Search results for: radial basis function networks
9752 Incorporation of Growth Factors onto Hydrogels via Peptide Mediated Binding for Development of Vascular Networks
Authors: Katie Kilgour, Brendan Turner, Carly Catella, Michael Daniele, Stefano Menegatti
Abstract:
In vivo, the extracellular matrix (ECM) provides biochemical and mechanical properties that are instructional to resident cells to form complex tissues with characteristics to develop and support vascular networks. In vitro, the development of vascular networks can be guided by biochemical patterning of substrates via spatial distribution and display of peptides and growth factors to prompt cell adhesion, differentiation, and proliferation. We have developed a technique utilizing peptide ligands that specifically bind vascular endothelial growth factor (VEGF), erythropoietin (EPO), or angiopoietin-1 (ANG1) to spatiotemporally distribute growth factors to cells. This allows for the controlled release of each growth factor, ultimately enhancing the formation of a vascular network. Our engineered tissue constructs (ETCs) are fabricated out of gelatin methacryloyl (GelMA), which is an ideal substrate for tailored stiffness and bio-functionality, and covalently patterned with growth factor specific peptides. These peptides mimic growth factor receptors, facilitating the non-covalent binding of the growth factors to the ETC, allowing for facile uptake by the cells. We have demonstrated in the absence of cells the binding affinity of VEGF, EPO, and ANG1 to their respective peptides and the ability for each to be patterned onto a GelMA substrate. The ability to organize growth factors on an ETC provides different functionality to develop organized vascular networks. Our results demonstrated a method to incorporate biochemical cues into ETCs that enable spatial and temporal control of growth factors. Future efforts will investigate the cellular response by evaluating gene expression, quantifying angiogenic activity, and measuring the speed of growth factor consumption.Keywords: growth factor, hydrogel, peptide, angiogenesis, vascular, patterning
Procedia PDF Downloads 1649751 Reliable and Energy-Aware Data Forwarding under Sink-Hole Attack in Wireless Sensor Networks
Authors: Ebrahim Alrashed
Abstract:
Wireless sensor networks are vulnerable to attacks from adversaries attempting to disrupt their operations. Sink-hole attacks are a type of attack where an adversary node drops data forwarded through it and hence affecting the reliability and accuracy of the network. Since sensor nodes have limited battery power, it is essential that any solution to the sinkhole attack problem be very energy-aware. In this paper, we present a reliable and energy efficient scheme to forward data from source nodes to the base station while under sink-hole attack. The scheme also detects sink-hole attack nodes and avoid paths that includes them.Keywords: energy-aware routing, reliability, sink-hole attack, WSN
Procedia PDF Downloads 3969750 Application of Artificial Intelligence in EOR
Authors: Masoumeh Mofarrah, Amir NahanMoghadam
Abstract:
Higher oil prices and increasing oil demand are main reasons for great attention to Enhanced Oil Recovery (EOR). Comprehensive researches have been accomplished to develop, appraise, and improve EOR methods and their application. Recently, Artificial Intelligence (AI) gained popularity in petroleum industry that can help petroleum engineers to solve some fundamental petroleum engineering problems such as reservoir simulation, EOR project risk analysis, well log interpretation and well test model selection. This study presents a historical overview of most popular AI tools including neural networks, genetic algorithms, fuzzy logic, and expert systems in petroleum industry and discusses two case studies to represent the application of two mentioned AI methods for selecting an appropriate EOR method based on reservoir characterization infeasible and effective way.Keywords: artificial intelligence, EOR, neural networks, expert systems
Procedia PDF Downloads 4889749 Initial Dip: An Early Indicator of Neural Activity in Functional Near Infrared Spectroscopy Waveform
Authors: Mannan Malik Muhammad Naeem, Jeong Myung Yung
Abstract:
Functional near infrared spectroscopy (fNIRS) has a favorable position in non-invasive brain imaging techniques. The concentration change of oxygenated hemoglobin and de-oxygenated hemoglobin during particular cognitive activity is the basis for this neuro-imaging modality. Two wavelengths of near-infrared light can be used with modified Beer-Lambert law to explain the indirect status of neuronal activity inside brain. The temporal resolution of fNIRS is very good for real-time brain computer-interface applications. The portability, low cost and an acceptable temporal resolution of fNIRS put it on a better position in neuro-imaging modalities. In this study, an optimization model for impulse response function has been used to estimate/predict initial dip using fNIRS data. In addition, the activity strength parameter related to motor based cognitive task has been analyzed. We found an initial dip that remains around 200-300 millisecond and better localize neural activity.Keywords: fNIRS, brain-computer interface, optimization algorithm, adaptive signal processing
