Search results for: low Pd loaded catalyst
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1331

Search results for: low Pd loaded catalyst

221 Metal-Organic Frameworks for Innovative Functional Textiles

Authors: Hossam E. Emam

Abstract:

Metal–organic frameworks (MOFs) are new hybrid materials investigated from 15 years ago; they synthesized from metals as inorganic center joined with multidentate organic linkers to form a 1D, 2D or 3D network structure. MOFs have unique properties such as pore crystalline structure, large surface area, chemical tenability and luminescent characters. These significant properties enable MOFs to be applied in many fields such like gas storage, adsorption/separation, drug delivery/biomedicine, catalysis, polymerization, magnetism and luminescence applications. Recently, many of published reports interested in superiority of MOFs for functionalization of textiles to exploit the unique properties of MOFs. Incorporation of MOFs is found to acquire the textiles some additional formidable functions to be used in considerable fields such like water treatment and fuel purification. Modification of textiles with MOFs could be easily performed by two main techniques; Ex-situ (preparation of MOFs then applied onto textiles) and in-situ (ingrowth of MOFs within textiles networks). Uniqueness of MOFs could be assimilated in acquirement of decorative color, antimicrobial character, anti-mosquitos character, ultraviolet radiation protective, self-clean, photo-luminescent and sensor character. Additionally, textiles treatment with MOFs make it applicable as filter in the adsorption of toxic gases, hazardous materials (such as pesticides, dyes and aromatics molecules) and fuel purification (such as removal of oxygenated, nitrogenated and sulfur compounds). Also, the porous structure of MOFs make it mostly utilized in control release of insecticides from the surface of the textile. Moreover, MOF@textiles as recyclable materials lead it applicable as photo-catalyst composites for photo-degradation of different dyes in the day light. Therefore, MOFs is extensively considered for imparting textiles with formidable properties as ingeniousness way for textile functionalization.

Keywords: MOF, functional textiles, water treatment, fuel purification, environmental applications

Procedia PDF Downloads 118
220 Numerical Simulation of Encased Composite Column Bases Subjected to Cyclic Loading

Authors: Eman Ismail, Adnan Masri

Abstract:

Energy dissipation in ductile moment frames occurs mainly through plastic hinge rotations in its members (beams and columns). Generally, plastic hinge locations are pre-determined and limited to the beam ends, where columns are designed to remain elastic in order to avoid premature instability (aka story mechanisms) with the exception of column bases, where a base is 'fixed' in order to provide higher stiffness and stability and to form a plastic hinge. Plastic hinging at steel column bases in ductile moment frames using conventional base connection details is accompanied by several complications (thicker and heavily stiffened connections, larger embedment depths, thicker foundation to accommodate anchor rod embedment, etc.). An encased composite base connection is proposed where a segment of the column beginning at the base up to a certain point along its height is encased in reinforced concrete with headed shear studs welded to the column flanges used to connect the column to the concrete encasement. When the connection is flexurally loaded, stresses are transferred to a reinforced concrete encasement through the headed shear studs, and thereby transferred to the foundation by reinforced concrete mechanics, and axial column forces are transferred through the base-plate assembly. Horizontal base reactions are expected to be transferred by the direct bearing of the outer and inner faces of the flanges; however, investigation of this mechanism is not within the scope of this research. The inelastic and cyclic behavior of the connection will be investigated where it will be subjected to reversed cyclic loading, and rotational ductility will be observed in cases of yielding mechanisms where yielding occurs as flexural yielding in the beam-column, shear yielding in headed studs, and flexural yielding of the reinforced concrete encasement. The findings of this research show that the connection is capable of achieving satisfactory levels of ductility in certain conditions given proper detailing and proportioning of elements.

