Search results for: neural networks
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3608

Search results for: neural networks

2498 Game-Theory-Based on Downlink Spectrum Allocation in Two-Tier Networks

Authors: Yu Zhang, Ye Tian, Fang Ye Yixuan Kang

Abstract:

The capacity of conventional cellular networks has reached its upper bound and it can be well handled by introducing femtocells with low-cost and easy-to-deploy. Spectrum interference issue becomes more critical in peace with the value-added multimedia services growing up increasingly in two-tier cellular networks. Spectrum allocation is one of effective methods in interference mitigation technology. This paper proposes a game-theory-based on OFDMA downlink spectrum allocation aiming at reducing co-channel interference in two-tier femtocell networks. The framework is formulated as a non-cooperative game, wherein the femto base stations are players and frequency channels available are strategies. The scheme takes full account of competitive behavior and fairness among stations. In addition, the utility function reflects the interference from the standpoint of channels essentially. This work focuses on co-channel interference and puts forward a negative logarithm interference function on distance weight ratio aiming at suppressing co-channel interference in the same layer network. This scenario is more suitable for actual network deployment and the system possesses high robustness. According to the proposed mechanism, interference exists only when players employ the same channel for data communication. This paper focuses on implementing spectrum allocation in a distributed fashion. Numerical results show that signal to interference and noise ratio can be obviously improved through the spectrum allocation scheme and the users quality of service in downlink can be satisfied. Besides, the average spectrum efficiency in cellular network can be significantly promoted as simulations results shown.

Keywords: femtocell networks, game theory, interference mitigation, spectrum allocation

Procedia PDF Downloads 140
2497 Static and Dynamic Hand Gesture Recognition Using Convolutional Neural Network Models

Authors: Keyi Wang

Abstract:

Similar to the touchscreen, hand gesture based human-computer interaction (HCI) is a technology that could allow people to perform a variety of tasks faster and more conveniently. This paper proposes a training method of an image-based hand gesture image and video clip recognition system using a CNN (Convolutional Neural Network) with a dataset. A dataset containing 6 hand gesture images is used to train a 2D CNN model. ~98% accuracy is achieved. Furthermore, a 3D CNN model is trained on a dataset containing 4 hand gesture video clips resulting in ~83% accuracy. It is demonstrated that a Cozmo robot loaded with pre-trained models is able to recognize static and dynamic hand gestures.

Keywords: deep learning, hand gesture recognition, computer vision, image processing

Procedia PDF Downloads 117
2496 Pinch Technology for Minimization of Water Consumption at a Refinery

Authors: W. Mughees, M. Alahmad

Abstract:

Water is the most significant entity that controls local and global development. For the Gulf region, especially Saudi Arabia, with its limited potable water resources, the potential of the fresh water problem is highly considerable. In this research, the study involves the design and analysis of pinch-based water/wastewater networks. Multiple water/wastewater networks were developed using pinch analysis involving direct recycle/material recycle method. Property-integration technique was adopted to carry out direct recycle method. Particularly, a petroleum refinery was considered as a case study. In direct recycle methodology, minimum water discharge and minimum fresh water resource targets were estimated. Re-design (or retrofitting) of water allocation in the networks was undertaken. Chemical Oxygen Demand (COD) and hardness properties were taken as pollutants. This research was based on single and double contaminant approach for COD and hardness and the amount of fresh water was reduced from 340.0 m3/h to 149.0 m3/h (43.8%), 208.0 m3/h (61.18%) respectively. While regarding double contaminant approach, reduction in fresh water demand was 132.0 m3/h (38.8%). The required analysis was also carried out using mathematical programming technique. Operating software such as LINGO was used for these studies which have verified the graphical method results in a valuable and accurate way. Among the multiple water networks, the one possible water allocation network was developed based on mass exchange.

Keywords: minimization, water pinch, water management, pollution prevention

Procedia PDF Downloads 459
2495 Proposed Framework based on Classification of Vertical Handover Decision Strategies in Heterogeneous Wireless Networks

Authors: Shidrokh Goudarzi, Wan Haslina Hassan

Abstract:

Heterogeneous wireless networks are converging towards an all-IP network as part of the so-called next-generation network. In this paradigm, different access technologies need to be interconnected; thus, vertical handovers or vertical handoffs are necessary for seamless mobility. In this paper, we conduct a review of existing vertical handover decision-making mechanisms that aim to provide ubiquitous connectivity to mobile users. To offer a systematic comparison, we categorize these vertical handover measurement and decision structures based on their respective methodology and parameters. Subsequently, we analyze several vertical handover approaches in the literature and compare them according to their advantages and weaknesses. The paper compares the algorithms based on the network selection methods, complexity of the technologies used and efficiency in order to introduce our vertical handover decision framework. We find that vertical handovers on heterogeneous wireless networks suffer from the lack of a standard and efficient method to satisfy both user and network quality of service requirements at different levels including architectural, decision-making and protocols. Also, the consolidation of network terminal, cross-layer information, multi packet casting and intelligent network selection algorithm appears to be an optimum solution for achieving seamless service continuity in order to facilitate seamless connectivity.

