Search results for: residential stud walls
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1497

Search results for: residential stud walls

387 Visual Simulation for the Relationship of Urban Fabric

Authors: Ting-Yu Lin, Han-Liang Lin

Abstract:

This article is about the urban form of visualization by Cityengine. City is composed of different domains, and each domain has its own fabric because of arrangement. For example, a neighborhood unit contains fabrics such as schools, street networks, residential and commercial spaces. Therefore, studying urban morphology can help us understand the urban form in planning process. Streets, plots, and buildings seem as urban fabrics, and they configure urban form. Traditionally, urban morphology usually discussed single parameter, which is building type, ignoring other parameters such as streets and plots. However, urban space is three-dimensional, instead of two-dimensional. People perceive urban space by their visualization. Therefore, using visualization can fill the gap between two dimensions and three dimensions. Hence, the study of urban morphology will strengthen the understanding of whole appearance of a city. Cityengine is a software which can edit, analyze and monitor the data and visualize the result for GIS, a common tool to analyze data and display the map for urban plan and urban design. Cityengine can parameterize the data of streets, plots and building types and visualize the result in three-dimensional way. The research will reappear the real urban form by visualizing. We can know whether the urban form can be parameterized and the parameterized result can match the real urban form. Then, visualizing the result by software in three dimension to analyze the rule of urban form. There will be three stages of the research. It will start with a field survey of Tainan East District in Taiwan to conclude the relationships between urban fabrics of street networks, plots and building types. Second, to visualize the relationship, it will turn the relationship into codes which Cityengine can read. Last, Cityengine will automatically display the result by visualizing.

Keywords: Cityengine, urban fabric, urban morphology, visual simulation

Procedia PDF Downloads 300
386 Service Flow in Multilayer Networks: A Method for Evaluating the Layout of Urban Medical Resources

Authors: Guanglin Song

Abstract:

(Objective) Situated within the context of China's tiered medical treatment system, this study aims to analyze spatial causes of urban healthcare access difficulties from the perspective of the configuration of healthcare facilities. (Methods) A social network analysis approach is employed to construct a healthcare demand and supply flow network between major residential clusters and various tiers of hospitals in the city.(Conclusion) The findings reveal that:1.there exists overall maldistribution and over-concentration of healthcare resources in Study Area, characterized by structural imbalance; 2.the low rate of primary care utilization in Study Area is a key factor contributing to congestion at higher-tier hospitals, as excessive reliance on these institutions by neighboring communities exacerbates the problem; 3.gradual optimization of the healthcare facility layout in Study Area, encompassing holistic, local, and individual institutional levels, can enhance systemic efficiency and resource balance.(Prospects) This research proposes a method for evaluating urban healthcare resource distribution structures based on service flows within hierarchical networks. It offers spatially targeted optimization suggestions for promoting the implementation of the tiered healthcare system and alleviating challenges related to accessibility and congestion in seeking medical care. Provide some new ideas for researchers and healthcare managers in countries, cities, and healthcare management around the world with similar challenges.

Keywords: flow of public services, urban networks, healthcare facilities, spatial planning, urban networks

Procedia PDF Downloads 75
385 Computational Fluid Dynamics Simulation of a Boiler Outlet Header Constructed of Inconel Alloy 740H

Authors: Sherman Ho, Ahmed Cherif Megri

Abstract:

Headers play a critical role in conveying steam to regulate heating system temperatures. While various materials like steel grades 91 and 92 have been traditionally used for pipes, this research proposes the use of a robust and innovative material, INCONEL Alloy 740H. Boilers in power plant configurations are exposed to cycling conditions due to factors such as daily, seasonal, and yearly variations in weather. These cycling conditions can lead to the deterioration of headers, which are vital components with intricate geometries. Header failures result in substantial financial losses from repair costs and power plant shutdowns, along with significant public inconveniences such as the loss of heating and hot water. To address this issue and seek solutions, a mechanical analysis, as well as a structural analysis, are recommended. Transient analysis to predict heat transfer conditions is of paramount importance, as the direction of heat transfer within the header walls and the passing steam can vary based on the location of interest, load, and operating conditions. The geometry and material of the header are also crucial design factors, and the choice of pipe material depends on its usage. In this context, the heat transfer coefficient plays a vital role in header design and analysis. This research employs ANSYS Fluent, a numerical simulation program, to understand header behavior, predict heat transfer, and analyze mechanical phenomena within the header. Transient simulations are conducted to investigate parameters like heat transfer coefficient, pressure loss coefficients, and heat flux, with the results used to optimize header design.

Keywords: CFD, header, power plant, heat transfer coefficient, simulation using experimental data

Procedia PDF Downloads 69
384 Fragility Analysis of a Soft First-Story Building in Mexico City

Authors: Rene Jimenez, Sonia E. Ruiz, Miguel A. Orellana

Abstract:

On 09/19/2017, a Mw = 7.1 intraslab earthquake occurred in Mexico causing the collapse of about 40 buildings. Many of these were 5- or 6-story buildings with soft first story; so, it is desirable to perform a structural fragility analysis of typical structures representative of those buildings and to propose a reliable structural solution. Here, a typical 5-story building constituted by regular R/C moment-resisting frames in the first story and confined masonry walls in the upper levels, similar to the collapsed structures on the 09/19/2017 Mexico earthquake, is analyzed. Three different structural solutions of the 5-story building are considered: S1) it is designed in accordance with the Mexico City Building Code-2004; S2) then, the column dimensions of the first story corresponding to S1 are reduced, and S3) viscous dampers are added at the first story of solution S2. A number of dynamic incremental analyses are performed for each structural solution, using a 3D structural model. The hysteretic behavior model of the masonry was calibrated with experiments performed at the Laboratory of Structures at UNAM. Ten seismic ground motions are used to excite the structures; they correspond to ground motions recorded in intermediate soil of Mexico City with a dominant period around 1s, where the structures are located. The fragility curves of the buildings are obtained for different values of the maximum inter-story drift demands. Results show that solutions S1 and S3 give place to similar probabilities of exceedance of a given value of inter-story drift for the same seismic intensity, and that solution S2 presents a higher probability of exceedance for the same seismic intensity and inter-story drift demand. Therefore, it is concluded that solution S3 (which corresponds to the building with soft first story and energy dissipation devices) can be a reliable solution from the structural point of view.