Procedia PDF Downloads 2269748 An Approach of Node Model TCnNet: Trellis Coded Nanonetworks on Graphene Composite Substrate
Authors: Diogo Ferreira Lima Filho, José Roberto Amazonas
Abstract:
Nanotechnology opens the door to new paradigms that introduces a variety of novel tools enabling a plethora of potential applications in the biomedical, industrial, environmental, and military fields. This work proposes an integrated node model by applying the same concepts of TCNet to networks of nanodevices where the nodes are cooperatively interconnected with a low-complexity Mealy Machine (MM) topology integrating in the same electronic system the modules necessary for independent operation in wireless sensor networks (WSNs), consisting of Rectennas (RF to DC power converters), Code Generators based on Finite State Machine (FSM) & Trellis Decoder and On-chip Transmit/Receive with autonomy in terms of energy sources applying the Energy Harvesting technique. This approach considers the use of a Graphene Composite Substrate (GCS) for the integrated electronic circuits meeting the following characteristics: mechanical flexibility, miniaturization, and optical transparency, besides being ecological. In addition, graphene consists of a layer of carbon atoms with the configuration of a honeycomb crystal lattice, which has attracted the attention of the scientific community due to its unique Electrical Characteristics.Keywords: composite substrate, energy harvesting, finite state machine, graphene, nanotechnology, rectennas, wireless sensor networks
Procedia PDF Downloads 1069747 Multilingual Females and Linguistic Change: A Quantitative and Qualitative Sociolinguistic Case Study of Minority Speaker in Southeast Asia
Authors: Stefanie Siebenhütter
Abstract:
Men and women use minority and majority languages differently and with varying confidence levels. This paper contrasts gendered differences in language use with socioeconomic status and age factors of minority language speakers in Southeast Asia. Language use and competence are conditioned by the variable of gender. Potential reasons for this variation by examining gendered language awareness and sociolinguistic attitudes will be given. Moreover, it is analyzed whether women in multilingual minority speakers’ society function as 'leaders of linguistic change', as represented in Labov’s sociolinguistic model. It is asked whether the societal role expectations in collectivistic cultures influence the model of linguistic change. The findings reveal speaking preferences and suggest predictions on the prospective language use, which is a stable situation of multilingualism. The study further exhibits differences between male and females identity-forming processes and shows why females are the leaders of (socio-) linguistic change.Keywords: gender, identity construction, multilingual minorities, linguistic change, social networks
Procedia PDF Downloads 1599746 Developing a Structured Example Space for Finding the Collision Points of Functions and Their Inverse
Authors: M. Saeed, A. Shahidzadeh
Abstract:
Interaction between teachers and learners requires applying a set of samples (examples) which helps to create coordination between the goals and methods. The main result and achievement and application of samples (examples) are that they can bring the teacher and learner to a shared understanding of the concept. mathematical concepts, and also one of the challenging issues in the discussion of the function is to find the collision points of functions of and, regarding that the example space of teachers is different in this issue, this paper aims to present an example space including several problems of the secondary school with the help of intuition and drawing various graphs of functions of and for more familiarity of teachers.Keywords: inverse function, educational example, Mathematic example, example space
Procedia PDF Downloads 1799745 Differential Diagnosis of Malaria and Dengue Fever on the Basis of Clinical Findings and Laboratory Investigations
Authors: Aman Ullah Khan, Muhammad Younus, Aqil Ijaz, Muti-Ur-Rehman Khan, Sayyed Aun Muhammad, Asif Idrees, Sanan Raza, Amar Nasir
Abstract:
Dengue fever and malaria are important vector-borne diseases of public health significance affecting millions of people around the globe. Dengue fever is caused by Dengue virus while malaria is caused by plasmodium protozoan. Generally, the consequences of Malaria are less severe compared to dengue fever. This study was designed to differentiate dengue fever and malaria on the basis of clinical and laboratory findings and to compare the changes in both diseases having different causative agents transmitted by the common vector. A total of 200 patients of dengue viral infection (120 males, 80 females) were included in this prospective descriptive study. The blood samples of the individuals were first screened for malaria by blood smear examination and then the negative samples were tested by anti-dengue IgM strip. The strip positive cases