Keywords: heterogeneous wireless networks, vertical handovers, vertical handover metric, decision-making algorithms

Procedia PDF Downloads 375
2494 Mitigating the Negative Health Effects from Stress - A Social Network Analysis

Authors: Jennifer A. Kowalkowski

Abstract:

Production agriculture (farming) is a physically, emotionally, and cognitively stressful occupation, where workers have little control over the stressors that impact both their work and their lives. In an occupation already rife with hazards, these occupational-related stressors have been shown to increase farm workers’ risks for illness, injury, disability, and death associated with their work. Despite efforts to mitigate the negative health effects from occupational-related stress (ORS) and to promote health and well-being (HWB) among farmers in the US, marked improvements have not been attained. Social support accessed through social networks has been shown to buffer against the negative health effects from stress, yet no studies have directly examined these relationships among farmers. The purpose of this study was to use social network analysis to explore the social networks of farm owner-operators and the social supports available to them for mitigating the negative health effects of ORS. A convenience sample of 71 farm owner-operators from a Midwestern County in the US completed and returned a mailed survey (55.5% response rate) that solicited information about their social networks related to ORS. Farmers reported an average of 2.4 individuals in their personal networks and higher levels of comfort discussing ORS with female network members. Farmers also identified few connections (3.4% density) and indicated low comfort with members of affiliation networks specific to ORS. Findings from this study highlighted that farmers accessed different social networks and resources for their personal HWB than for issues related to occupational(farm-related) health and safety. In addition, farmers’ social networks for personal HWB were smaller, with different relational characteristics than reported in studies of farmers’ social networks related to occupational health and safety. Collectively, these findings suggest that farmers conceptualize personal HWB differently than farm health and safety. Therefore, the same research approaches and targets that guide occupational health and safety research may not be appropriate for personal HWB for farmers. Interventions and programming targeting ORS and HWB have largely been offered through the same platforms or mechanisms as occupational health and safety programs. This may be attributed to the significant overlap between the farm as a family business and place of residence, or that ORS stems from farm-related issues. However, these assumptions translated to health research of farmers and farm families from the occupational health and safety literature have not been directly studied or challenged. Thismay explain why past interventions have not been effective at improving health outcomes for farmers and farm families. A close examination of findings from this study raises important questions for researchers who study agricultural health. Findings from this study have significant implications for future research agendas focused on addressing ORS, HWB, and health disparities for farmersand farm families.

Keywords: agricultural health, occupational-related stress, social networks, well-being

Procedia PDF Downloads 92
2493 Algorithm Research on Traffic Sign Detection Based on Improved EfficientDet

Authors: Ma Lei-Lei, Zhou You

Abstract:

Aiming at the problems of low detection accuracy of deep learning algorithm in traffic sign detection, this paper proposes improved EfficientDet based traffic sign detection algorithm. Multi-head self-attention is introduced in the minimum resolution layer of the backbone of EfficientDet to achieve effective aggregation of local and global depth information, and this study proposes an improved feature fusion pyramid with increased vertical cross-layer connections, which improves the performance of the model while introducing a small amount of complexity, the Balanced L1 Loss is introduced to replace the original regression loss function Smooth L1 Loss, which solves the problem of balance in the loss function. Experimental results show, the algorithm proposed in this study is suitable for the task of traffic sign detection. Compared with other models, the improved EfficientDet has the best detection accuracy. Although the test speed is not completely dominant, it still meets the real-time requirement.

Keywords: convolutional neural network, transformer, feature pyramid networks, loss function

Procedia PDF Downloads 81
2492 Parkinson's Disease Gene Identification Using Physicochemical Properties of Amino Acids

Authors: Priya Arora, Ashutosh Mishra

Abstract:

Gene identification, towards the pursuit of mutated genes, leading to Parkinson’s disease, puts forward a challenge towards proactive cure of the disorder itself. Computational analysis is an effective technique for exploring genes in the form of protein sequences, as the theoretical and manual analysis is infeasible. The limitations and effectiveness of a particular computational method are entirely dependent on the previous data that is available for disease identification. The article presents a sequence-based classification method for the identification of genes responsible for Parkinson’s disease. During the initiation phase, the physicochemical properties of amino acids transform protein sequences into a feature vector. The second phase of the method employs Jaccard distances to select negative genes from the candidate population. The third phase involves artificial neural networks for making final predictions. The proposed approach is compared with the state of art methods on the basis of F-measure. The results confirm and estimate the efficiency of the method.