Keywords: demand hazard analysis, fragility curves, incremental dynamic analyzes, soft-first story, structural capacity

Procedia PDF Downloads 179
383 Fluoride as Obturating Material in Primary Teeth

Authors: Syed Ameer Haider Jafri

Abstract:

The primary goal of a root canal treatment in deciduous teeth is to eliminate infection and to retain the tooth in a functional state until it gets physiologically exfoliated and replaced by permanent successor. Important requisite of a root canal filling material for primary teeth is that, it should resorb at a similar rate as the roots of primary tooth, be harmless to the periapical tissue and to the permanent tooth germ, resorb readily if pushed beyond the apex, be antiseptic, radio-opaque, should not shrink, adhere to the walls, not discolor the tooth and easy to fill & remove, if required at any stage. Presently available, commonly used obturating materials for primary teeth are zinc oxide eugenol, calcium hydroxide and iodoform based pastes. None of these materials so far meet the ideal requirement of root canal filling material. So in search of ideal obturating material, this study was planed, in which mixture of calcium hydroxide, zinc oxide & sodium fluoride and mixture of calcium hydroxide & sodium fluoride was compared clinically and radiographically with calcium hydroxide for the obturation of root canals of 75 carious exposed primary mandibular second molars of 59 children aged 4-9 years. All the three material shows good results, but after a follow-up of 9 months mixture of calcium hydroxide, two percent sodium fluoride & zinc oxide powder closely follow the resorption of root, mixture of calcium hydroxide, two percent sodium fluoride follow resorption of root in the beginning but later on majority of cases shows faster resorption whereas calcium hydroxide starts depleting from the canal from the beginning even as early as 3 months. Thus mixture of calcium hydroxide, two percent sodium fluoride & zinc oxide found to be best obturaring material for primary tooth.

Keywords: obturating material, primary teeth, root canal treatment, success rate

Procedia PDF Downloads 308
382 Using Open Source Data and GIS Techniques to Overcome Data Deficiency and Accuracy Issues in the Construction and Validation of Transportation Network: Case of Kinshasa City

Authors: Christian Kapuku, Seung-Young Kho

Abstract:

An accurate representation of the transportation system serving the region is one of the important aspects of transportation modeling. Such representation often requires developing an abstract model of the system elements, which also requires important amount of data, surveys and time. However, in some cases such as in developing countries, data deficiencies, time and budget constraints do not always allow such accurate representation, leaving opportunities to assumptions that may negatively affect the quality of the analysis. With the emergence of Internet open source data especially in the mapping technologies as well as the advances in Geography Information System, opportunities to tackle these issues have raised. Therefore, the objective of this paper is to demonstrate such application through a practical case of the development of the transportation network for the city of Kinshasa. The GIS geo-referencing was used to construct the digitized map of Transportation Analysis Zones using available scanned images. Centroids were then dynamically placed at the center of activities using an activities density map. Next, the road network with its characteristics was built using OpenStreet data and other official road inventory data by intersecting their layers and cleaning up unnecessary links such as residential streets. The accuracy of the final network was then checked, comparing it with satellite images from Google and Bing. For the validation, the final network was exported into Emme3 to check for potential network coding issues. Results show a high accuracy between the built network and satellite images, which can mostly be attributed to the use of open source data.

Keywords: geographic information system (GIS), network construction, transportation database, open source data

Procedia PDF Downloads 170
381 Using Dynamic Glazing to Eliminate Mechanical Cooling in Multi-family Highrise Buildings

Authors: Ranojoy Dutta, Adam Barker

Abstract:

Multifamily residential buildings are increasingly being built with large glazed areas to provide tenants with greater daylight and outdoor views. However, traditional double-glazed window assemblies can lead to significant thermal discomfort from high radiant temperatures as well as increased cooling energy use to address solar gains. Dynamic glazing provides an effective solution by actively controlling solar transmission to maintain indoor thermal comfort, without compromising the visual connection to outdoors. This study uses thermal simulations across three Canadian cities (Toronto, Vancouver and Montreal) to verify if dynamic glazing along with operable windows and ceiling fans can maintain the indoor operative temperature of a prototype southwest facing high-rise apartment unit within the ASHRAE 55 adaptive comfort range for a majority of the year, without any mechanical cooling. Since this study proposes the use of natural ventilation for cooling and the typical building life cycle is 30-40 years, the typical weather files have been modified based on accepted global warming projections for increased air temperatures by 2050. Results for the prototype apartment confirm that thermal discomfort with dynamic glazing occurs only for less than 0.7% of the year. However, in the baseline scenario with low-E glass there are up to 7% annual hours of discomfort despite natural ventilation with operable windows and improved air movement with ceiling fans.

Keywords: electrochromic glazing, multi-family housing, passive cooling, thermal comfort, natural ventilation

Procedia PDF Downloads 110
380 Estimating Heavy Metal Leakage and Environmental Damage from Cigarette Butt Disposal in Urban Areas through CBPI Evaluation

Authors: Muhammad Faisal, Zai-Jin You, Muhammad Naeem

Abstract:

Concerns about the environment, public health, and the economy are raised by the fact that the world produces around 6 trillion cigarettes annually. Arguably the most pervasive forms of environmental litter, this dangerous trash must be eliminated. The researchers wanted to get an idea of how much pollution is seeping out of cigarette butts in metropolitan areas by studying their distribution and concentration. In order to accomplish this goal, the cigarette butt pollution indicator was applied in 29 different areas. The locations were monitored monthly for a full calendar year. The conditions for conducting the investigation of the venues were the same on both weekends and during the weekdays. By averaging the metal leakage ratio in various climates and the average weight of cigarette butts, we were able to estimate the total amount of heavy metal leakage. The findings revealed that the annual average value of the index for the areas that were investigated ranged from 1.38 to 10.4. According to these numbers, just 27.5% of the areas had a low pollution rating, while 43.5% had a major pollution status or worse. Weekends witnessed the largest fall (31% on average) in all locations' indices, while spring and summer saw the largest increase (26% on average) compared to autumn and winter. It was calculated that the average amount of heavy metals such as Cr, Cu, Cd, Zn, and Pb that seep into the environment from discarded cigarette butts in commercial, residential, and park areas, respectively, is 0.25 µg/m2, 0.078 µg/m2, and 0.18 µg/m2. Butt from cigarettes is one of the most prevalent forms of litter in the area that was examined. This litter is the origin of a wide variety of contaminants, including heavy metals. This toxic garbage poses a significant risk to the city.