were further screened by IgM capture ELISA and their complete blood count including hemoglobin estimation (Hb), total and differential leukocyte counts (TLC and DLC), erythrocyte sedimentation rate (ESR) and platelet counts were performed. On the basis of the severity of signs and symptoms, dengue virus infected patients were subdivided into dengue fever (DF) and dengue hemorrhagic fever (DHF) comprising 70 and 100 confirmed patients, respectively. On the other hand, 30 patients were found infected with Malaria while overall 120 patients showed thrombocytopenia. The patients of DHF were found to have more leucopenia, raised hemoglobin level and thrombocytopenia < 50,000/µl compared to the patients belonging to DF and malaria. On the basis of the outcomes of the study, it was concluded that patients affected by DF were at a lower risk of undergoing haematological disturbance than suffering from DHF. While, the patients infected by Malaria were found to have no significant change in their blood components.Keywords: dengue fever, blood, serum, malaria, ELISA
Procedia PDF Downloads 3929744 Analyzing Keyword Networks for the Identification of Correlated Research Topics
Authors: Thiago M. R. Dias, Patrícia M. Dias, Gray F. Moita
Abstract:
The production and publication of scientific works have increased significantly in the last years, being the Internet the main factor of access and distribution of these works. Faced with this, there is a growing interest in understanding how scientific research has evolved, in order to explore this knowledge to encourage research groups to become more productive. Therefore, the objective of this work is to explore repositories containing data from scientific publications and to characterize keyword networks of these publications, in order to identify the most relevant keywords, and to highlight those that have the greatest impact on the network. To do this, each article in the study repository has its keywords extracted and in this way the network is characterized, after which several metrics for social network analysis are applied for the identification of the highlighted keywords.Keywords: bibliometrics, data analysis, extraction and data integration, scientometrics
Procedia PDF Downloads 2589743 Study on Optimal Control Strategy of PM2.5 in Wuhan, China
Authors: Qiuling Xie, Shanliang Zhu, Zongdi Sun
Abstract:
In this paper, we analyzed the correlation relationship among PM2.5 from other five Air Quality Indices (AQIs) based on the grey relational degree, and built a multivariate nonlinear regression equation model of PM2.5 and the five monitoring indexes. For the optimal control problem of PM2.5, we took the partial large Cauchy distribution of membership equation as satisfaction function. We established a nonlinear programming model with the goal of maximum performance to price ratio. And the optimal control scheme is given.Keywords: grey relational degree, multiple linear regression, membership function, nonlinear programming
Procedia PDF Downloads 2999742 Pyrroloquinoline Quinone Enhances the Mitochondrial Function by Increasing Beta-Oxidation and a Balanced Mitochondrial Recycling in Mice Granulosa Cells
Authors: Moustafa Elhamouly, Masayuki Shimada
Abstract:
The production of competent oocytes is essential for reproductivity in mammals. Maintenance of mitochondrial efficiency is required to supply the ATP necessary for granulosa cell proliferation during the follicular development process. Treatment with Pyrroloquinoline quinone (PQQ) has been reported to increase the number of ovulated oocytes and pups per delivery in mice by maintaining healthy mitochondrial function. This study aimed to elucidate how PQQ maintains mitochondrial function during ovarian follicle growth. To do this, both in vitro and in vivo experiments were performed with granulosa cells from superovulated immature (3-week-old) mice that were pretreated with or without PQQ. The effects of PQQ on beta-oxidation, mitochondrial function, mitophagy, and mitochondrial biogenesis were examined. PQQ increased beta-oxidation-related genes and CPT1 protein content in granulosa cells and this was associated with a decreased phosphorylation of P38 signaling protein. Using the fatty acid oxidation assay on the flux analyzer, PQQ increased the reliance of beta-oxidation on the endogenous fatty acids and was associated with a mild UCP-dependant mitochondrial uncoupling, ATP production, mitophagy, and mitochondrial biogenesis. PQQ also increased the expression of endogenous antioxidant enzymes. Thus, PQQ induced beta-oxidation in growing granulosa cells relying on endogenous fatty acids. And reduced the Reactive oxygen species (ROS) production by inducing a mild mitochondrial uncoupling with keeping high mitochondrial function. Damaged mitochondria were recycled by the induced mitophagy and replaced by the increased mitochondrial biogenesis. Collectively, PQQ may enhance reproductivity by maintaining the efficiency of mitochondria to produce enough ATP required for normal folliculogenesis.Keywords: granulosa cells, mitochondrial uncoupling, mitophagy, pyrroloquinoline quinone (PQQ), reactive oxygen species (ROS).