Keywords: seismic design, plastic mechanisms steel structure, moment frame, composite construction

Procedia PDF Downloads 107
219 Comparative Numerical Simulations of Reaction-Coupled Annular and Free-Bubbling Fluidized Beds Performance

Authors: Adefarati Oloruntoba, Yongmin Zhang, Hongliang Xiao

Abstract:

An annular fluidized bed (AFB) is gaining extensive application in the process industry due to its efficient gas-solids contacting. But a direct evaluation of its reaction performance is still lacking. In this paper, comparative 3D Euler–Lagrange multiphase-particle-in-cell (MP-PIC) computations are performed to assess the reaction performance of AFB relative to a bubbling fluidized bed (BFB) in an FCC regeneration process. By using the energy-minimization multi-scale (EMMS) drag model with a suitable heterogeneity index, the MP-PIC simulation predicts the typical fountain region in AFB and solids holdup of BFB, which is consistent with an experiment. Coke combustion rate, flue gas and temperature profile are utilized as the performance indicators, while related bed hydrodynamics are explored to account for the different performance under varying superficial gas velocities (0.5 m/s, 0.6 m/s, and 0.7 m/s). Simulation results indicate that the burning rates of coke and its species are relatively the same in both beds, albeit marginal increase in BFB. Similarly, the shape and evolution time of flue gas (CO, CO₂, H₂O and O₂) curves are indistinguishable but match the coke combustion rates. However, AFB has high proclivity to high temperature-gradient as higher gas and solids temperatures are predicted in the freeboard. Moreover, for both beds, the effect of superficial gas velocity is only conspicuous on the temperature but negligible on combustion efficiency and effluent gas emissions due to constant gas volumetric flow rate and bed loading criteria. Cross-flow of solids from the annulus to the spout region as well as the high primary gas in the AFB directly assume the underlying mechanisms for its unique gas-solids hydrodynamics (pressure, solids holdup, velocity, mass flux) and local spatial homogeneity, which in turn influence the reactor performance. Overall, the study portrays AFB as a cheap alternative reactor to BFB for catalyst regeneration.

Keywords: annular fluidized bed, bubbling fluidized bed, coke combustion, flue gas, fountaining, CFD, MP-PIC, hydrodynamics, FCC regeneration

Procedia PDF Downloads 138
218 Poly(Ethylene Glycol)-Silicone Containing Phase Change Polymer for Thermal Energy Storage

Authors: Swati Sundararajan, , Asit B. Samui, Prashant S. Kulkarni

Abstract:

The global energy crisis has led to extensive research on alternative sources of energy. The gap between energy supply and demand can be met by thermal energy storage techniques, of which latent heat storage is most effective in the form of phase change materials (PCMs). Phase change materials utilize latent heat absorbed or released over a narrow temperature range of the material undergoing phase transformation, to store energy. The latent heat can be utilized for heating or cooling purposes. It can also be used for converting to electricity. All these actions amount to minimizing the load on electricity demand. These materials retain this property over repeated number of cycles. Different PCMs differ in the phase change temperature and the heat storage capacities. Poly(ethylene glycol) (PEG) was cross-linked to hydroxyl-terminated poly(dimethyl siloxane) (PDMS) in the presence of cross-linker, tetraethyl orthosilicate (TEOS) and catalyst, dibutyltin dilaurate. Four different ratios of PEG and PDMS were reacted together, and the composition with the lowest PEG concentration resulted in the formation of a flexible solid-solid phase change membrane. The other compositions are obtained in powder form. The enthalpy values of the prepared PCMs were studied by using differential scanning calorimetry and the crystallization properties were analyzed by using X-ray diffraction and polarized optical microscopy. The incorporation of silicone moiety was expected to reduce the hydrophilic character of PEG, which was evaluated by measurement of contact angle. The membrane forming ability of this crosslinked polymer can be extended to several smart packaging, building and textile applications. The detailed synthesis, characterization and performance evaluation of the crosslinked polymer blend will be incorporated in the presentation.