Keywords: heavy metal, hazardous waste, waste management, litter

Procedia PDF Downloads 84
379 Planning for Sustainability in the Built Environment

Authors: Adedayo Jeremiah Adeyekun, Samuel Oluwagbemiga Ishola

Abstract:

This paper aimed to identify the significance of sustainability in the built environment, the economic and environmental importance to building and construction projects. Sustainability in the built environment has been a key objective of research over the past several decades. Sustainability in the built environment requires reconciliation between economic, environmental and social impacts of design and planning decisions made during the life cycle of a project from inception to termination. Planning for sustainability in the built environment needs us to go beyond our individual disciplines to consider the variety of economic, social and environmental impacts of our decisions in the long term. A decision to build a green residential development in an isolated location may pass some of the test of sustainability through its reduction in stormwater runoff, energy efficiency, and ecological sustainability in the building, but it may fail to be sustainable from a transportation perspective. Sustainability is important to the planning, design, construction, and preservation of the built environment; because it helps these activities reflect multiple values and considerations. In fact, the arts and sciences of the built environment have traditionally integrated values and fostered creative expression, capabilities that can and should lead the sustainability movement as society seeks ways to live in dynamic balance with its own diverse needs and the natural world. This research aimed to capture the state-of-the-art in the development of innovative sustainable design and planning strategies for building and construction projects. Therefore, there is a need for a holistic selection and implication approach for identifying potential sustainable strategies applicable to a particular project and evaluating the overall life cycle impact of each alternative by accounting for different applicable impacts and making the final selection among various viable alternatives.

Keywords: sustainability, built environment, planning, design, construction

Procedia PDF Downloads 180
378 Depth Camera Aided Dead-Reckoning Localization of Autonomous Mobile Robots in Unstructured GNSS-Denied Environments

Authors: David L. Olson, Stephen B. H. Bruder, Adam S. Watkins, Cleon E. Davis

Abstract:

In global navigation satellite systems (GNSS), denied settings such as indoor environments, autonomous mobile robots are often limited to dead-reckoning navigation techniques to determine their position, velocity, and attitude (PVA). Localization is typically accomplished by employing an inertial measurement unit (IMU), which, while precise in nature, accumulates errors rapidly and severely degrades the localization solution. Standard sensor fusion methods, such as Kalman filtering, aim to fuse precise IMU measurements with accurate aiding sensors to establish a precise and accurate solution. In indoor environments, where GNSS and no other a priori information is known about the environment, effective sensor fusion is difficult to achieve, as accurate aiding sensor choices are sparse. However, an opportunity arises by employing a depth camera in the indoor environment. A depth camera can capture point clouds of the surrounding floors and walls. Extracting attitude from these surfaces can serve as an accurate aiding source, which directly combats errors that arise due to gyroscope imperfections. This configuration for sensor fusion leads to a dramatic reduction of PVA error compared to traditional aiding sensor configurations. This paper provides the theoretical basis for the depth camera aiding sensor method, initial expectations of performance benefit via simulation, and hardware implementation, thus verifying its veracity. Hardware implementation is performed on the Quanser Qbot 2™ mobile robot, with a Vector-Nav VN-200™ IMU and Kinect™ camera from Microsoft.

Keywords: autonomous mobile robotics, dead reckoning, depth camera, inertial navigation, Kalman filtering, localization, sensor fusion

Procedia PDF Downloads 210
377 Assessing Native Plant Presence and Maintenance Resource Allocations in New Zealand Backyards: A Nationwide Online Questionnaire

Authors: Megan Burfoot, Shanta Budha-Magar, Ali Ghaffarianhoseini, Amirhoseini Ghaffarianhoseini

Abstract:

Domestic backyards offer a valuable opportunity to contribute to biodiversity conservation efforts and promote ecological sustainability by cultivating native plant species. This study focuses on assessing the presence and maintenance of native plants in New Zealand's residential gardens through an online questionnaire. The survey was designed to collect data on the presence of native, exotic, and lawn plants in New Zealand backyards, alongside the allocation of maintenance resources for each category. Targeting a diverse range of residents and property sizes from different regions of New Zealand, this study sought to gain essential insights into practices related to native plant cultivation. Results reveal there is a collective inclination to reduce lawn coverage and introduce a higher abundance of native and exotic species. A thorough analysis of maintenance practices reveals a significant portion of respondents embracing environmentally friendly gardening, characterized by low-intensity fertilizer usage. Homeowners, especially those residing in their properties, demonstrate proactive engagement in backyard maintenance. Native plants were found to require more time, money and fertilizer for maintenance than those of exotic and lawn species. The insights gained from this study can guide targeted efforts to enhance urban biodiversity, making a significant contribution to the preservation and enrichment of New Zealand's unique biodiversity and ecological heritage in urban settings.

Keywords: biodiversity, backyards, planting behaviour, backyard maintenance, native planting

Procedia PDF Downloads 74
376 Implementation of the Canadian Emergency Department Triage and Acuity Scale (CTAS) in an Urgent Care Center in Saudi Arabia

Authors: Abdullah Arafat, Ali Al-Farhan, Amir Omair

Abstract:

Objectives: To review and assess the effectiveness of the implemented modified five-levels triage and acuity scale triage system in AL-Yarmook Urgent Care Center (UCC), King Abdulaziz Residential city, Riyadh, Saudi Arabia. Method: The applied study design was an observational cross sectional design. A data collection sheet was designed and distributed to triage nurses; the data collection was done during triage process and was directly observed by the co-investigator. Triage system was reviewed by measuring three time intervals as quality indicators: time before triage (TBT), time before being seen by physician (TBP) and total length of stay (TLS) taking in consideration timing of presentation and level of triage. Results: During the study period, a total of 187 patients were included in our study. 118 visits were at weekdays and 68 visits at weekends. Overall, 173 patients (92.5%) were seen by the physician in timely manner according to triage guidelines while 14 patients (7.5%) were not seen at appropriate time.Overall, The mean time before seen the triage nurse (TBT) was 5.36 minutes, the mean time to be seen by physician (TBP) was 22.6 minutes and the mean length of stay (TLS) was 59 minutes. The data didn’t showed significant increase in TBT, TBP, and number of patients not seen at the proper time, referral rate and admission rate during weekend. Conclusion: The CTAS is adaptable to countries beyond Canada and worked properly. The applied CTAS triage system in Al-Yarmook UCC is considered to be effective and well applied. Overall, urgent cases have been seen by physician in timely manner according to triage system and there was no delay in the management of urgent cases.