Procedia PDF Downloads 839741 Data Recording for Remote Monitoring of Autonomous Vehicles
Authors: Rong-Terng Juang
Abstract:
Autonomous vehicles offer the possibility of significant benefits to social welfare. However, fully automated cars might not be going to happen in the near further. To speed the adoption of the self-driving technologies, many governments worldwide are passing laws requiring data recorders for the testing of autonomous vehicles. Currently, the self-driving vehicle, (e.g., shuttle bus) has to be monitored from a remote control center. When an autonomous vehicle encounters an unexpected driving environment, such as road construction or an obstruction, it should request assistance from a remote operator. Nevertheless, large amounts of data, including images, radar and lidar data, etc., have to be transmitted from the vehicle to the remote center. Therefore, this paper proposes a data compression method of in-vehicle networks for remote monitoring of autonomous vehicles. Firstly, the time-series data are rearranged into a multi-dimensional signal space. Upon the arrival, for controller area networks (CAN), the new data are mapped onto a time-data two-dimensional space associated with the specific CAN identity. Secondly, the data are sampled based on differential sampling. Finally, the whole set of data are encoded using existing algorithms such as Huffman, arithmetic and codebook encoding methods. To evaluate system performance, the proposed method was deployed on an in-house built autonomous vehicle. The testing results show that the amount of data can be reduced as much as 1/7 compared to the raw data.Keywords: autonomous vehicle, data compression, remote monitoring, controller area networks (CAN), Lidar
Procedia PDF Downloads 1639740 Data Driven Infrastructure Planning for Offshore Wind farms
Authors: Isha Saxena, Behzad Kazemtabrizi, Matthias C. M. Troffaes, Christopher Crabtree
Abstract:
The calculations done at the beginning of the life of a wind farm are rarely reliable, which makes it important to conduct research and study the failure and repair rates of the wind turbines under various conditions. This miscalculation happens because the current models make a simplifying assumption that the failure/repair rate remains constant over time. This means that the reliability function is exponential in nature. This research aims to create a more accurate model using sensory data and a data-driven approach. The data cleaning and data processing is done by comparing the Power Curve data of the wind turbines with SCADA data. This is then converted to times to repair and times to failure timeseries data. Several different mathematical functions are fitted to the times to failure and times to repair data of the wind turbine components using Maximum Likelihood Estimation and the Posterior expectation method for Bayesian Parameter Estimation. Initial results indicate that two parameter Weibull function and exponential function produce almost identical results. Further analysis is being done using the complex system analysis considering the failures of each electrical and mechanical component of the wind turbine. The aim of this project is to perform a more accurate reliability analysis that can be helpful for the engineers to schedule maintenance and repairs to decrease the downtime of the turbine.Keywords: reliability, bayesian parameter inference, maximum likelihood estimation, weibull function, SCADA data
Procedia PDF Downloads 869739 Deleterious SNP’s Detection Using Machine Learning
Authors: Hamza Zidoum
Abstract:
This paper investigates the impact of human genetic variation on the function of human proteins using machine-learning algorithms. Single-Nucleotide Polymorphism represents the most common form of human genome variation. We focus on the single amino-acid polymorphism located in the coding region as they can affect the protein function leading to pathologic phenotypic change. We use several supervised Machine Learning methods to identify structural properties correlated with increased risk of the missense mutation being damaging. SVM associated with Principal Component Analysis give the best performance.Keywords: single-nucleotide polymorphism, machine learning, feature selection, SVM
Procedia PDF Downloads 3789738 Socioeconomic Status and Gender Influence on Linguistic Change: A Case Study on Language Competence and Confidence of Multilingual Minority Language Speakers
Authors: Stefanie Siebenhütter
Abstract:
Male and female speakers use language differently and with varying confidence levels. This paper contrasts gendered differences in language use with socioeconomic status and age factors. It specifically examines how Kui minority language use and competence are conditioned by the variable of gender and discusses potential reasons for this variation by examining gendered language awareness and sociolinguistic attitudes. Moreover, it discusses whether women in Kui society function as 'leaders of linguistic change', as represented in Labov’s sociolinguistic model. It discusses whether societal role expectations in collectivistic cultures influence the model of linguistic change. The findings reveal current Kui speaking preferences and give predictions on the prospective language use, which is a stable situation of multilingualism because the current Kui speakers will socialize and teach the prospective Kui speakers in the near future. It further confirms that Lao is losing importance in Kui speaker’s (female’s) daily life.Keywords: gender, identity construction, language change, minority language, multilingualism, sociolinguistics, social Networks