Keywords: phase change materials, poly(ethylene glycol), poly(dimethyl siloxane), thermal energy storage

Procedia PDF Downloads 334
217 Insight into the Electrocatalytic Activities of Nitrogen-Doped Graphyne and Graphdiyne Families: A First-Principles Study

Authors: Bikram K. Das, Kalyan K. Chattopadhyay

Abstract:

The advent of 2-D materials in the last decade has induced a fresh spur of growth in fuel cell technology as these materials have some highly promising traits that can be exploited to felicitate Oxygen Reduction Reaction (ORR) in an efficient way. Among the various 2-D carbon materials, graphyne (Gy) and graphdiyne (Gdy)1 with their intrinsic non-uniform charge distribution holds promises in this purpose and it is expected2 that substitutional Nitrogen (N) doping could further enhance their efficiency. In this regard, dispersive force corrected density functional theory is used to map the oxygen reduction reaction (ORR) kinetics of five different kinds of N doped graphyne and graphdiyne systems (namely αGy, βGy, γGy, RGy and 6,6,12Gy and Gdy) in alkaline medium. The best doping site for each of the Gy/ Gdy system is determined comparing the formation energies of the possible doping configurations. Similarly, the best di-oxygen (O₂) adsorption sites for the doped systems are identified by comparing the adsorption energies. O₂ adsorption on all N doped Gy/ Gdy systems is found to be energetically favorable. ORR on a catalyst surface may occur either via the Eley-Rideal (ER) or the Langmuir–Hinschelwood (LH) pathway. Systematic studies performed on the considered systems reveal that all of them favor the ER pathway. Further, depending on the nature of di-oxygen adsorption ORR can follow either associative or dissociative mechanism; the possibility of occurrence of both the mechanisms is tested thoroughly for each N doped Gy/ Gdy. For the ORR process, all the Gy/Gdy systems are observed to prefer the efficient four-electron pathway but the expected monotonically exothermic reaction pathway is found only for N doped 6,6,12Gy and RGy following the associative pathway and for N doped βGy, γGy and Gdy following the dissociative pathway. Further computation performed for these systems reveals that for N doped 6,6,12Gy, RGy, βGy, γGy and Gdy the overpotentials are 1.08 V, 0.94 V, 1.17 V, 1.21 V and 1.04 V respectively depicting N doped RGy is the most promising material, to carry out ORR in alkaline medium, among the considered ones. The stability of the ORR intermediate states with the variation of pH and electrode potentials is further explored with Pourbiax diagrams and the activities of these systems in the alkaline medium are compared with the prior reported B/N doped identical systems for ORR in an acidic medium in terms of a common descriptor.

Keywords: graphdiyne, graphyne, nitrogen-doped, ORR

Procedia PDF Downloads 100
216 Characterization of Articular Cartilage Based on the Response of Cartilage Surface to Loading/Unloading

Authors: Z. Arabshahi, I. Afara, A. Oloyede, H. Moody, J. Kashani, T. Klein

Abstract:

Articular cartilage is a fluid-swollen tissue of synovial joints that functions by providing a lubricated surface for articulation and to facilitate the load transmission. The biomechanical function of this tissue is highly dependent on the integrity of its ultrastructural matrix. Any alteration of articular cartilage matrix, either by injury or degenerative conditions such as osteoarthritis (OA), compromises its functional behaviour. Therefore, the assessment of articular cartilage is important in early stages of degenerative process to prevent or reduce further joint damage with associated socio-economic impact. Therefore, there has been increasing research interest into the functional assessment of articular cartilage. This study developed a characterization parameter for articular cartilage assessment based on the response of cartilage surface to loading/unloading. This is because the response of articular cartilage to compressive loading is significantly depth-dependent, where the superficial zone and underlying matrix respond differently to deformation. In addition, the alteration of cartilage matrix in the early stages of degeneration is often characterized by PG loss in the superficial layer. In this study, it is hypothesized that the response of superficial layer is different in normal and proteoglycan depleted tissue. To establish the viability of this hypothesis, samples of visually intact and artificially proteoglycan-depleted bovine cartilage were subjected to compression at a constant rate to 30 percent strain using a ring-shaped indenter with an integrated ultrasound probe and then unloaded. The response of articular surface which was indirectly loaded was monitored using ultrasound during the time of loading/unloading (deformation/recovery). It was observed that the rate of cartilage surface response to loading/unloading was different for normal and PG-depleted cartilage samples. Principal Component Analysis was performed to identify the capability of the cartilage surface response to loading/unloading, to distinguish between normal and artificially degenerated cartilage samples. The classification analysis of this parameter showed an overlap between normal and degenerated samples during loading. While there was a clear distinction between normal and degenerated samples during unloading. This study showed that the cartilage surface response to loading/unloading has the potential to be used as a parameter for cartilage assessment.