Keywords: disease gene identification, Parkinson’s disease, physicochemical properties of amino acid, protein sequences

Procedia PDF Downloads 121
2491 Application of ANN for Estimation of Power Demand of Villages in Sulaymaniyah Governorate

Authors: A. Majeed, P. Ali

Abstract:

Before designing an electrical system, the estimation of load is necessary for unit sizing and demand-generation balancing. The system could be a stand-alone system for a village or grid connected or integrated renewable energy to grid connection, especially as there are non–electrified villages in developing countries. In the classical model, the energy demand was found by estimating the household appliances multiplied with the amount of their rating and the duration of their operation, but in this paper, information exists for electrified villages could be used to predict the demand, as villages almost have the same life style. This paper describes a method used to predict the average energy consumed in each two months for every consumer living in a village by Artificial Neural Network (ANN). The input data are collected using a regional survey for samples of consumers representing typical types of different living, household appliances and energy consumption by a list of information, and the output data are collected from administration office of Piramagrun for each corresponding consumer. The result of this study shows that the average demand for different consumers from four villages in different months throughout the year is approximately 12 kWh/day, this model estimates the average demand/day for every consumer with a mean absolute percent error of 11.8%, and MathWorks software package MATLAB version 7.6.0 that contains and facilitate Neural Network Toolbox was used.

Keywords: artificial neural network, load estimation, regional survey, rural electrification

Procedia PDF Downloads 104
2490 A New Block Cipher for Resource-Constrained Internet of Things Devices

Authors: Muhammad Rana, Quazi Mamun, Rafiqul Islam

Abstract:

In the Internet of Things (IoT), many devices are connected and accumulate a sheer amount of data. These Internet-driven raw data need to be transferred securely to the end-users via dependable networks. Consequently, the challenges of IoT security in various IoT domains are paramount. Cryptography is being applied to secure the networks for authentication, confidentiality, data integrity and access control. However, due to the resource constraint properties of IoT devices, the conventional cipher may not be suitable in all IoT networks. This paper designs a robust and effective lightweight cipher to secure the IoT environment and meet the resource-constrained nature of IoT devices. We also propose a symmetric and block-cipher based lightweight cryptographic algorithm. The proposed algorithm increases the complexity of the block cipher, maintaining the lowest computational requirements possible. The proposed algorithm efficiently constructs the key register updating technique, reduces the number of encryption rounds, and adds a new layer between the encryption and decryption processes.

Keywords: internet of things, cryptography block cipher, S-box, key management, security, network

Procedia PDF Downloads 89
2489 Random Subspace Ensemble of CMAC Classifiers

Authors: Somaiyeh Dehghan, Mohammad Reza Kheirkhahan Haghighi

Abstract:

The rapid growth of domains that have data with a large number of features, while the number of samples is limited has caused difficulty in constructing strong classifiers. To reduce the dimensionality of the feature space becomes an essential step in classification task. Random subspace method (or attribute bagging) is an ensemble classifier that consists of several classifiers that each base learner in ensemble has subset of features. In the present paper, we introduce Random Subspace Ensemble of CMAC neural network (RSE-CMAC), each of which has training with subset of features. Then we use this model for classification task. For evaluation performance of our model, we compare it with bagging algorithm on 36 UCI datasets. The results reveal that the new model has better performance.

Keywords: classification, random subspace, ensemble, CMAC neural network

Procedia PDF Downloads 313
2488 Spectrum Assignment Algorithms in Optical Networks with Protection

Authors: Qusay Alghazali, Tibor Cinkler, Abdulhalim Fayad

Abstract:

In modern optical networks, the flex grid spectrum usage is most widespread, where higher bit rate streams get larger spectrum slices while lower bit rate traffic streams get smaller spectrum slices. To our practice, under the ITU-T recommendation, G.694.1, spectrum slices of 50, 75, and 100 GHz are being used with central frequency at 193.1 THz. However, when these spectrum slices are not sufficient, multiple spectrum slices can use either one next to another or anywhere in the optical wavelength. In this paper, we propose the analysis of the wavelength assignment problem. We compare different algorithms for this spectrum assignment with and without protection. As a reference for comparisons, we concluded that the Integer Linear Programming (ILP) provides the global optimum for all cases. The most scalable algorithm is the greedy one, which yields results in subsequent ranges even for more significant network instances. The algorithms’ benchmark implemented using the LEMON C++ optimization library and simulation runs based on a minimum number of spectrum slices assigned to lightpaths and their execution time.