Procedia PDF Downloads 1779737 Methodological Aspect of Emergy Accounting in Co-Production Branching Systems
Authors: Keshab Shrestha, Hung-Suck Park
Abstract:
Emergy accounting of the systems networks is guided by a definite rule called ‘emergy algebra’. The systems networks consist of two types of branching. These are the co-product branching and split branching. The emergy accounting procedure for both the branching types is different. According to the emergy algebra, each branch in the co-product branching has different transformity values whereas the split branching has the same transformity value. After the transformity value of each branch is determined, the emergy is calculated by multiplying this with the energy. The aim of this research is to solve the problems in determining the transformity values in the co-product branching through the introduction of a new methodology, the modified physical quantity method. Initially, the existing methodologies for emergy accounting in the co-product branching is discussed and later, the modified physical quantity method is introduced with a case study of the Eucalyptus pulp production. The existing emergy accounting methodologies in the co-product branching has wrong interpretations with incorrect emergy calculations. The modified physical quantity method solves those problems of emergy accounting in the co-product branching systems. The transformity value calculated for each branch is different and also applicable in the emergy calculations. The methodology also strictly follows the emergy algebra rules. This new modified physical quantity methodology is a valid approach in emergy accounting particularly in the multi-production systems networks.Keywords: co-product branching, emergy accounting, emergy algebra, modified physical quantity method, transformity value
Procedia PDF Downloads 2929736 Artificial Neural Networks for Cognitive Radio Network: A Survey
Authors: Vishnu Pratap Singh Kirar
Abstract:
The main aim of the communication system is to achieve maximum performance. In cognitive radio, any user or transceiver have the ability to sense best suitable channel, while the channel is not in use. It means an unlicensed user can share the spectrum of licensed user without any interference. Though the spectrum sensing consumes a large amount of energy and it can reduce by applying various artificial intelligent methods for determining proper spectrum holes. It also increases the efficiency of Cognitive Radio Network (CRN). In this survey paper, we discuss the use of different learning models and implementation of Artificial Neural Network (ANN) to increase the learning and decision-making capacity of CRN without affecting bandwidth, cost and signal rate.Keywords: artificial neural network, cognitive radio, cognitive radio networks, back propagation, spectrum sensing
Procedia PDF Downloads 6099735 Non-intrusive Hand Control of Drone Using an Inexpensive and Streamlined Convolutional Neural Network Approach
Authors: Evan Lowhorn, Rocio Alba-Flores
Abstract:
The purpose of this work is to develop a method for classifying hand signals and using the output in a drone control algorithm. To achieve this, methods based on Convolutional Neural Networks (CNN) were applied. CNN's are a subset of deep learning, which allows grid-like inputs to be processed and passed through a neural network to be trained for classification. This type of neural network allows for classification via imaging, which is less intrusive than previous methods using biosensors, such as EMG sensors. Classification CNN's operate purely from the pixel values in an image; therefore they can be used without additional exteroceptive sensors. A development bench was constructed using a desktop computer connected to a high-definition webcam mounted on a scissor arm. This allowed the camera to be pointed downwards at the desk to provide a constant solid background for the dataset and a clear detection area for the user. A MATLAB script was created to automate dataset image capture at the development bench and save the images to the desktop. This allowed the user to create their own dataset of 12,000 images within three hours. These images were evenly distributed among seven classes. The defined classes include forward, backward, left, right, idle, and land. The drone has a popular flip function which was also included as an additional class. To simplify control, the corresponding hand signals chosen were the numerical hand signs for one through five for movements, a fist for land, and the universal “ok” sign for the flip command. Transfer learning with PyTorch (Python) was performed using a pre-trained 18-layer residual learning network (ResNet-18) to retrain the network for custom classification. An algorithm was created to interpret the classification and send encoded messages to a Ryze Tello drone over its 2.4 GHz Wi-Fi connection. The drone’s movements were performed in half-meter distance increments at a constant speed. When combined with the drone control algorithm, the classification performed as desired with negligible latency when compared to the delay in the drone’s movement commands.Keywords: classification, computer vision, convolutional neural networks, drone control