Keywords: cartilage integrity parameter, cartilage deformation/recovery, cartilage functional assessment, ultrasound

Procedia PDF Downloads 174
215 Synergistic and Antagonistic Interactions between Garlic Extracts and Metformin in Diabetes Treatment

Authors: Ikram Elsiddig, Yacouba Djamila, Amna Hamad

Abstract:

Abstract—The worldwide increasing of using herbs in form of medicine with or without prescription medications potentiates the interactions between herbal products and conventional medicines; due to more research for herb-drug interactions are needed. for a long time hyperglycemia had been treated with several medicinal plants. A. sativum, belonging to the Liliaceae family is well known for its medicinal uses in African traditional medicine, it used for treating of many human diseases mainly diabetes, high cholesterol and high blood pressure. The purpose of this study is to determine the interaction effect between A. sativum bulb extracts and metformin drug used in diabetes treatment. The in vitro and in vivo evaluation were conducted by glucose reuptake using isolated rats hemidiaphgrams tissue and by estimate glucose tolerance in glucose-loaded wistar albino rats. The results showed that, petroleum ether, chloroform and ethyl acetate extracts were found to have activity of glucose uptake in isolated rats hemidiaphgrams of 24.11 mg/g, 19.07 mg/g and 15.66 mg/g compared to metformin drug of 17 mg/g. These activity were reducded to 17.8 mg/g, 13.59 mg/g and 14.46 mg/g after combination with metformin, metformin itself reduced to 13.59 mg/g, 14.46 mg/g and 12.71 mg/g in comination with chloroform and ethyl acetate. These decrease in activity could be due to herbal–drug interaction between the extracts of A. sativum bulb and metformin drug. The interaction between A. sativum extract and metformin was also shown by in vivo study on the induced hyperglycemic rats. The glucose level after administered of 200 mg/kg was found to be increase with 47.2 % and 17.7% at first and second hour compared to the increase of blood glucose in the control group of 82.6% and76.7%.. At fourth hour the glucose level was became less than normal with 3.4% compared to control which continue to increase with 68.2%. Dose of 400 mg/kg at first hour showed increase in blood glucose of 31.5 %, at second and fourth hours the glucose level was became less than normal with decrease of 3.2 % and 30.4%. After combination the activity was found to be less than that of extract at both high and low dose, whereas, at first and second hour, the glucose level was found to be increase with 50.4% and 21.2%, at fourth hour the glucose level was became less than normal with 14%. Therefore A. sativum could be a potential source for anti-diabetic when it used alone, and it is significant important to use the garlic extract alone instead of combined with Metformin drug in diabetes- treatment.