Keywords: CTAS, emergency, Saudi Arabia, triage, urgent care

Procedia PDF Downloads 326
375 Comparing the Embodied Carbon Impacts of a Passive House with the BC Energy Step Code Using Life Cycle Assessment

Authors: Lorena Polovina, Maddy Kennedy-Parrott, Mohammad Fakoor

Abstract:

The construction industry accounts for approximately 40% of total GHG emissions worldwide. In order to limit global warming to 1.5 degrees Celsius, ambitious reductions in the carbon intensity of our buildings are crucial. Passive House presents an opportunity to reduce operational carbon by as much as 90% compared to a traditional building through improving thermal insulation, limiting thermal bridging, increasing airtightness and heat recovery. Up until recently, Passive House design was mainly concerned with meeting the energy demands without considering embodied carbon. As buildings become more energy-efficient, embodied carbon becomes more significant. The main objective of this research is to calculate the embodied carbon impact of a Passive House and compare it with the BC Energy Step Code (ESC). British Columbia is committed to increasing the energy efficiency of buildings through the ESC, which is targeting net-zero energy-ready buildings by 2032. However, there is a knowledge gap in the embodied carbon impacts of more energy-efficient buildings, in particular Part 3 construction. In this case study, life cycle assessments (LCA) are performed on Part 3, a multi-unit residential building in Victoria, BC. The actual building is not constructed to the Passive House standard; however, the building envelope and mechanical systems are designed to comply with the Passive house criteria, as well as Steps 1 and 4 of the BC Energy Step Code (ESC) for comparison. OneClick LCA is used to perform the LCA of the case studies. Several strategies are also proposed to minimize the total carbon emissions of the building. The assumption is that there will not be significant differences in embodied carbon between a Passive House and a Step 4 building due to the building envelope.

Keywords: embodied carbon, energy modeling, energy step code, life cycle assessment

Procedia PDF Downloads 154
374 An Analysis of a Canadian Personalized Learning Curriculum

Authors: Ruthanne Tobin

Abstract:

The shift to a personalized learning (PL) curriculum in Canada represents an innovative approach to teaching and learning that is also evident in various initiatives across the 32-nation OECD. The premise behind PL is that empowering individual learners to have more input into how they access and construct knowledge, and express their understanding of it, will result in more meaningful school experiences and academic success. In this paper presentation, the author reports on a document analysis of the new curriculum in the province of British Columbia. Three theoretical frameworks are used to analyze the new curriculum. Framework 1 focuses on five dominant aspects (FDA) of PL at the classroom level. Framework 2 focuses on conceptualizing and enacting personalized learning (CEPL) within three spheres of influence. Framework 3 focuses on the integration of three types of knowledge (content, technological, and pedagogical). Analysis is ongoing, but preliminary findings suggest that the new curriculum addresses framework 1 quite well, which identifies five areas of personalized learning: 1) assessment for learning; 2) effective teaching and learning; 3) curriculum entitlement (choice); 4) school organization; and 5) “beyond the classroom walls” (learning in the community). Framework 2 appears to be less well developed in the new curriculum. This framework speaks to the dynamics of PL within three spheres of interaction: 1) nested agency, comprised of overarching constraints [and enablers] from policy makers, school administrators and community; 2) relational agency, which refers to a capacity for professionals to develop a network of expertise to serve shared goals; and 3) students’ personalized learning experience, which integrates differentiation with self-regulation strategies. Framework 3 appears to be well executed in the new PL curriculum, as it employs the theoretical model of technological, pedagogical content knowledge (TPACK) in which there are three interdependent bodies of knowledge. Notable within this framework is the emphasis on the pairing of technologies with excellent pedagogies to significantly assist students and teachers. This work will be of high relevance to educators interested in innovative school reform.

Keywords: curriculum reform, K-12 school change, innovations in education, personalized learning

Procedia PDF Downloads 285
373 The Current Practices of Analysis of Reinforced Concrete Panels Subjected to Blast Loading

Authors: Palak J. Shukla, Atul K. Desai, Chentankumar D. Modhera

Abstract:

For any country in the world, it has become a priority to protect the critical infrastructure from looming risks of terrorism. In any infrastructure system, the structural elements like lower floors, exterior columns, walls etc. are key elements which are the most susceptible to damage due to blast load. The present study revisits the state of art review of the design and analysis of reinforced concrete panels subjected to blast loading. Various aspects in association with blast loading on structure, i.e. estimation of blast load, experimental works carried out previously, the numerical simulation tools, various material models, etc. are considered for exploring the current practices adopted worldwide. Discussion on various parametric studies to investigate the effect of reinforcement ratios, thickness of slab, different charge weight and standoff distance is also made. It was observed that for the simulation of blast load, CONWEP blast function or equivalent numerical equations were successfully employed by many researchers. The study of literature indicates that the researches were carried out using experimental works and numerical simulation using well known generalized finite element methods, i.e. LS-DYNA, ABAQUS, AUTODYN. Many researchers recommended to use concrete damage model to represent concrete and plastic kinematic material model to represent steel under action of blast loads for most of the numerical simulations. Most of the studies reveal that the increase reinforcement ratio, thickness of slab, standoff distance was resulted in better blast resistance performance of reinforced concrete panel. The study summarizes the various research results and appends the present state of knowledge for the structures exposed to blast loading.

Keywords: blast phenomenon, experimental methods, material models, numerical methods

Procedia PDF Downloads 158
372 Numerical Studies on Bypass Thrust Augmentation Using Convective Heat Transfer in Turbofan Engine

Authors: R. Adwaith, J. Gopinath, Vasantha Kohila B., R. Chandru, Arul Prakash R.