Procedia PDF Downloads 2109734 DMBR-Net: Deep Multiple-Resolution Bilateral Networks for Real-Time and Accurate Semantic Segmentation
Authors: Pengfei Meng, Shuangcheng Jia, Qian Li
Abstract:
We proposed a real-time high-precision semantic segmentation network based on a multi-resolution feature fusion module, the auxiliary feature extracting module, upsampling module, and atrous spatial pyramid pooling (ASPP) module. We designed a feature fusion structure, which is integrated with sufficient features of different resolutions. We also studied the effect of side-branch structure on the network and made discoveries. Based on the discoveries about the side-branch of the network structure, we used a side-branch auxiliary feature extraction layer in the network to improve the effectiveness of the network. We also designed upsampling module, which has better results than the original upsampling module. In addition, we also re-considered the locations and number of atrous spatial pyramid pooling (ASPP) modules and modified the network structure according to the experimental results to further improve the effectiveness of the network. The network presented in this paper takes the backbone network of Bisenetv2 as a basic network, based on which we constructed a network structure on which we made improvements. We named this network deep multiple-resolution bilateral networks for real-time, referred to as DMBR-Net. After experimental testing, our proposed DMBR-Net network achieved 81.2% mIoU at 119FPS on the Cityscapes validation dataset, 80.7% mIoU at 109FPS on the CamVid test dataset, 29.9% mIoU at 78FPS on the COCOStuff test dataset. Compared with all lightweight real-time semantic segmentation networks, our network achieves the highest accuracy at an appropriate speed.Keywords: multi-resolution feature fusion, atrous convolutional, bilateral networks, pyramid pooling
Procedia PDF Downloads 1509733 Merging Appeal to Ignorance, Composition, and Division Argument Schemes with Bayesian Networks
Authors: Kong Ngai Pei
Abstract:
The argument scheme approach to argumentation has two components. One is to identify the recurrent patterns of inferences used in everyday discourse. The second is to devise critical questions to evaluate the inferences in these patterns. Although this approach is intuitive and contains many insightful ideas, it has been noted to be not free of problems. One is that due to its disavowing the probability calculus, it cannot give the exact strength of an inference. In order to tackle this problem, thereby paving the way to a more complete normative account of argument strength, it has been proposed, the most promising way is to combine the scheme-based approach with Bayesian networks (BNs). This paper pursues this line of thought, attempting to combine three common schemes, Appeal to Ignorance, Composition, and Division, with BNs. In the first part, it is argued that most (if not all) formulations of the critical questions corresponding to these schemes in the current argumentation literature are incomplete and not very informative. To remedy these flaws, more thorough and precise formulations of these questions are provided. In the second part, how to use graphical idioms (e.g. measurement and synthesis idioms) to translate the schemes as well as their corresponding critical questions to graphical structure of BNs, and how to define probability tables of the nodes using functions of various sorts are shown. In the final part, it is argued that many misuses of these schemes, traditionally called fallacies with the same names as the schemes, can indeed be adequately accounted for by the BN models proposed in this paper.Keywords: appeal to ignorance, argument schemes, Bayesian networks, composition, division
Procedia PDF Downloads 2869732 Improving Temporal Correlations in Empirical Orthogonal Function Expansions for Data Interpolating Empirical Orthogonal Function Algorithm
Authors: Ping Bo, Meng Yunshan
Abstract:
Satellite-derived sea surface temperature (SST) is a key parameter for many operational and scientific applications. However, the disadvantage of SST data is a high percentage of missing data which is mainly caused by cloud coverage. Data Interpolating Empirical Orthogonal Function (DINEOF) algorithm is an EOF-based technique for reconstructing the missing data and has been widely used in oceanographic field. The reconstruction of SST images within a long time series using DINEOF can cause large discontinuities and one solution for this problem is to filter the temporal covariance matrix to reduce the spurious variability. Based on the previous researches, an algorithm is presented in this paper to improve the temporal correlations in EOF expansion. Similar with the previous researches, a filter, such as Laplacian filter, is implemented on the temporal covariance matrix, but the temporal relationship between two consecutive images which is used in the filter is considered in the presented algorithm, for example, two images in the same season are more likely correlated than those in the different seasons, hence the latter one is less weighted in the filter. The presented approach is tested for the monthly nighttime 4-km Advanced Very High Resolution Radiometer (AVHRR) Pathfinder SST for the long-term period spanning from 1989 to 2006. The results obtained from the presented algorithm are compared to those from the original DINEOF algorithm without filtering and from the DINEOF algorithm with filtering but without taking temporal relationship into account.Keywords: data interpolating empirical orthogonal function, image reconstruction, sea surface temperature, temporal filter