Keywords: Antagonistic, Garlic, Metformin, Synergistic

Procedia PDF Downloads 157
214 Self-Energy Sufficiency Assessment of the Biorefinery Annexed to a Typical South African Sugar Mill

Authors: M. Ali Mandegari, S. Farzad, , J. F. Görgens

Abstract:

Sugar is one of the main agricultural industries in South Africa and approximately livelihoods of one million South Africans are indirectly dependent on sugar industry which is economically struggling with some problems and should re-invent in order to ensure a long-term sustainability. Second generation biorefinery is defined as a process to use waste fibrous for the production of biofuel, chemicals animal food, and electricity. Bioethanol is by far the most widely used biofuel for transportation worldwide and many challenges in front of bioethanol production were solved. Biorefinery annexed to the existing sugar mill for production of bioethanol and electricity is proposed to sugar industry and is addressed in this study. Since flowsheet development is the key element of the bioethanol process, in this work, a biorefinery (bioethanol and electricity production) annexed to a typical South African sugar mill considering 65ton/h dry sugarcane bagasse and tops/trash as feedstock was simulated. Aspen PlusTM V8.6 was applied as simulator and realistic simulation development approach was followed to reflect the practical behaviour of the plant. Latest results of other researches considering pretreatment, hydrolysis, fermentation, enzyme production, bioethanol production and other supplementary units such as evaporation, water treatment, boiler, and steam/electricity generation units were adopted to establish a comprehensive biorefinery simulation. Steam explosion with SO2 was selected for pretreatment due to minimum inhibitor production and simultaneous saccharification and fermentation (SSF) configuration was adopted for enzymatic hydrolysis and fermentation of cellulose and hydrolyze. Bioethanol purification was simulated by two distillation columns with side stream and fuel grade bioethanol (99.5%) was achieved using molecular sieve in order to minimize the capital and operating costs. Also boiler and steam/power generation were completed using industrial design data. Results indicates that the annexed biorefinery can be self-energy sufficient when 35% of feedstock (tops/trash) bypass the biorefinery process and directly be loaded to the boiler to produce sufficient steam and power for sugar mill and biorefinery plant.

Keywords: biorefinery, self-energy sufficiency, tops/trash, bioethanol, electricity

Procedia PDF Downloads 518
213 Eco-Products in Day-to-Day Life: A Catalyst for Achieving Sustainability

Authors: Rani Fernandez

Abstract:

As global concerns regarding environmental degradation and climate change intensify, the imperative for sustainable living has never been more critical. This research delves into the role of eco-products in everyday life as a pivotal strategy for achieving sustainability. The study investigates the awareness, adoption, and impact of eco-friendly products on individual and community levels. The research employs a mixed-methods approach, combining surveys, interviews, and case studies to explore consumer perceptions, behaviours, and motivations surrounding the use of eco-products. Additionally, life cycle assessments are conducted to evaluate the environmental footprint of selected eco-products, shedding light on their tangible contributions to sustainability. The findings reveal the diverse range of eco-products available in the market, from biodegradable packaging to energy-efficient appliances, and the extent to which consumers integrate these products into their daily routines. Moreover, the research examines the challenges and opportunities associated with widespread adoption, considering factors such as cost, accessibility, and efficacy. In addition to individual consumption patterns, the study investigates the broader societal impact of eco-product integration. It explores the potential for eco-products to drive systemic change by influencing supply chains, corporate practices, and government policies. The research highlights successful case studies of communities or businesses that have effectively incorporated eco-products, providing valuable insights into scalable models for sustainability. Ultimately, this research contributes to the discourse on sustainable living by elucidating the pivotal role of eco-products in shaping environmentally conscious behaviours. By understanding the dynamics of eco-product adoption, policymakers, businesses, and individuals can collaboratively work towards a more sustainable future. The implications of this study extend beyond academia, informing practical strategies for fostering a global shift towards sustainable consumption and production.