Abstract:

The turbofan engine is a type of air breathing engine that is widely used in aircraft propulsion produces thrust mainly from the mass-flow of air bypassing the engine core. The present research has developed an effective method numerically by increasing the thrust generated from the bypass air. This thrust increase is brought about by heating the walls of the bypass valve from the combustion chamber using convective heat transfer method. It is achieved computationally by the use external heat to enhance the velocity of bypass air of turbofan engines. The bypass valves are either heated externally using multicell tube resistor which convert electricity generated by dynamos into heat or heat is transferred from the combustion chamber. This increases the temperature of the flow in the valves and thereby increase the velocity of the flow that enters the nozzle of the engine. As a result, mass-flow of air passing the core engine for producing more thrust can be significantly reduced thereby saving considerable amount of Jet fuel. Numerical analysis has been carried out on a scaled down version of a typical turbofan bypass valve, where the valve wall temperature has been increased to 700 Kelvin. It is observed from the analysis that, the exit velocity contributing to thrust has significantly increased by 10 % due to the heating of by-pass valve. The degree of optimum increase in the temperature, and the corresponding effect in the increase of jet velocity is calculated to determine the operating temperature range for efficient increase in velocity. The technique used in the research increases the thrust by using heated by-pass air without extracting much work from the fuel and thus improve the efficiency of existing turbofan engines. Dimensional analysis has been carried to prove the accuracy of the results obtained numerically.

Keywords: turbofan engine, bypass valve, multi-cell tube, convective heat transfer, thrust

Procedia PDF Downloads 360
371 The Architectural Conservation and Restoration Problems of Istanbul’s “Yalı” Waterfront Mansions

Authors: Zeynep Tanrıverdi

Abstract:

The Bosphorus is an international waterway in Istanbul city of Turkey connecting the Sea of Marmara and the Black Sea. The Bosphorus, which has formed an important part of the silhouette of Istanbul throughout history, has also influenced the design of the coastal structures built around it. The waterfront mansions, which are located on both sides of the Bosphorus by the sea, and can be generally of two or three storeys, are called “yalı”. The yalı buildings with their architectural characteristics of the traditional Turkish House are the most grandiose examples of Ottoman residential architecture. However, the classical Ottoman yalı architecture of the 18th century can only be seen in engravings, and today only the modest and smaller yalı examples from the 19th century can be seen because of their disappearance over time. The study aims to reveal the architectural conservation and restoration problems of waterfront mansions and propose solutions for them. Firstly, the development of the waterfront mansion architecture in Bosphorus was evaluated in its historical process. Secondly, the waterfront mansions and their architectural features were explained. Thirdly, the architectural conservation and restoration problems that caused the disappearance of waterfront mansions were discussed. These problems include disruptions in legal regulations and practices about the Bosphorus, dramatic changes in Turkey’s socio-cultural life from the Ottoman Empire to the present, inadequacies in economic resources, negative environmental effects, and errors in restoration works. Finally, solution suggestions were proposed for the problems that threaten the protection of waterfront mansions. In the study, literature on waterfront mansions was reviewed using historical reports, photographs, maps, and drawings in archival documents. It is hoped that this study will contribute the conservation of the “Yalı” waterfront mansions, which occupy a particular role in the cultural heritage of Turkey, and to their transmission with their authentic values to the next generation.

Keywords: bosphorus architecture, conservation, heritage, Istanbul, waterfront mansions (yalı)

Procedia PDF Downloads 81
370 Engine with Dual Helical Crankshaft System Operating at an Overdrive Gear Ratio

Authors: Anierudh Vishwanathan

Abstract:

This paper suggests a new design of the crankshaft system that would help to use a low revving engine for applications requiring the use of a high revving engine operating at the same power by converting the extra or unnecessary torque obtained from a low revving engine into angular velocity of the crankshaft of the engine hence, improve the fuel economy of the vehicle because of the fact that low revving engines run more effectively on lean air fuel mixtures accompanied with less wear and tear of the engine due to lesser rubbing of the piston rings with the cylinder walls. If the crankshaft with the proposed design is used in a low revving engine, then it will give the same torque and speed as that given by a high revving engine operating at the same power but the new engine will give better fuel economy. Hence the new engine will give the benefits of a low revving engine as well as a high revving engine. The proposed crankshaft design will be achieved by changing the design of the crankweb in such a way that it functions both as a counterweight as well as a helical gear that can transfer power to the secondary gear shaft which will be incorporated in the crankshaft system. The crankshaft and the secondary gear shaft will be operating at an overdrive ratio. The crankshaft will now be a two shaft system instead of a single shaft system. The newly designed crankshaft will be mounted on the bearings instead of being connected to the flywheel of the engine. This newly designed crankshaft will transmit power to the secondary shaft which will rotate the flywheel and then the rotary motion will be transmitted to the transmission system as usual. In this design, the concept of power transmission will be incorporated in the crankshaft system. In the paper, the crankshaft and the secondary shafts have been designed in such a way that at any instant of time only half the number of crankwebs will be meshed with the secondary shaft. For example, during one revolution of the crankshaft, if for the first half of revolution; first, second, seventh and eighth crankwebs are meshing with the secondary shaft then for the next half revolution, third, fourth, fifth and sixth crankwebs will mesh with the secondary shaft. This paper also analyses the proposed crankshaft design for safety against fatigue failure. Finite element analysis of the crankshaft has been done and the resultant stresses have been calculated.

Keywords: low revving, high revving, secondary shaft, partial meshing

Procedia PDF Downloads 272
369 Study of Heat Transfer through the Ground and its Accumulation Properties to Increase the Energy Efficiency of Underground Buildings

Authors: Sandeep Bandarwadkar, Tadas Zdankus

Abstract:

To maintain a comfortable indoor temperature for its residents in the colder season, heating a building is necessary. Due to the expansion in the construction sectors, the consumption of heating energy is increasing. According to Eurostat data, in the European Union, the share of energy consumption of heating energy for space and cooling in residential buildings was around 63% in 2019. These figures indicate that heating energy still accounts for a significant portion of total energy consumption in Europe. Innovation is crucial to reduce energy consumption in buildings and achieve greater energy efficiency and sustainability. It can bring about new solutions that are smarter and more natural energy generation to reduce greenhouse gas emissions. The ground can serve as an effective and sustainable heat accumulator for heating and cooling. The temperature of the ground is higher than that of the ambient air in the colder period and lower in the warmer period. The building deep in the soil could use less thermal energy compared to the above-ground buildings that provide the same amount of thermal comfort. The temperature difference between the soil and the air inside the building decreases as the temperature of the soil increases. In progress, this process generates the condition that acts against heat loss. However, heat dissipates further to the consecutive layers and reaches thermal equilibrium. The charging of the ground by heat and its dissipation through the adjacent soil layers was investigated experimentally. The results of this research showed that 9% of the energy savings in partially underground buildings and 44.4% in completely underground buildings were derived from heating the space. Heat loss to the ground is treated as a charge of the soil by thermal energy. The dependence of the intensity of the charge on time was analysed and presented.