Keywords: spectrum assignment, integer linear programming, greedy algorithm, international telecommunication union, library for efficient modeling and optimization in networks

Procedia PDF Downloads 157
2487 Neural Network Motion Control of VTAV by NARMA-L2 Controller for Enhanced Situational Awareness

Authors: Igor Astrov, Natalya Berezovski

Abstract:

This paper focuses on a critical component of the situational awareness (SA), the control of autonomous vertical flight for vectored thrust aerial vehicle (VTAV). With the SA strategy, we proposed a neural network motion control procedure to address the dynamics variation and performance requirement difference of flight trajectory for a VTAV. This control strategy with using of NARMA-L2 neurocontroller for chosen model of VTAV has been verified by simulation of take-off and forward maneuvers using software package Simulink and demonstrated good performance for fast stabilization of motors, consequently, fast SA with economy in energy can be asserted during search-and-rescue operations.

Keywords: NARMA-L2 neurocontroller, situational awareness, vectored thrust aerial vehicle, aviation

Procedia PDF Downloads 403
2486 Survey of Intrusion Detection Systems and Their Assessment of the Internet of Things

Authors: James Kaweesa

Abstract:

The Internet of Things (IoT) has become a critical component of modern technology, enabling the connection of numerous devices to the internet. The interconnected nature of IoT devices, along with their heterogeneous and resource-constrained nature, makes them vulnerable to various types of attacks, such as malware, denial-of-service attacks, and network scanning. Intrusion Detection Systems (IDSs) are a key mechanism for protecting IoT networks and from attacks by identifying and alerting administrators to suspicious activities. In this review, the paper will discuss the different types of IDSs available for IoT systems and evaluate their effectiveness in detecting and preventing attacks. Also, examine the various evaluation methods used to assess the performance of IDSs and the challenges associated with evaluating them in IoT environments. The review will highlight the need for effective and efficient IDSs that can cope with the unique characteristics of IoT networks, including their heterogeneity, dynamic topology, and resource constraints. The paper will conclude by indicating where further research is needed to develop IDSs that can address these challenges and effectively protect IoT systems from cyber threats.

Keywords: cyber-threats, iot, intrusion detection system, networks

Procedia PDF Downloads 61
2485 A Survey on Important Factors of the Ethereum Network Performance

Authors: Ali Mohammad Mobaser Azad, Alireza Akhlaghinia

Abstract:

Blockchain is changing our world and launching a new generation of decentralized networks. Meanwhile, Blockchain-based networks like Ethereum have been created and they will facilitate these processes using tools like smart contracts. The Ethereum has fundamental structures, each of which affects the activity of the nodes. Our purpose in this paper is to review similar research and examine various components to demonstrate the performance of the Ethereum network and to do this, and we used the data published by the Ethereum Foundation in different time spots to examine the number of changes that determine the status of network performance. This will help other researchers understand better Ethereum in different situations.

Keywords: blockchain, ethereum, smart contract, decentralization consensus algorithm

Procedia PDF Downloads 197
2484 Control HVAC Parameters by Brain Emotional Learning Based Intelligent Controller (BELBIC)

Authors: Javad Abdi, Azam Famil Khalili

Abstract:

Modeling emotions have attracted much attention in recent years, both in cognitive psychology and design of artificial systems. However, it is a negative factor in decision-making; emotions have shown to be a strong faculty for making fast satisfying decisions. In this paper, we have adapted a computational model based on the limbic system in the mammalian brain for control engineering applications. Learning in this model based on Temporal Difference (TD) Learning, we applied the proposed controller (termed BELBIC) for a simple model of a submarine. The model was supposed to reach the desired depth underwater. Our results demonstrate excellent control action, disturbance handling, and system parameter robustness for TDBELBIC. The proposal method, regarding the present conditions, the system action in the part and the controlling aims, can control the system in a way that these objectives are attained in the least amount of time and the best way.

Keywords: artificial neural networks, temporal difference, brain emotional learning based intelligent controller, heating- ventilating and air conditioning

Procedia PDF Downloads 421
2483 Multiple Fault Detection and Classification in a Coupled Motor with Rotor Using Artificial Neural Network

Authors: Mehrdad Nouri Khajavi, Gollamhassan Payganeh, Mohsen Fallah Tafti

Abstract:

Fault diagnosis is an important aspect of maintaining rotating machinery health and increasing productivity. Many researches has been done in this regards. Many faults such as unbalance, misalignment, looseness, bearing faults, etc. have been considered and diagnosed with different techniques. Most of the researches in fault diagnosis of rotating machinery deal with single fault. Where as in reality faults usually occur simultaneously and it is, therefore, necessary to recognize them at the same time. In this research, two of the most common faults namely unbalance and misalignment have been considered simultaneously with different intensity and then identified and classified with the use of Multi-Layer Perception Neural Network (MLPNN). Processed Vibration signals are used as the input to the MLPNN, and the class of mixed unbalancy, and misalignment is the output of the NN.