Procedia PDF Downloads 3249731 Structure Function and Violation of Scale Invariance in NCSM: Theory and Numerical Analysis
Authors: M. R. Bekli, N. Mebarki, I. Chadou
Abstract:
In this study, we focus on the structure functions and violation of scale invariance in the context of non-commutative standard model (NCSM). We find that this violation appears in the first order of perturbation theory and a non-commutative version of the DGLAP evolution equation is deduced. Numerical analysis and comparison with experimental data imposes a new bound on the non-commutative parameter.Keywords: NCSM, structure function, DGLAP equation, standard model
Procedia PDF Downloads 6119730 Authority and Function of Administrative Organs According to the Constitution: A Construction of Democracy in the Administrative Law of Indonesia
Authors: Andhika Danesjvara, Nur Widyastanti
Abstract:
The constitution regulates the forms, types, and powers of sState organs in a government. The powers of the organs are then regulated in more detail in the legislation. One of these organs is a government organ, headed by a president or by another name that serves as the main organizer of government. The laws and regulations will govern how the organs of government shall exercise their authority and functions. In a modern state, the function of enacting laws or called executive power does not exercise the functions of government alone, but there are other organs that help the government run the country. These organs are often called government agencies, government accelerating bodies, independent regulatory bodies, commissions, councils or other similar names. The legislation also limits the power of officials within the organs to keep from abusing its authority. The main question in this paper is whether organs are the implementation of a democratic country, or as a form of compromise with the power of stakeholders. It becomes important to see how the administrative organs perform their functions. The administrative organs that are bound by government procedures work in the public service; therefore the next question is how far the function of public service is appropriate and not contradictory to the constitution.Keywords: administrative organs, constitution, democracy, government
Procedia PDF Downloads 3039729 Global Optimization: The Alienor Method Mixed with Piyavskii-Shubert Technique
Authors: Guettal Djaouida, Ziadi Abdelkader
Abstract:
In this paper, we study a coupling of the Alienor method with the algorithm of Piyavskii-Shubert. The classical multidimensional global optimization methods involves great difficulties for their implementation to high dimensions. The Alienor method allows to transform a multivariable function into a function of a single variable for which it is possible to use efficient and rapid method for calculating the the global optimum. This simplification is based on the using of a reducing transformation called Alienor.Keywords: global optimization, reducing transformation, α-dense curves, Alienor method, Piyavskii-Shubert algorithm
Procedia PDF Downloads 5039728 Tensor Deep Stacking Neural Networks and Bilinear Mapping Based Speech Emotion Classification Using Facial Electromyography
Authors: P. S. Jagadeesh Kumar, Yang Yung, Wenli Hu
Abstract:
Speech emotion classification is a dominant research field in finding a sturdy and profligate classifier appropriate for different real-life applications. This effort accentuates on classifying different emotions from speech signal quarried from the features related to pitch, formants, energy contours, jitter, shimmer, spectral, perceptual and temporal features. Tensor deep stacking neural networks were supported to examine the factors that influence the classification success rate. Facial electromyography signals were composed of several forms of focuses in a controlled atmosphere by means of audio-visual stimuli. Proficient facial electromyography signals were pre-processed using moving average filter, and a set of arithmetical features were excavated. Extracted features were mapped into consistent emotions using bilinear mapping. With facial electromyography signals, a database comprising diverse emotions will be exposed with a suitable fine-tuning of features and training data. A success rate of 92% can be attained deprived of increasing the system connivance and the computation time for sorting diverse emotional states.Keywords: speech emotion classification, tensor deep stacking neural networks, facial electromyography, bilinear mapping, audio-visual stimuli
Procedia PDF Downloads 2549727 Wind Speed Prediction Using Passive Aggregation Artificial Intelligence Model
Authors: Tarek Aboueldahab, Amin Mohamed Nassar
Abstract:
Wind energy is a fluctuating energy source unlike conventional power plants, thus, it is necessary to accurately predict short term wind speed to integrate wind energy in the electricity supply structure. To do so, we present a hybrid artificial intelligence model of short term wind speed prediction based on passive aggregation of the particle swarm optimization and neural networks. As a result, improvement of the prediction accuracy is obviously obtained compared to the standard artificial intelligence method.Keywords: artificial intelligence, neural networks, particle swarm optimization, passive aggregation, wind speed prediction