Keywords: heat transfer, accumulation of heat, underground building, soil charge

Procedia PDF Downloads 76
368 Subjective Mapping Methodologies: Mapping Local Perceptions with Geographic Information Systems

Authors: A. Llopis Alvarez, D. Muller-Eie

Abstract:

Participatory GIS (geographic information systems) are designed for community mapping exercises in order to produce spatial representations of local knowledge. Ideally, participatory GIS caters to public participation through the use of spatial data in order to increase community-led policy-and decision-making. Having defined a spatial object, such as a neighborhood, subjective mapping involves attaining a description of the spatial, physical, social and psychological characteristics of that spatial object. This paper highlights an emerging appreciation of the subjective component, particularly in spatial analyses. The beliefs, feelings, and behaviors associated with an urban area reflect its sense of place for an individual or a group. It is important therefore to understand what types of beliefs, emotions, and behavioral patterns are relevant to particular resident, groups and urban scales. In this sense, resident’s emotional attachment to their urban areas motivates civic engagement and facilitates awareness of its strengths and its problems. Similarly, subjective perceptions act in complex ways to influence the formation and maintenance of social identity and quality of life. This paper reports on findings from a case study of immigrant population in Norwegian cities, their residential conditions and their relationship to quality of urban life. Cognitive mapping methodologies are used in this study to understand local perceptions of urban qualities. Thus, measures to alleviate disadvantages and improve quality of urban life are more likely to be effective when they are informed by an understanding of a place as constructed by those who live in it, meaning their subjective perceptions about it.

Keywords: mapping methodologies, participatory GIS, perceptual maps, public participation, spatial analysis, subjective perceptions

Procedia PDF Downloads 146
367 Household Knowledge, Attitude, and Determinants in Solid Waste Segregation: The Case of Sfax City

Authors: Leila Kharrat, Younes Boujelbene

Abstract:

In recent decades, solid waste management (SWM) has become a global concern because rapid population growth and overexploitation of non-renewable resources have generated enormous amounts of waste far exceeding carrying capacity; too, it poses serious threats to the environment and health. However, it is still difficult to combat the growing amount of solid waste before assessing the condition of people. Therefore, this study was conducted to assess the knowledge, attitudes, perception, and practices on the separation of solid waste in Sfax City. Nowadays, GDS is essential for sustainable development, hence the need for intensive research. Respondents from seven different districts in the city of Sfax were analyzed through a questionnaire survey with 342 households. This paper presents a qualitative exploratory study on the behavior of the citizens in the field of waste separation. The objective knows the antecedents of waste separation and the representation that individuals have about sorting waste on a specific territory which presents some characteristics regarding waste management in Sfax city. Source separation is not widely practiced and people usually sweep their places throwing waste components into the streets or neighboring plots. The results also indicate that participation in solid waste separation activities depends on the level of awareness of separating activities in the area, household income and educational level. It is, therefore, argued that increasing quality of municipal service is the best means of promoting positive attitudes to solid waste separation activities. One of the effective strategies identified by households that can be initiated by policymakers to increase the rate of participation in separation activities and eventually encourage them to participate in recycling activities is to provide a financial incentive in all residential areas in Sfax city.

Keywords: solid waste management, waste separation, public policy, econometric modelling

Procedia PDF Downloads 241
366 Designing Energy Efficient Buildings for Seasonal Climates Using Machine Learning Techniques

Authors: Kishor T. Zingre, Seshadhri Srinivasan

Abstract:

Energy consumption by the building sector is increasing at an alarming rate throughout the world and leading to more building-related CO₂ emissions into the environment. In buildings, the main contributors to energy consumption are heating, ventilation, and air-conditioning (HVAC) systems, lighting, and electrical appliances. It is hypothesised that the energy efficiency in buildings can be achieved by implementing sustainable technologies such as i) enhancing the thermal resistance of fabric materials for reducing heat gain (in hotter climates) and heat loss (in colder climates), ii) enhancing daylight and lighting system, iii) HVAC system and iv) occupant localization. Energy performance of various sustainable technologies is highly dependent on climatic conditions. This paper investigated the use of machine learning techniques for accurate prediction of air-conditioning energy in seasonal climates. The data required to train the machine learning techniques is obtained using the computational simulations performed on a 3-story commercial building using EnergyPlus program plugged-in with OpenStudio and Google SketchUp. The EnergyPlus model was calibrated against experimental measurements of surface temperatures and heat flux prior to employing for the simulations. It has been observed from the simulations that the performance of sustainable fabric materials (for walls, roof, and windows) such as phase change materials, insulation, cool roof, etc. vary with the climate conditions. Various renewable technologies were also used for the building flat roofs in various climates to investigate the potential for electricity generation. It has been observed that the proposed technique overcomes the shortcomings of existing approaches, such as local linearization or over-simplifying assumptions. In addition, the proposed method can be used for real-time estimation of building air-conditioning energy.

Keywords: building energy efficiency, energyplus, machine learning techniques, seasonal climates

Procedia PDF Downloads 117
365 Willingness to Purchase and Pay a Price Premium for an Apartment with Exterior Green Walls

Authors: Tamar Trop, Michal Roffeh

Abstract:

One of the emerging trends in construction is installing an exterior “green wall” (GW). GW is an overarching and most common term for various techniques of incorporating greenery into buildings’ vertical elements, mainly facades. This green infrastructure yields numerous benefits for the urban environment, the public, and the buildings’ tenants and users, such as enhancing air quality and biodiversity, managing stormwater runoff, mitigating urban heat island and climate change, improving urban aesthetics and mental wellbeing, improving indoor comfort conditions, and saving energy. Yet, the penetration rate of GWs into the construction market, especially into the housing sector, is still very slow. Furthermore, the research regarding prospective homebuyers’ willingness to purchase and pay a price premium for GW apartments is scarce and does not refer to newly built buildings and specific GW types. This research aims to narrow these knowledge gaps by exploring the willingness of prospective homebuyers in Israel to purchase a newly built apartment with a hydroponic living wall, the size of the PP that they would be willing to pay for it, and the various factors ̶ knowledge-related, concern, economic, and personal ̶ that influence these motivations. A nationwide online survey was conducted among a sample of 514 adults using a structured questionnaire. Findings show that despite low familiarity with GWs and strong concerns about various kinds of nuisance, technical issues, and maintenance costs, potential homebuyers express a relatively high willingness to purchase and pay a significant price premium for such an apartment. The main motivations behind this willingness were found to be potential energy savings and governmental incentives. Study findings can contribute to a better understanding of the maturity of the housing market in Israel to adopt GWs and to better tailor intervention tools for increasing GWs’ uptake among potential homebuyers.