Keywords: unbalance, parallel misalignment, combined faults, vibration signals

Procedia PDF Downloads 336
2482 Mean Field Model Interaction for Computer and Communication Systems: Modeling and Analysis of Wireless Sensor Networks

Authors: Irina A. Gudkova, Yousra Demigha

Abstract:

Scientific research is moving more and more towards the study of complex systems in several areas of economics, biology physics, and computer science. In this paper, we will work on complex systems in communication networks, Wireless Sensor Networks (WSN) that are considered as stochastic systems composed of interacting entities. The current advancements of the sensing in computing and communication systems is an investment ground for research in several tracks. A detailed presentation was made for the WSN, their use, modeling, different problems that can occur in their application and some solutions. The main goal of this work reintroduces the idea of mean field method since it is a powerful technique to solve this type of models especially systems that evolve according to a Continuous Time Markov Chain (CTMC). Modeling of a CTMC has been focused; we obtained a large system of interacting Continuous Time Markov Chain with population entities. The main idea was to work on one entity and replace the others with an average or effective interaction. In this context to make the solution easier, we consider a wireless sensor network as a multi-body problem and we reduce it to one body problem. The method was applied to a system of WSN modeled as a Markovian queue showing the results of the used technique.

Keywords: Continuous-Time Markov Chain, Hidden Markov Chain, mean field method, Wireless sensor networks

Procedia PDF Downloads 141
2481 Evaluating Generative Neural Attention Weights-Based Chatbot on Customer Support Twitter Dataset

Authors: Sinarwati Mohamad Suhaili, Naomie Salim, Mohamad Nazim Jambli

Abstract:

Sequence-to-sequence (seq2seq) models augmented with attention mechanisms are playing an increasingly important role in automated customer service. These models, which are able to recognize complex relationships between input and output sequences, are crucial for optimizing chatbot responses. Central to these mechanisms are neural attention weights that determine the focus of the model during sequence generation. Despite their widespread use, there remains a gap in the comparative analysis of different attention weighting functions within seq2seq models, particularly in the domain of chatbots using the Customer Support Twitter (CST) dataset. This study addresses this gap by evaluating four distinct attention-scoring functions—dot, multiplicative/general, additive, and an extended multiplicative function with a tanh activation parameter — in neural generative seq2seq models. Utilizing the CST dataset, these models were trained and evaluated over 10 epochs with the AdamW optimizer. Evaluation criteria included validation loss and BLEU scores implemented under both greedy and beam search strategies with a beam size of k=3. Results indicate that the model with the tanh-augmented multiplicative function significantly outperforms its counterparts, achieving the lowest validation loss (1.136484) and the highest BLEU scores (0.438926 under greedy search, 0.443000 under beam search, k=3). These results emphasize the crucial influence of selecting an appropriate attention-scoring function in improving the performance of seq2seq models for chatbots. Particularly, the model that integrates tanh activation proves to be a promising approach to improve the quality of chatbots in the customer support context.

Keywords: attention weight, chatbot, encoder-decoder, neural generative attention, score function, sequence-to-sequence

Procedia PDF Downloads 63
2480 A Local Tensor Clustering Algorithm to Annotate Uncharacterized Genes with Many Biological Networks

Authors: Paul Shize Li, Frank Alber

Abstract:

A fundamental task of clinical genomics is to unravel the functions of genes and their associations with disorders. Although experimental biology has made efforts to discover and elucidate the molecular mechanisms of individual genes in the past decades, still about 40% of human genes have unknown functions, not to mention the diseases they may be related to. For those biologists who are interested in a particular gene with unknown functions, a powerful computational method tailored for inferring the functions and disease relevance of uncharacterized genes is strongly needed. Studies have shown that genes strongly linked to each other in multiple biological networks are more likely to have similar functions. This indicates that the densely connected subgraphs in multiple biological networks are useful in the functional and phenotypic annotation of uncharacterized genes. Therefore, in this work, we have developed an integrative network approach to identify the frequent local clusters, which are defined as those densely connected subgraphs that frequently occur in multiple biological networks and consist of the query gene that has few or no disease or function annotations. This is a local clustering algorithm that models multiple biological networks sharing the same gene set as a three-dimensional matrix, the so-called tensor, and employs the tensor-based optimization method to efficiently find the frequent local clusters. Specifically, massive public gene expression data sets that comprehensively cover dynamic, physiological, and environmental conditions are used to generate hundreds of gene co-expression networks. By integrating these gene co-expression networks, for a given uncharacterized gene that is of biologist’s interest, the proposed method can be applied to identify the frequent local clusters that consist of this uncharacterized gene. Finally, those frequent local clusters are used for function and disease annotation of this uncharacterized gene. This local tensor clustering algorithm outperformed the competing tensor-based algorithm in both module discovery and running time. We also demonstrated the use of the proposed method on real data of hundreds of gene co-expression data and showed that it can comprehensively characterize the query gene. Therefore, this study provides a new tool for annotating the uncharacterized genes and has great potential to assist clinical genomic diagnostics.