Procedia PDF Downloads 4509726 Non-Differentiable Mond-Weir Type Symmetric Duality under Generalized Invexity
Authors: Jai Prakash Verma, Khushboo Verma
Abstract:
In the present paper, a pair of Mond-Weir type non-differentiable multiobjective second-order programming problems, involving two kernel functions, where each of the objective functions contains support function, is formulated. We prove weak, strong and converse duality theorem for the second-order symmetric dual programs under η-pseudoinvexity conditions.Keywords: non-differentiable multiobjective programming, second-order symmetric duality, efficiency, support function, eta-pseudoinvexity
Procedia PDF Downloads 2499725 Value Engineering and Its Impact on Drainage Design Optimization for Penang International Airport Expansion
Authors: R.M. Asyraf, A. Norazah, S.M. Khairuddin, B. Noraziah
Abstract:
Designing a system at present requires a vital, challenging task; to ensure the design philosophy is maintained in economical ways. This paper perceived the value engineering (VE) approach applied in infrastructure works, namely stormwater drainage. This method is adopted in line as consultants have completed the detailed design. Function Analysis System Technique (FAST) diagram and VE job plan, information, function analysis, creative judgement, development, and recommendation phase are used to scrutinize the initial design of stormwater drainage. An estimated cost reduction using the VE approach of 2% over the initial proposal was obtained. This cost reduction is obtained from the design optimization of the drainage foundation and structural system, where the pile design and drainage base structure are optimized. Likewise, the design of the on-site detention tank (OSD) pump was revised and contribute to the cost reduction obtained. This case study shows that the VE approach can be an important tool in optimizing the design to reduce costs.Keywords: value engineering, function analysis system technique, stormwater drainage, cost reduction
Procedia PDF Downloads 1459724 Literature Review: Application of Artificial Intelligence in EOR
Authors: Masoumeh Mofarrah, Amir NahanMoghadam
Abstract:
Higher oil prices and increasing oil demand are main reasons for great attention to Enhanced Oil Recovery (EOR). Comprehensive researches have been accomplished to develop, appraise and improve EOR methods and their application. Recently Artificial Intelligence (AI) gained popularity in petroleum industry that can help petroleum engineers to solve some fundamental petroleum engineering problems such as reservoir simulation, EOR project risk analysis, well log interpretation and well test model selection. This study presents a historical overview of most popular AI tools including neural networks, genetic algorithms, fuzzy logic and expert systems in petroleum industry and discusses two case studies to represent the application of two mentioned AI methods for selecting an appropriate EOR method based on reservoir characterization in feasible and effective way.Keywords: artificial intelligence, EOR, neural networks, expert systems
Procedia PDF Downloads 4089723 Early and Mid-Term Results of Anesthetic Management of Minimal Invasive Coronary Artery Bypass Grafting Using One Lung Ventilation
Authors: Devendra Gupta, S. P. Ambesh, P. K Singh
Abstract:
Introduction: Minimally invasive coronary artery bypass grafting (MICABG) is a less invasive method of performing surgical revascularization. Minimally invasive direct coronary artery bypass (MIDCAB) provides many anesthetic challenges including one lung ventilation (OLV), managing myocardial ischemia, and pain. We present an early and midterm result of the use of this technique with OLV. Method: We enrolled 62 patients for analysis operated between 2008 and 2012. Patients were anesthetized and left endobronchial tube was placed. During the procedure left lung was isolated and one lung ventilation was maintained through right lung. Operation was performed utilizing off pump technique of coronary artery bypass grafting through a minimal invasive incision. Left internal mammary artery graft was done for single vessel disease and radial artery was utilized for other grafts if required. Postoperative ventilation was done with single lumen endotracheal tube. Median follow-up is 2.5 years (6 months to 4 years). Results: Median age was 58.5 years (41-77) and all were male. Single vessel disease was present in 36, double vessel in 24 and triple vessel disease in 2 patients. All the patients had normal left ventricular size and function. In 2 cases difficulty were encounter in placement of endobronchial tube. In 1 case cuff of endobronchial tube was ruptured during intubation. High airway pressure was developed on OLV in 1 case and surgery was accomplished with two lung anesthesia with low tidal volume. Mean postoperative ventilation time was 14.4 hour (11-22). There was no perioperative and 30 day mortality. Conversion to median sternotomy to complete the operation was done in 3.23% (2 out of 62 patients). One patient had acute myocardial infarction postoperatively and there were no deaths during follow-up. Conclusion: MICABG is a safe and effective method of revascularization with OLV in low risk candidates for coronary artery bypass grafting.Keywords: MIDCABG, one lung ventilation, coronary artery bypass grafting, endobronchial tube
Procedia PDF Downloads 425