Keywords: green façade, green wall, living wall, willingness to pay

Procedia PDF Downloads 38
364 Study and Fine Characterization of the SS 316L Microstructures Obtained by Laser Beam Melting Process

Authors: Sebastien Relave, Christophe Desrayaud, Aurelien Vilani, Alexey Sova

Abstract:

Laser beam melting (LBM) is an additive manufacturing process that enables complex 3D parts to be designed. This process is now commonly employed for various applications such as chemistry or energy, requiring the use of stainless steel grades. LBM can offer comparable and sometimes superior mechanical properties to those of wrought materials. However, we observed an anisotropic microstructure which results from the process, caused by the very high thermal gradients along the building axis. This microstructure can be harmful depending on the application. For this reason, control and prediction of the microstructure are important to ensure the improvement and reproducibility of the mechanical properties. This study is focused on the 316L SS grade and aims at understanding the solidification and transformation mechanisms during process. Experiments to analyse the nucleation and growth of the microstructure obtained by the LBM process according to several conditions. These samples have been designed on different type of support bulk and lattice. Samples are produced on ProX DMP 200 LBM device. For the two conditions the analysis of microstructures, thanks to SEM and EBSD, revealed a single phase Austenite with preferential crystallite growth along the (100) plane. The microstructure was presented a hierarchical structure consisting columnar grains sizes in the range of 20-100 µm and sub grains structure of size 0.5 μm. These sub-grains were found in different shapes (columnar and cellular). This difference can be explained by a variation of the thermal gradient and cooling rate or element segregation while no sign of element segregation was found at the sub-grain boundaries. A high dislocation concentration was observed at sub-grain boundaries. These sub-grains are separated by very low misorientation walls ( < 2°) this causes a lattice of curvature inside large grain. A discussion is proposed on the occurrence of these microstructures formation, in regard of the LBM process conditions.

Keywords: selective laser melting, stainless steel, microstructure

Procedia PDF Downloads 161
363 Integration of Hybrid PV-Wind in Three Phase Grid System Using Fuzzy MPPT without Battery Storage for Remote Area

Authors: Thohaku Abdul Hadi, Hadyan Perdana Putra, Nugroho Wicaksono, Adhika Prajna Nandiwardhana, Onang Surya Nugroho, Heri Suryoatmojo, Soedibjo

Abstract:

Access to electricity is now a basic requirement of mankind. Unfortunately, there are still many places around the world which have no access to electricity, such as small islands, where there could potentially be a factory, a plantation, a residential area, or resorts. Many of these places might have substantial potential for energy generation such us Photovoltaic (PV) and Wind turbine (WT), which can be used to generate electricity independently for themselves. Solar energy and wind power are renewable energy sources which are mostly found in nature and also kinds of alternative energy that are still developing in a rapid speed to help and meet the demand of electricity. PV and Wind has a characteristic of power depend on solar irradiation and wind speed based on geographical these areas. This paper presented a control methodology of hybrid small scale PV/Wind energy system that use a fuzzy logic controller (FLC) to extract the maximum power point tracking (MPPT) in different solar irradiation and wind speed. This paper discusses simulation and analysis of the generation process of hybrid resources in MPP and power conditioning unit (PCU) of Photovoltaic (PV) and Wind Turbine (WT) that is connected to the three-phase low voltage electricity grid system (380V) without battery storage. The capacity of the sources used is 2.2 kWp PV and 2.5 kW PMSG (Permanent Magnet Synchronous Generator) -WT power rating. The Modeling of hybrid PV/Wind, as well as integrated power electronics components in grid connected system, are simulated using MATLAB/Simulink.

Keywords: fuzzy MPPT, grid connected inverter, photovoltaic (PV), PMSG wind turbine

Procedia PDF Downloads 356
362 Rock-Bed Thermocline Storage: A Numerical Analysis of Granular Bed Behavior and Interaction with Storage Tank

Authors: Nahia H. Sassine, Frédéric-Victor Donzé, Arnaud Bruch, Barthélemy Harthong

Abstract:

Thermal Energy Storage (TES) systems are central elements of various types of power plants operated using renewable energy sources. Packed bed TES can be considered as a cost–effective solution in concentrated solar power plants (CSP). Such a device is made up of a tank filled with a granular bed through which heat-transfer fluid circulates. However, in such devices, the tank might be subjected to catastrophic failure induced by a mechanical phenomenon known as thermal ratcheting. Thermal stresses are accumulated during cycles of loading and unloading until the failure happens. For instance, when rocks are used as storage material, the tank wall expands more than the solid medium during charge process, a gap is created between the rocks and tank walls and the filler material settles down to fill it. During discharge, the tank contracts against the bed, resulting in thermal stresses that may exceed the wall tank yield stress and generate plastic deformation. This phenomenon is repeated over the cycles and the tank will be slowly ratcheted outward until it fails. This paper aims at studying the evolution of tank wall stresses over granular bed thermal cycles, taking into account both thermal and mechanical loads, with a numerical model based on the discrete element method (DEM). Simulations were performed to study two different thermal configurations: (i) the tank is heated homogeneously along its height or (ii) with a vertical gradient of temperature. Then, the resulting loading stresses applied on the tank are compared as well the response of the internal granular material. Besides the study of the influence of different thermal configurations on the storage tank response, other parameters are varied, such as the internal angle of friction of the granular material, the dispersion of particles diameters as well as the tank’s dimensions. Then, their influences on the kinematics of the granular bed submitted to thermal cycles are highlighted.

