 Depth Estimation in DNN Using Stereo Thermal Image Pairs
Authors: Ahmet Faruk Akyuz, Hasan Sakir Bilge
Abstract:
Depth estimation using stereo images is a challenging problem in computer vision. Many different studies have been carried out to solve this problem. With advancing machine learning, tackling this problem is often done with neural network-based solutions. The images used in these studies are mostly in the visible spectrum. However, the need to use the Infrared (IR) spectrum for depth estimation has emerged because it gives better results than visible spectra in some conditions. At this point, we recommend using thermal-thermal (IR) image pairs for depth estimation. In this study, we used two well-known networks (PSMNet, FADNet) with minor modifications to demonstrate the viability of this idea.Keywords: thermal stereo matching, deep neural networks, CNN, Depth estimation
Procedia PDF Downloads 2783196 Tuning Fractional Order Proportional-Integral-Derivative Controller Using Hybrid Genetic Algorithm Particle Swarm and Differential Evolution Optimization Methods for Automatic Voltage Regulator System
Authors: Fouzi Aboura
Abstract:
The fractional order proportional-integral-derivative (FOPID) controller or fractional order (PIλDµ) is a proportional-integral-derivative (PID) controller where integral order (λ) and derivative order (µ) are fractional, one of the important application of classical PID is the Automatic Voltage Regulator (AVR).The FOPID controller needs five parameters optimization while the design of conventional PID controller needs only three parameters to be optimized. In our paper we have proposed a comparison between algorithms Differential Evolution (DE) and Hybrid Genetic Algorithm Particle Swarm Optimization (HGAPSO) ,we have studied theirs characteristics and performance analysis to find an optimum parameters of the FOPID controller, a new objective function is also proposed to take into account the relation between the performance criteria’s.Keywords: FOPID controller, fractional order, AVR system, objective function, optimization, GA, PSO, HGAPSO
Procedia PDF Downloads 883195 X-Ray Diffraction and Crosslink Density Analysis of Starch/Natural Rubber Polymer Composites Prepared by Latex Compounding Method
Authors: Raymond Dominic Uzoh
Abstract:
Starch fillers were extracted from three plant sources namely amora tuber (a wild variety of Irish potato), sweet potato and yam starch and their particle size, pH, amylose, and amylopectin percentage decomposition determined accordingly by high performance liquid chromatography (HPLC). The starch was introduced into natural rubber in liquid phase (through gelatinization) by the latex compounding method and compounded according to standard method. The prepared starch/natural rubber composites was characterized by Instron Universal testing machine (UTM) for tensile mechanical properties. The composites was further characterized by x-ray diffraction and crosslink density analysis. The particle size determination showed that amora starch granules have the highest particle size (156 × 47 μm) followed by yam starch (155× 40 μm) and then the sweet potato starch (153 × 46 μm). The pH test also revealed that amora starch has a near neutral pH of 6.9, yam 6.8, and sweet potato 5.2 respectively. Amylose and amylopectin determination showed that yam starch has a higher percentage of amylose (29.68), followed by potato (22.34) and then amora starch with the lowest value (14.86) respectively. The tensile mechanical properties testing revealed that yam starch produced the best tensile mechanical properties followed by amora starch and then sweet potato starch. The structure, crystallinity/amorphous nature of the product composite was confirmed by x-ray diffraction, while the nature of crosslinking was confirmed by swelling test in toluene solvent using the Flory-Rehner approach. This research study has rendered a workable strategy for enhancing interfacial interaction between a hydrophilic filler (starch) and hydrophobic polymeric matrix (natural rubber) yielding moderately good tensile mechanical properties for further exploitation development and application in the rubber processing industry.Keywords: natural rubber, fillers, starch, amylose, amylopectin, crosslink density
Procedia PDF Downloads 1693194 Optimization of Surface Coating on Magnetic Nanoparticles for Biomedical Applications
Authors: Xiao-Li Liu, Ling-Yun Zhao, Xing-Jie Liang, Hai-Ming Fan
Abstract:
Owing to their unique properties, magnetic nanoparticles have been used as diagnostic and therapeutic agents for biomedical applications. Highly monodispersed magnetic nanoparticles with controlled particle size and surface coating have been successfully synthesized as a model system to investigate the effect of surface coating on the T2 relaxivity and specific absorption rate (SAR) under an alternating magnetic field, respectively. Amongst, by using mPEG-g-PEI to solubilize oleic-acid capped 6 nm magnetic nanoparticles, the T2 relaxivity could be significantly increased by up to 4-fold as compared to PEG coated nanoparticles. Moreover, it largely enhances the cell uptake with a T2 relaxivity of 92.6 mM-1s-1 for in vitro cell MRI. As for hyperthermia agent, SAR value increase with the decreased thickness of PEG surface coating. By elaborate optimization of surface coating and particle size, a significant increase of SAR (up to 74%) could be achieved with a minimal variation on the saturation magnetization (<5%). The 19 nm magnetic nanoparticles with 2000 Da PEG exhibited the highest SAR of 930 W•g-1 among the samples, which can be maintained in various simulated physiological conditions. This systematic work provides a general strategy for the optimization of surface coating of magnetic core for high performance MRI contrast agent and hyperthermia agent.Keywords: magnetic nanoparticles, magnetic hyperthermia, magnetic resonance imaging, surface modification
Procedia PDF Downloads 5083193 Fully Automated Methods for the Detection and Segmentation of Mitochondria in Microscopy Images
Authors: Blessing Ojeme, Frederick Quinn, Russell Karls, Shannon Quinn
Abstract:
The detection and segmentation of mitochondria from fluorescence microscopy are crucial for understanding the complex structure of the nervous system. However, the constant fission and fusion of mitochondria and image distortion in the background make the task of detection and segmentation challenging. In the literature, a number of open-source software tools and artificial intelligence (AI) methods have been described for analyzing mitochondrial images, achieving remarkable classification and quantitation results. However, the availability of combined expertise in the medical field and AI required to utilize these tools poses a challenge to its full adoption and use in clinical settings. Motivated by the advantages of automated methods in terms of good performance, minimum detection time, ease of implementation, and cross-platform compatibility, this study proposes a fully automated framework for the detection and segmentation of mitochondria using both image shape information and descriptive statistics. Using the low-cost, open-source python and openCV library, the algorithms are implemented in three stages: pre-processing, image binarization, and coarse-to-fine segmentation. The proposed model is validated using the mitochondrial fluorescence dataset. Ground truth labels generated using a Lab kit were also used to evaluate the performance of our detection and segmentation model. The study produces good detection and segmentation results and reports the challenges encountered during the image analysis of mitochondrial morphology from the fluorescence mitochondrial dataset. A discussion on the methods and future perspectives of fully automated frameworks conclude the paper.Keywords: 2D, binarization, CLAHE, detection, fluorescence microscopy, mitochondria, segmentation
Procedia PDF Downloads 3563192 Visual Search Based Indoor Localization in Low Light via RGB-D Camera
Authors: Yali Zheng, Peipei Luo, Shinan Chen, Jiasheng Hao, Hong Cheng
Abstract:
Most of traditional visual indoor navigation algorithms and methods only consider the localization in ordinary daytime, while we focus on the indoor re-localization in low light in the paper. As RGB images are degraded in low light, less discriminative infrared and depth image pairs are taken, as the input, by RGB-D cameras, the most similar candidates, as the output, are searched from databases which is built in the bag-of-word framework. Epipolar constraints can be used to relocalize the query infrared and depth image sequence. We evaluate our method in two datasets captured by Kinect2. The results demonstrate very promising re-localization results for indoor navigation system in low light environments.Keywords: indoor navigation, low light, RGB-D camera, vision based
Procedia PDF Downloads 4593191 Mapping of Geological Structures Using Aerial Photography
Authors: Ankit Sharma, Mudit Sachan, Anurag Prakash
Abstract:
Rapid growth in data acquisition technologies through drones, have led to advances and interests in collecting high-resolution images of geological fields. Being advantageous in capturing high volume of data in short flights, a number of challenges have to overcome for efficient analysis of this data, especially while data acquisition, image interpretation and processing. We introduce a method that allows effective mapping of geological fields using photogrammetric data of surfaces, drainage area, water bodies etc, which will be captured by airborne vehicles like UAVs, we are not taking satellite images because of problems in adequate resolution, time when it is captured may be 1 yr back, availability problem, difficult to capture exact image, then night vision etc. This method includes advanced automated image interpretation technology and human data interaction to model structures and. First Geological structures will be detected from the primary photographic dataset and the equivalent three dimensional structures would then be identified by digital elevation model. We can calculate dip and its direction by using the above information. The structural map will be generated by adopting a specified methodology starting from choosing the appropriate camera, camera’s mounting system, UAVs design ( based on the area and application), Challenge in air borne systems like Errors in image orientation, payload problem, mosaicing and geo referencing and registering of different images to applying DEM. The paper shows the potential of using our method for accurate and efficient modeling of geological structures, capture particularly from remote, of inaccessible and hazardous sites.Keywords: digital elevation model, mapping, photogrammetric data analysis, geological structures
Procedia PDF Downloads 6853190 Rapid Soil Classification Using Computer Vision, Electrical Resistivity and Soil Strength
Authors: Eugene Y. J. Aw, J. W. Koh, S. H. Chew, K. E. Chua, Lionel L. J. Ang, Algernon C. S. Hong, Danette S. E. Tan, Grace H. B. Foo, K. Q. Hong, L. M. Cheng, M. L. Leong
Abstract:
This paper presents a novel rapid soil classification technique that combines computer vision with four-probe soil electrical resistivity method and cone penetration test (CPT), to improve the accuracy and productivity of on-site classification of excavated soil. In Singapore, excavated soils from local construction projects are transported to Staging Grounds (SGs) to be reused as fill material for land reclamation. Excavated soils are mainly categorized into two groups (“Good Earth” and “Soft Clay”) based on particle size distribution (PSD) and water content (w) from soil investigation reports and on-site visual survey, such that proper treatment and usage can be exercised. However, this process is time-consuming and labour-intensive. Thus, a rapid classification method is needed at the SGs. Computer vision, four-probe soil electrical resistivity and CPT were combined into an innovative non-destructive and instantaneous classification method for this purpose. The computer vision technique comprises soil image acquisition using industrial grade camera; image processing and analysis via calculation of Grey Level Co-occurrence Matrix (GLCM) textural parameters; and decision-making using an Artificial Neural Network (ANN). Complementing the computer vision technique, the apparent electrical resistivity of soil (ρ) is measured using a set of four probes arranged in Wenner’s array. It was found from the previous study that the ANN model coupled with ρ can classify soils into “Good Earth” and “Soft Clay” in less than a minute, with an accuracy of 85% based on selected representative soil images. To further improve the technique, the soil strength is measured using a modified mini cone penetrometer, and w is measured using a set of time-domain reflectometry (TDR) probes. Laboratory proof-of-concept was conducted through a series of seven tests with three types of soils – “Good Earth”, “Soft Clay” and an even mix of the two. Validation was performed against the PSD and w of each soil type obtained from conventional laboratory tests. The results show that ρ, w and CPT measurements can be collectively analyzed to classify soils into “Good Earth” or “Soft Clay”. It is also found that these parameters can be integrated with the computer vision technique on-site to complete the rapid soil classification in less than three minutes.Keywords: Computer vision technique, cone penetration test, electrical resistivity, rapid and non-destructive, soil classification
Procedia PDF Downloads 2143189 Microvesicles in Peripheral and Uterine Blood in Women with Atypical Hyperplasia and Endometrioid Endometrial Cancer
Authors: Barbara Zapala, Marek Dziechciowski, Olaf Chmura, Monika Piwowar, Katarzyna Gawlik, Dorota Pawlicka-Gosiewska, Krzysztof Skotniczny, Bogdan Solnica, Kazimierz Pitynski
Abstract:
BACKGROUND: Endometrial cancer is one of the most common gynecologic malignancy in developed countries.We hypothesized that amount of circulating micro-particles in blood may be connected with the development of endometrial hyperplasia and endometrial cancer. The aim of this study was to measure the micro-particles amount in uterine venous blood and in peripheral venous blood in women with atypical endometrial hyperplasia and endometrioid endometrial cancer. MATERIALS AND METHODS: By using flow cytometry (BD Canto II cytometer) we measured micro-particles amount in citrate plasma samples from peripheral and uterine venous blood of women with atypical hyperplasia of endometrium or endometrial cancer. We determined the amount of total (TF+), endothelial (CD144+) and monocytic (CD14+) micro- particles. RESULTS: Here we show statistically significant higher micro-particle levels in women with atypical hyperplasia of endometrium or endometrial cancer in comparison to healthy women. Performing measurements of the amounts of total, endothelial and monocytic microparticles allow for reliable differentiation between healthy, atypical hyperplasia and endometrial cancer groups. In blood samples from uterine veins the circulating micro-particle levels were significantly different from peripheral blood samples. The micro-particle levels in uterine blood samples were 7-fold higher than in those from peripheral blood of women with both atypical hyperplasia of endometrium and endometrial cancer when compared to the control group of healthy women. CONCLUSION: These results strongly suggested that the level of circulating micro-particles may be a sign of endometrial cancer development, however the detailed study is needed focusing on molecular processes passed through this small circulating molecules.Keywords: endometrial cancer, endometrial hyperplasia, microvesicles, uterine blood
Procedia PDF Downloads 1343188 Characterization of Particle Charge from Aerosol Generation Process: Impact on Infrared Signatures and Material Reactivity
Authors: Erin M. Durke, Monica L. McEntee, Meilu He, Suresh Dhaniyala
Abstract:
Aerosols are one of the most important and significant surfaces in the atmosphere. They can influence weather, absorption, and reflection of light, and reactivity of atmospheric constituents. A notable feature of aerosol particles is the presence of a surface charge, a characteristic imparted via the aerosolization process. The existence of charge can complicate the interrogation of aerosol particles, so many researchers remove or neutralize aerosol particles before characterization. However, the charge is present in real-world samples, and likely has an effect on the physical and chemical properties of an aerosolized material. In our studies, we aerosolized different materials in an attempt to characterize the charge imparted via the aerosolization process and determine what impact it has on the aerosolized materials’ properties. The metal oxides, TiO₂ and SiO₂, were aerosolized expulsively and then characterized, using several different techniques, in an effort to determine the surface charge imparted upon the particles via the aerosolization process. Particle charge distribution measurements were conducted via the employment of a custom scanning mobility particle sizer. The results of the charge distribution measurements indicated that expulsive generation of 0.2 µm SiO₂ particles produced aerosols with upwards of 30+ charges on the surface of the particle. Determination of the degree of surface charging led to the use of non-traditional techniques to explore the impact of additional surface charge on the overall reactivity of the metal oxides, specifically TiO₂. TiO₂ was aerosolized, again expulsively, onto a gold-coated tungsten mesh, which was then evaluated with transmission infrared spectroscopy in an ultra-high vacuum environment. The TiO₂ aerosols were exposed to O₂, H₂, and CO, respectively. Exposure to O₂ resulted in a decrease in the overall baseline of the aerosol spectrum, suggesting O₂ removed some of the surface charge imparted during aerosolization. Upon exposure to H₂, there was no observable rise in the baseline of the IR spectrum, as is typically seen for TiO₂, due to the population of electrons into the shallow trapped states and subsequent promotion of the electrons into the conduction band. This result suggests that the additional charge imparted via aerosolization fills the trapped states, therefore no rise is seen upon exposure to H₂. Dosing the TiO₂ aerosols with CO showed no adsorption of CO on the surface, even at lower temperatures (~100 K), indicating the additional charge on the aerosol surface prevents the CO molecules from adsorbing to the TiO₂ surface. The results observed during exposure suggest that the additional charge imparted via aerosolization impacts the interaction with each probe gas.Keywords: aerosols, charge, reactivity, infrared
Procedia PDF Downloads 1223187 Mammographic Multi-View Cancer Identification Using Siamese Neural Networks
Authors: Alisher Ibragimov, Sofya Senotrusova, Aleksandra Beliaeva, Egor Ushakov, Yuri Markin
Abstract:
Mammography plays a critical role in screening for breast cancer in women, and artificial intelligence has enabled the automatic detection of diseases in medical images. Many of the current techniques used for mammogram analysis focus on a single view (mediolateral or craniocaudal view), while in clinical practice, radiologists consider multiple views of mammograms from both breasts to make a correct decision. Consequently, computer-aided diagnosis (CAD) systems could benefit from incorporating information gathered from multiple views. In this study, the introduce a method based on a Siamese neural network (SNN) model that simultaneously analyzes mammographic images from tri-view: bilateral and ipsilateral. In this way, when a decision is made on a single image of one breast, attention is also paid to two other images – a view of the same breast in a different projection and an image of the other breast as well. Consequently, the algorithm closely mimics the radiologist's practice of paying attention to the entire examination of a patient rather than to a single image. Additionally, to the best of our knowledge, this research represents the first experiments conducted using the recently released Vietnamese dataset of digital mammography (VinDr-Mammo). On an independent test set of images from this dataset, the best model achieved an AUC of 0.87 per image. Therefore, this suggests that there is a valuable automated second opinion in the interpretation of mammograms and breast cancer diagnosis, which in the future may help to alleviate the burden on radiologists and serve as an additional layer of verification.Keywords: breast cancer, computer-aided diagnosis, deep learning, multi-view mammogram, siamese neural network
Procedia PDF Downloads 1363186 The Residual Effects of Special Merchandising Sections on Consumers' Shopping Behavior
Authors: Shih-Ching Wang, Mark Lang
Abstract:
This paper examines the secondary effects and consequences of special displays on subsequent shopping behavior. Special displays are studied as a prominent form of in-store or shopper marketing activity. Two experiments are performed using special value and special quality-oriented displays in an online simulated store environment. The impact of exposure to special displays on mindsets and resulting product choices are tested in a shopping task. Impact on store image is also tested. The experiments find that special displays do trigger shopping mindsets that affect product choices and shopping basket composition and value. There are intended and unintended positive and negative effects found. Special value displays improve store price image but trigger a price sensitive shopping mindset that causes more lower-priced items to be purchased, lowering total basket dollar value. Special natural food displays improve store quality image and trigger a quality-oriented mindset that causes fewer lower-priced items to be purchased, increasing total basket dollar value. These findings extend the theories of product categorization, mind-sets, and price sensitivity found in communication research into the retail store environment. Findings also warn retailers to consider the total effects and consequences of special displays when designing and executing in-store or shopper marketing activity.Keywords: special displays, mindset, shopping behavior, price consciousness, product categorization, store image
Procedia PDF Downloads 2813185 Superoxide Dismutase Activity of Male Rats after Administration of Extract and Nanoparticle of Ginger Torch Flower
Authors: Tresna Lestari, Tita Nofianti, Ade Yeni Aprilia, Lilis Tuslinah, Ruswanto Ruswanto
Abstract:
Nanoparticle formulation is often used to improve drug absorptivity, thus increasing the sharpness of the action. Ginger torch flower extract was formulated into nanoparticle form using poloxamer 1, 3 and 5%. The nanoparticle was then characterized by its particle size, polydispersity index, zeta potential, entrapment efficiency and morphological form by SEM. The result shows that nanoparticle formulations have particle size 134.7-193.1 nm, polydispersity index less than 0.5 for all formulations, zeta potential -41.0 - (-24.3) mV and entrapment efficiency 89.93-97.99 against flavonoid content with a soft surface and spherical form of particles. Methanolic extract of ginger torch flower could enhance superoxide dismutase activity by 1,3183 U/mL in male rats. Nanoparticle formulation of ginger torch extract is expected to increase the capability of the drug to enhance superoxide dismutase activity.Keywords: superoxide dismutase, ginger torch flower, nanoparticle, poloxamer
Procedia PDF Downloads 1573184 Thermodynamic Properties of Calcium-Containing DPPA and DPPC Liposomes
Authors: Tamaz Mdzinarashvili, Mariam Khvedelidze, Eka Shekiladze, Salome Chinchaladze, Mariam Mdzinarashvili
Abstract:
The work is about the preparation of calcium-containing 1,2-Dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and 1,2-Dipalmitoyl-sn-glycero-3-phosphatidic acid (DPPA) and their calorimetric study. In order to prepare these complex liposomes, for the first stage it is necessary for ligands and lipids to directly interact, followed by the addition of pH-buffered water or solvent at temperatures slightly above the liposome phase transition temperature. The resulting mixture is briefly but vigorously shaken and then transformed into liposomes of the desired size using an extruder. Particle sizing and calorimetry were used to evaluate liposome formation. We determined the possible structure of calcium-containing liposomes made by our new technology and determined their thermostability. The paper provides calculations showing how many phospholipid molecules are required to make a 200 nm diameter liposome. Calculations showed that 33x10³ lipid molecules are needed to prepare one DPPA and DPPC liposome. Based on the calorimetric experiments, we determined that the structure of uncomplexed DPPA liposomes is unilaminar (one double layer), while DPPC liposome is a nanoparticle with a multilaminar (multilayer) structure. This was determined by the cooperativity of the heat absorption peak. Calorimetric studies of calcium liposomes made by our technology showed that calcium ions are placed in the multilaminar structure of the DPPC liposome. Calcium ions also formed a complex in the DPPA liposome structure, moreover, calcium made the DPPA liposome multilaminar, since the cooperative narrow heat absorption peak was transformed into a three-peak heat absorption peak. Since both types of liposomes in complex with calcium ions present a multilaminar structure, where the number of lipid heads in one particle is large, the number of calcium ions in one particle will also be increased. That makes it possible to use these nanoparticles as transporters of a large amount of calcium ions in a living organism.Keywords: calcium, liposomes, thermodynamic parameters, calorimetry
Procedia PDF Downloads 353183 Crater Detection Using PCA from Captured CMOS Camera Data
Authors: Tatsuya Takino, Izuru Nomura, Yuji Kageyama, Shin Nagata, Hiroyuki Kamata
Abstract:
We propose a method of detecting the craters from the image of the lunar surface. This proposal assumes that it is applied to SLIM (Smart Lander for Investigating Moon) working group aiming at the pinpoint landing on the lunar surface and investigating scientific research. It is difficult to equip and use high-performance computers for the small space probe. So, it is necessary to use a small computer with an exclusive hardware such as FPGA. We have studied the crater detection using principal component analysis (PCA), In this paper, We implement detection algorithm into the FPGA, and the detection is performed on the data that was captured from the CMOS camera.Keywords: crater detection, PCA, FPGA, image processing
Procedia PDF Downloads 5473182 Changing Body Ideals of Ethnically Diverse Gay and Heterosexual Men and the Proliferation of Social and Entertainment Media
Authors: Cristina Azocar, Ivana Markova
Abstract:
A survey of 565 male undergraduates examined the effects of exposure to social networking sites and entertainment media on young men’s body image. Exposure to social and to entertainment media was found to have negative effects on men’s body satisfaction, social comparison, and thin ideal internalization. Findings indicated significant differences in those men who were more exposed to social and to entertainment media than those who were not as exposed. Consistent with past studies, gay men were found to be more dissatisfied with their bodies than straight men. Gay men compared themselves to other better-looking individuals and internalized ideal body types seen in media significantly more than their straight counterparts. Surprisingly, straight men seem to care as much about their physical attractiveness/appearance as gay men do, but only in public settings such as at the beach, at athletic events (including gyms) and social events. Although on average ethnic groups were more similar than different, small but significant differences occurred with Asian men indicating significantly higher body dissatisfaction than White/European men and Middle Eastern/Arab men their counterparts. The study increases our knowledge about SNS and entertainment use and its associated body image, and body satisfaction affects among low-income ethnic minority men.Keywords: body dissatisfaction, body image, entertainment media, gay men, race and ethnicity, social economic status, social comparison, social media
Procedia PDF Downloads 1333181 An Evaluation of the Feasibility of Several Industrial Wastes and Natural Materials as Precursors for the Production of Alkali Activated Materials
Authors: O. Alelweet, S. Pavia
Abstract:
In order to face current compelling environmental problems affecting the planet, the construction industry needs to adapt. It is widely acknowledged that there is a need for durable, high-performance, low-greenhouse gas emission binders that can be used as an alternative to Portland cement (PC) to lower the environmental impact of construction. Alkali activated materials (AAMs) are considered a more sustainable alternative to PC materials. The binders of AAMs result from the reaction of an alkali metal source and a silicate powder or precursor which can be a calcium silicate or an aluminosilicate-rich material. This paper evaluates the particle size, specific surface area, chemical and mineral composition and amorphousness of silicate materials (most industrial waste locally produced in Ireland and Saudi Arabia) to develop alkali-activated binders that can replace PC resources in specific applications. These include recycled ceramic brick, bauxite, illitic clay, fly ash and metallurgical slag. According to the results, the wastes are reactive and comply with building standards requirements. The study also evidenced that the reactivity of the Saudi bauxite (with significant kaolinite) can be enhanced on thermal activation; and high calcium in the slag will promote reaction; which should be possible with low alkalinity activators. The wastes evidenced variable water demands that will be taken into account for mixing with the activators. Finally, further research is proposed to further determine the reactive fraction of the clay-based precursors.Keywords: alkali activated materials, alkali-activated binders, sustainable building materials, recycled ceramic brick, bauxite, red mud, clay, fly ash, metallurgical slags, particle size, chemical and mineral composition and amorphousness, water demand, particle density
Procedia PDF Downloads 1253180 DeepNIC a Method to Transform Each Tabular Variable into an Independant Image Analyzable by Basic CNNs
Authors: Nguyen J. M., Lucas G., Ruan S., Digonnet H., Antonioli D.
Abstract:
Introduction: Deep Learning (DL) is a very powerful tool for analyzing image data. But for tabular data, it cannot compete with machine learning methods like XGBoost. The research question becomes: can tabular data be transformed into images that can be analyzed by simple CNNs (Convolutional Neuron Networks)? Will DL be the absolute tool for data classification? All current solutions consist in repositioning the variables in a 2x2 matrix using their correlation proximity. In doing so, it obtains an image whose pixels are the variables. We implement a technology, DeepNIC, that offers the possibility of obtaining an image for each variable, which can be analyzed by simple CNNs. Material and method: The 'ROP' (Regression OPtimized) model is a binary and atypical decision tree whose nodes are managed by a new artificial neuron, the Neurop. By positioning an artificial neuron in each node of the decision trees, it is possible to make an adjustment on a theoretically infinite number of variables at each node. From this new decision tree whose nodes are artificial neurons, we created the concept of a 'Random Forest of Perfect Trees' (RFPT), which disobeys Breiman's concepts by assembling very large numbers of small trees with no classification errors. From the results of the RFPT, we developed a family of 10 statistical information criteria, Nguyen Information Criterion (NICs), which evaluates in 3 dimensions the predictive quality of a variable: Performance, Complexity and Multiplicity of solution. A NIC is a probability that can be transformed into a grey level. The value of a NIC depends essentially on 2 super parameters used in Neurops. By varying these 2 super parameters, we obtain a 2x2 matrix of probabilities for each NIC. We can combine these 10 NICs with the functions AND, OR, and XOR. The total number of combinations is greater than 100,000. In total, we obtain for each variable an image of at least 1166x1167 pixels. The intensity of the pixels is proportional to the probability of the associated NIC. The color depends on the associated NIC. This image actually contains considerable information about the ability of the variable to make the prediction of Y, depending on the presence or absence of other variables. A basic CNNs model was trained for supervised classification. Results: The first results are impressive. Using the GSE22513 public data (Omic data set of markers of Taxane Sensitivity in Breast Cancer), DEEPNic outperformed other statistical methods, including XGBoost. We still need to generalize the comparison on several databases. Conclusion: The ability to transform any tabular variable into an image offers the possibility of merging image and tabular information in the same format. This opens up great perspectives in the analysis of metadata.Keywords: tabular data, CNNs, NICs, DeepNICs, random forest of perfect trees, classification
Procedia PDF Downloads 124