Keywords: local tensor clustering, query gene, gene co-expression network, gene annotation

Procedia PDF Downloads 123
2479 Router 1X3 - RTL Design and Verification

Authors: Nidhi Gopal

Abstract:

Routing is the process of moving a packet of data from source to destination and enables messages to pass from one computer to another and eventually reach the target machine. A router is a networking device that forwards data packets between computer networks. It is connected to two or more data lines from different networks (as opposed to a network switch, which connects data lines from one single network). This paper mainly emphasizes upon the study of router device, its top level architecture, and how various sub-modules of router i.e. Register, FIFO, FSM and Synchronizer are synthesized, and simulated and finally connected to its top module.

Keywords: data packets, networking, router, routing

Procedia PDF Downloads 782
2478 Estimation of Forces Applied to Forearm Using EMG Signal Features to Control of Powered Human Arm Prostheses

Authors: Faruk Ortes, Derya Karabulut, Yunus Ziya Arslan

Abstract:

Myoelectric features gathering from musculature environment are considered on a preferential basis to perceive muscle activation and control human arm prostheses according to recent experimental researches. EMG (electromyography) signal based human arm prostheses have shown a promising performance in terms of providing basic functional requirements of motions for the amputated people in recent years. However, these assistive devices for neurorehabilitation still have important limitations in enabling amputated people to perform rather sophisticated or functional movements. Surface electromyogram (EMG) is used as the control signal to command such devices. This kind of control consists of activating a motion in prosthetic arm using muscle activation for the same particular motion. Extraction of clear and certain neural information from EMG signals plays a major role especially in fine control of hand prosthesis movements. Many signal processing methods have been utilized for feature extraction from EMG signals. The specific objective of this study was to compare widely used time domain features of EMG signal including integrated EMG(IEMG), root mean square (RMS) and waveform length(WL) for prediction of externally applied forces to human hands. Obtained features were classified using artificial neural networks (ANN) to predict the forces. EMG signals supplied to process were recorded during only type of muscle contraction which is isometric and isotonic one. Experiments were performed by three healthy subjects who are right-handed and in a range of 25-35 year-old aging. EMG signals were collected from muscles of the proximal part of the upper body consisting of: biceps brachii, triceps brachii, pectorialis major and trapezius. The force prediction results obtained from the ANN were statistically analyzed and merits and pitfalls of the extracted features were discussed with detail. The obtained results are anticipated to contribute classification process of EMG signal and motion control of powered human arm prosthetics control.

Keywords: assistive devices for neurorehabilitation, electromyography, feature extraction, force estimation, human arm prosthesis

Procedia PDF Downloads 348
2477 Social Media, Networks and Related Technology: Business and Governance Perspectives

Authors: M. A. T. AlSudairi, T. G. K. Vasista

Abstract:

The concept of social media is becoming the top of the agenda for many business executives and public sector executives today. Decision makers as well as consultants, try to identify ways in which firms and enterprises can make profitable use of social media and network related applications such as Wikipedia, Face book, YouTube, Google+, Twitter. While it is fun and useful to participating in this media and network for achieving the communication effectively and efficiently, semantic and sentiment analysis and interpretation becomes a crucial issue. So, the objective of this paper is to provide literature review on social media, network and related technology related to semantics and sentiment or opinion analysis covering business and governance perspectives. In this regard, a case study on the use and adoption of Social media in Saudi Arabia has been discussed. It is concluded that semantic web technology play a significant role in analyzing the social networks and social media content for extracting the interpretational knowledge towards strategic decision support.

Keywords: CRASP methodology, formative assessment, literature review, semantic web services, social media, social networks

Procedia PDF Downloads 435
2476 Intrusion Detection Techniques in Mobile Adhoc Networks: A Review

Authors: Rashid Mahmood, Muhammad Junaid Sarwar

Abstract:

Mobile ad hoc networks (MANETs) use has been well-known from the last few years in the many applications, like mission critical applications. In the (MANETS) prevention method is not adequate as the security concerned, so the detection method should be added to the security issues in (MANETs). The authentication and encryption is considered the first solution of the MANETs problem where as now these are not sufficient as MANET use is increasing. In this paper we are going to present the concept of intrusion detection and then survey some of major intrusion detection techniques in MANET and aim to comparing in some important fields.