Keywords: discrete element method (DEM), thermal cycles, thermal energy storage, thermocline

Procedia PDF Downloads 405
361 Controlling Differential Settlement of Large Reservoir through Soil Structure Interaction Approach

Authors: Madhav Khadilkar

Abstract:

Construction of a large standby reservoir was required to provide secure water supply. The new reservoir was required to be constructed at the same location of an abandoned old open pond due to space constraints. Some investigations were carried out earlier to improvise and re-commission the existing pond. But due to a lack of quantified risk of settlement from voids in the underlying limestone, the shallow foundations were not found feasible. Since the reservoir was resting on hard strata for about three-quarter of plan area and one quarter was resting on soil underlying with limestone and considerably low subgrade modulus. Further investigations were carried out to ascertain the locations and extent of voids within the limestone. It was concluded that the risk due to lime dissolution was acceptably low, and the site was found geotechnically feasible. The hazard posed by limestone dissolution was addressed through the integrated structural and geotechnical analysis and design approach. Finite Element Analysis was carried out to quantify the stresses and differential settlement due to various probable loads and soil-structure interaction. Walls behaving as cantilever under operational loads were found undergoing in-plane bending and tensile forces due to soil-structure interaction. Sensitivity analysis for varying soil subgrade modulus was carried out to check the variation in the response of the structure and magnitude of stresses developed. The base slab was additionally checked for the loss of soil contact due to lime pocket formations at random locations. The expansion and contraction joints were planned to receive minimal additional forces due to differential settlement. The reservoir was designed to sustain the actions corresponding to allowable deformation limits per code, and geotechnical measures were proposed to achieve the soil parameters set in structural analysis.

Keywords: differential settlement, limestone dissolution, reservoir, soil structure interaction

Procedia PDF Downloads 161
360 Stability of Pump Station Cavern in Chagrin Shale with Time

Authors: Mohammad Moridzadeh, Mohammad Djavid, Barry Doyle

Abstract:

An assessment of the long-term stability of a cavern in Chagrin shale excavated by the sequential excavation method was performed during and after construction. During the excavation of the cavern, deformations of rock mass were measured at the surface of excavation and within the rock mass by surface and deep measurement instruments. Rock deformations were measured during construction which appeared to result from the as-built excavation sequence that had potentially disturbed the rock and its behavior. Also some additional time dependent rock deformations were observed during and post excavation. Several opinions have been expressed to explain this time dependent deformation including stress changes induced by excavation, strain softening (or creep) in the beddings with and without clay and creep of the shaley rock under compressive stresses. In order to analyze and replicate rock behavior observed during excavation, including current and post excavation elastic, plastic, and time dependent deformation, Finite Element Analysis (FEA) was performed. The analysis was also intended to estimate long term deformation of the rock mass around the excavation. Rock mass behavior including time dependent deformation was measured by means of rock surface convergence points, MPBXs, extended creep testing on the long anchors, and load history data from load cells attached to several long anchors. Direct creep testing of Chagrin Shale was performed on core samples from the wall of the Pump Room. Results of these measurements were used to calibrate the FEA of the excavation. These analyses incorporate time dependent constitutive modeling for the rock to evaluate the potential long term movement in the roof, walls, and invert of the cavern. The modeling was performed due to the concerns regarding the unanticipated behavior of the rock mass as well as the forecast of long term deformation and stability of rock around the excavation.

Keywords: Cavern, Chagrin shale, creep, finite element.

Procedia PDF Downloads 353
359 Historical Analysis of the Landscape Changes and the Eco-Environment Effects on the Coastal Zone of Bohai Bay, China

Authors: Juan Zhou, Lusan Liu, Yanzhong Zhu, Kuixuan Lin, Wenqian Cai, Yu Wang, Xing Wang

Abstract:

During the past few decades, there has been an increase in the number of coastal land reclamation projects for residential, commercial and industrial purposes in more and more coastal cities of China, which led to the destruction of the wetlands and loss of the sensitive marine habitats. Meanwhile, the influences and nature of these projects attract widespread public and academic concern. For identifying the trend of landscape (esp. Coastal reclamation) and ecological environment changes, understanding of which interacted, and offering a general science for the development of regional plans. In the paper, a case study was carried out in Bohai Bay area, based on the analysis of remote sensing data. Land use maps were created for 1954, 1970, 1981, 1990, 2000 and 2010. Landscape metrics were calculated and illustrated that the degree of reclamation changes was linked to the hydrodynamic environment and macrobenthos community. The results indicated that the worst of the loss of initial areas occurred during 1954-1970, with 65.6% lost mostly to salt field; to 2010, Coastal reclamation area increased more than 200km² as artificial landscape. The numerical simulation of tidal current field in 2003 and 2010 respectively showed that the flow velocity in offshore became faster (from 2-5 cm/s to 10-20 cm/s), and the flow direction seem to go astray. These significant changes of coastline were not conducive to the spread of pollutants and degradation. Additionally, the dominant macrobenthos analysis from 1958 to 2012 showed that Musculus senhousei (Benson, 1842) spread very fast and had been the predominant species in the recent years, which was a disturbance tolerant species.

Keywords: Bohai Bay, coastal reclamation, landscape change, spatial patterns

Procedia PDF Downloads 292
358 Personal and Household Hygiene Measures for Prevention of Upper Respiratory Tract Infections among Children: A Cross Sectional Survey on Parental Knowledge, Attitudes and Practices

Authors: Man Wai Leung, Margaret O’Donoghue, Lorna K. P. Suen

Abstract:

Personal and household hygiene measures are important to prevent upper respiratory tract infections (URTIs) and other infectious diseases, including coronavirus disease 2019 (COVID-19). An online survey recruited 414 eligible parents in Hong Kong to study their hygiene knowledge, attitudes, and practices (KAP) in the prevention of URTIs among their children. The average knowledge score was high (10.2/12.0), but some misconceptions were identified. The majority of participants agreed that good personal hygiene (93.5%) and good environmental hygiene (92.8%) can prevent URTIs. The average score for hand hygiene practices was high (3.78/4.00), but only 56.8% of parents always perform hand hygiene before touching their mouth, nose, or eyes. For environmental hygiene, only some household items were disinfected with disinfectants (69.8%: door handles, 60.4%: toilet seats, 42.8%: floor, 24.2%: dining chairs, 20.5%: dining tables). Higher knowledge score was associated with parents having a tertiary educational level or above, working as healthcare professionals, living at private residential flat or staff quarter, and having a household income of $70,000 or above. Hand hygiene practices varied significantly with parents’ age and income. During the 5th wave of the COVID-19 epidemic, misconceptions about hygiene knowledge were found among parents. Health promotion programs should target parents, especially those who are in old age, obtain lower educational levels, live in public housing, or have a lower income. Hand hygiene moments and proper use of disinfectants could be one of the targeted educational topics.

Keywords: hygiene, upper respiratory tract infection, parents, children, COVID-19

Procedia PDF Downloads 117