Keywords: MANET, IDS, intrusions, signature, detection, prevention

Procedia PDF Downloads 356
2475 Asynchronous Low Duty Cycle Media Access Control Protocol for Body Area Wireless Sensor Networks

Authors: Yasin Ghasemi-Zadeh, Yousef Kavian

Abstract:

Wireless body area networks (WBANs) technology has achieved lots of popularity over the last decade with a wide range of medical applications. This paper presents an asynchronous media access control (MAC) protocol based on B-MAC protocol by giving an application for medical issues. In WBAN applications, there are some serious problems such as energy, latency, link reliability (quality of wireless link) and throughput which are mainly due to size of sensor networks and human body specifications. To overcome these problems and improving link reliability, we concentrated on MAC layer that supports mobility models for medical applications. In the presented protocol, preamble frames are divided into some sub-frames considering the threshold level. Actually, the main reason for creating shorter preambles is the link reliability where due to some reasons such as water, the body signals are affected on some frequency bands and causes fading and shadowing on signals, therefore by increasing the link reliability, these effects are reduced. In case of mobility model, we use MoBAN model and modify that for some more areas. The presented asynchronous MAC protocol is modeled by OMNeT++ simulator. The results demonstrate increasing the link reliability comparing to B-MAC protocol where the packet reception ratio (PRR) is 92% also covers more mobility areas than MoBAN protocol.

Keywords: wireless body area networks (WBANs), MAC protocol, link reliability, mobility, biomedical

Procedia PDF Downloads 356
2474 Identifying Confirmed Resemblances in Problem-Solving Engineering, Both in the Past and Present

Authors: Colin Schmidt, Adrien Lecossier, Pascal Crubleau, Simon Richir

Abstract:

Introduction:The widespread availability of artificial intelligence, exemplified by Generative Pre-trained Transformers (GPT) relying on large language models (LLM), has caused a seismic shift in the realm of knowledge. Everyone now has the capacity to swiftly learn how these models can either serve them well or not. Today, conversational AI like ChatGPT is grounded in neural transformer models, a significant advance in natural language processing facilitated by the emergence of renowned LLMs constructed using neural transformer architecture. Inventiveness of an LLM : OpenAI's GPT-3 stands as a premier LLM, capable of handling a broad spectrum of natural language processing tasks without requiring fine-tuning, reliably producing text that reads as if authored by humans. However, even with an understanding of how LLMs respond to questions asked, there may be lurking behind OpenAI’s seemingly endless responses an inventive model yet to be uncovered. There may be some unforeseen reasoning emerging from the interconnection of neural networks here. Just as a Soviet researcher in the 1940s questioned the existence of Common factors in inventions, enabling an Under standing of how and according to what principles humans create them, it is equally legitimate today to explore whether solutions provided by LLMs to complex problems also share common denominators. Theory of Inventive Problem Solving (TRIZ) : We will revisit some fundamentals of TRIZ and how Genrich ALTSHULLER was inspired by the idea that inventions and innovations are essential means to solve societal problems. It's crucial to note that traditional problem-solving methods often fall short in discovering innovative solutions. The design team is frequently hampered by psychological barriers stemming from confinement within a highly specialized knowledge domain that is difficult to question. We presume ChatGPT Utilizes TRIZ 40. Hence, the objective of this research is to decipher the inventive model of LLMs, particularly that of ChatGPT, through a comparative study. This will enhance the efficiency of sustainable innovation processes and shed light on how the construction of a solution to a complex problem was devised. Description of the Experimental Protocol : To confirm or reject our main hypothesis that is to determine whether ChatGPT uses TRIZ, we will follow a stringent protocol that we will detail, drawing on insights from a panel of two TRIZ experts. Conclusion and Future Directions : In this endeavor, we sought to comprehend how an LLM like GPT addresses complex challenges. Our goal was to analyze the inventive model of responses provided by an LLM, specifically ChatGPT, by comparing it to an existing standard model: TRIZ 40. Of course, problem solving is our main focus in our endeavours.

Keywords: artificial intelligence, Triz, ChatGPT, inventiveness, problem-solving

Procedia PDF Downloads 44
2473 A Convolution Neural Network Approach to Predict Pes-Planus Using Plantar Pressure Mapping Images

Authors: Adel Khorramrouz, Monireh Ahmadi Bani, Ehsan Norouzi, Morvarid Lalenoor

Abstract:

Background: Plantar pressure distribution measurement has been used for a long time to assess foot disorders. Plantar pressure is an important component affecting the foot and ankle function and Changes in plantar pressure distribution could indicate various foot and ankle disorders. Morphologic and mechanical properties of the foot may be important factors affecting the plantar pressure distribution. Accurate and early measurement may help to reduce the prevalence of pes planus. With recent developments in technology, new techniques such as machine learning have been used to assist clinicians in predicting patients with foot disorders. Significance of the study: This study proposes a neural network learning-based flat foot classification methodology using static foot pressure distribution. Methodologies: Data were collected from 895 patients who were referred to a foot clinic due to foot disorders. Patients with pes planus were labeled by an experienced physician based on clinical examination. Then all subjects (with and without pes planus) were evaluated for static plantar pressures distribution. Patients who were diagnosed with the flat foot in both feet were included in the study. In the next step, the leg length was normalized and the network was trained for plantar pressure mapping images. Findings: From a total of 895 image data, 581 were labeled as pes planus. A computational neural network (CNN) ran to evaluate the performance of the proposed model. The prediction accuracy of the basic CNN-based model was performed and the prediction model was derived through the proposed methodology. In the basic CNN model, the training accuracy was 79.14%, and the test accuracy was 72.09%. Conclusion: This model can be easily and simply used by patients with pes planus and doctors to predict the classification of pes planus and prescreen for possible musculoskeletal disorders related to this condition. However, more models need to be considered and compared for higher accuracy.

Keywords: foot disorder, machine learning, neural network, pes planus

Procedia PDF Downloads 340
2472 Movement Optimization of Robotic Arm Movement Using Soft Computing

Authors: V. K. Banga

Abstract:

Robots are now playing a very promising role in industries. Robots are commonly used in applications in repeated operations or where operation by human is either risky or not feasible. In most of the industrial applications, robotic arm manipulators are widely used. Robotic arm manipulator with two link or three link structures is commonly used due to their low degrees-of-freedom (DOF) movement. As the DOF of robotic arm increased, complexity increases. Instrumentation involved with robotics plays very important role in order to interact with outer environment. In this work, optimal control for movement of various DOFs of robotic arm using various soft computing techniques has been presented. We have discussed about different robotic structures having various DOF robotics arm movement. Further stress is on kinematics of the arm structures i.e. forward kinematics and inverse kinematics. Trajectory planning of robotic arms using soft computing techniques is demonstrating the flexibility of this technique. The performance is optimized for all possible input values and results in optimized movement as resultant output. In conclusion, soft computing has been playing very important role for achieving optimized movement of robotic arm. It also requires very limited knowledge of the system to implement soft computing techniques.

Keywords: artificial intelligence, kinematics, robotic arm, neural networks, fuzzy logic

Procedia PDF Downloads 274
2471 Personal Information Classification Based on Deep Learning in Automatic Form Filling System

Authors: Shunzuo Wu, Xudong Luo, Yuanxiu Liao

Abstract:

Recently, the rapid development of deep learning makes artificial intelligence (AI) penetrate into many fields, replacing manual work there. In particular, AI systems also become a research focus in the field of automatic office. To meet real needs in automatic officiating, in this paper we develop an automatic form filling system. Specifically, it uses two classical neural network models and several word embedding models to classify various relevant information elicited from the Internet. When training the neural network models, we use less noisy and balanced data for training. We conduct a series of experiments to test my systems and the results show that our system can achieve better classification results.

Keywords: artificial intelligence and office, NLP, deep learning, text classification

Procedia PDF Downloads 168
2470 A Survey of Dynamic QoS Methods in Sofware Defined Networking

Authors: Vikram Kalekar

Abstract:

Modern Internet Protocol (IP) networks deploy traditional and modern Quality of Service (QoS) management methods to ensure the smooth flow of network packets during regular operations. SDN (Software-defined networking) networks have also made headway into better service delivery by means of novel QoS methodologies. While many of these techniques are experimental, some of them have been tested extensively in controlled environments, and few of them have the potential to be deployed widely in the industry. With this survey, we plan to analyze the approaches to QoS and resource allocation in SDN, and we will try to comment on the possible improvements to QoS management in the context of SDN.

Keywords: QoS, policy, congestion, flow management, latency, delay index terms-SDN, delay

Procedia PDF Downloads 178
2469 A Nonlinear Approach for System Identification of a Li-Ion Battery Based on a Non-Linear Autoregressive Exogenous Model

Authors: Meriem Mossaddek, El Mehdi Laadissi, El Mehdi Loualid, Chouaib Ennawaoui, Sohaib Bouzaid, Abdelowahed Hajjaji

Abstract:

An electrochemical system is a subset of mechatronic systems that includes a wide variety of batteries and nickel-cadmium, lead-acid batteries, and lithium-ion. Those structures have several non-linear behaviors and uncertainties in their running range. This paper studies an effective technique for modeling Lithium-Ion (Li-Ion) batteries using a Nonlinear Auto-Regressive model with exogenous input (NARX). The Artificial Neural Network (ANN) is trained to employ the data collected from the battery testing process. The proposed model is implemented on a Li-Ion battery cell. Simulation of this model in MATLAB shows good accuracy of the proposed model.

Keywords: lithium-ion battery, neural network, energy storage, battery model, nonlinear models

Procedia PDF Downloads 89