Keywords: eco-friendly, sustainablity, environment, climate change

Procedia PDF Downloads 23
212 Linking Access to Land, Tenure Security with Food Sufficiency of Tenants/Landless or Small Holder Farmers of Parsa District

Authors: Subesh Panta

Abstract:

The land is a one of the major boosting factors of production for the agricultural country like Nepal where access to land has been a major source of livelihood of tenants and small farmers. But there is an absence of secure land tenure arrangement which drastically affect the overall production of farmers leading towards food insecurity. Sharecropping is practiced in Nepal especially in tarai region from early period, but there is the gap in the academic study whether the sharecropping has benefitted tenant farmers and make them food sufficient or not. This study attempts to find out the food sufficiency among the tenant households. The research was carried in the three VDCs of Parsa district -Paterwa (Sugauli), Jitpur and Nirchuta. A total of 111 households were determined as the sample size from each of the three VDCs was randomly visited for interview in the study. The size of land rent-in was found to be very small and fragmented. At the same time, the land tenure security was not found to be secured among the tenants. Due to lack of land tenure security, on one hand tenants and small farmers were not found to be motivated to investment in agriculture as they need to share fifty percent of their production with the land owners, and on other hand land owners were also not interested in investing as they have other alternative sources of livelihood rather than agriculture. In conclusion, the study highpoint that the crop production and food sufficiency level of the tenants’ farmers of the Parsa district are decreasing. Many tenants’ farmers are seeking alternative opportunities for livelihood rather than sharecropping due to insecure land tenure, feudalistic practice, lack of storage for agriculture production, lack of proper agro-market. The situation is such that, if no action is taken timely, there may be a situation that we will have to depend on imports for all the food requirements. Thus, the study discloses that the sharecropping could act as catalyst for ensuring food sufficiency for all, if proper land tenure police are promoted to tenants/small farmers with legal titles to their land or promoted with sustainable agriculture methods.

Keywords: agriculture, food sufficiency, land, tenant farmes

Procedia PDF Downloads 217
211 Carbon-Encapsulated Iron Nanoparticles for Hydrogen Sulfide Removal

Authors: Meriem Abid, Erika Oliveria-Jardim, Andres Fullana, Joaquin Silvestre-Albero

Abstract:

The rapid industrial development associated with the increase of volatile organic compounds (VOCs) has seriously impacted the environment. Among VOCs, hydrogen sulfide (H₂S) is known as a highly toxic, malodorous, flammable, and corrosive gas, which is emitted from diverse chemical processes, including industrial waste-gas streams, natural gas processing, and biogas purification. The high toxicity, corrosively, and very characteristic odor threshold of H2S call for urgent development of efficient desulfurization processes from the viewpoint of environmental protection and resource regeneration. In order to reduce H₂S emissions, effective technologies for have been performed. The general method of H₂S removal included amine aqueous solution, adsorption process, biological methods, and fixed-bed solid catalytic oxidation processes. Ecologically and economically, low-temperature direct oxidation of H₂S to elemental sulfur using catalytic oxidation is the preferred approach for removing H₂S-containing gas streams. A large number of catalysts made from carbon, metal oxides, clay, and others, have been studied extensively for this application. In this sense, activated carbon (AC) is an attractive catalyst for H₂S removal because it features a high specific surface area, diverse functional groups, low cost, durability, and high efficiency. It is interesting to stand out that AC is modified using metal oxides to promote the efficiency of H₂S removal and to enhance the catalytic performance. Based on these premises, the main goal of the present study is the evaluation of the H₂S adsorption performance in carbon-encapsulated iron nanoparticles obtained from an olive mill, thermally treated at 600, 800 and 1000 ºC temperatures under anaerobic conditions. These results anticipate that carbon-encapsulated iron nanoparticles exhibit a promising performance for the H₂S removal up to 360 mg/g.

Keywords: H₂S removal, catalytic oxidation, carbon encapsulated iron, olive mill wastewater

Procedia PDF Downloads 62
210 TiO₂ Deactivation Process during Photocatalytic Ethanol Degradation in the Gas Phase

Authors: W. El-Alami, J. Araña, O. González Díaz, J. M. Doña Rodríguez

Abstract:

The efficiency of the semiconductor TiO₂ needs to be improved to be an effective tool for pollutant removal. To improve the efficiency of this semiconductor, it is necessary to deepen the knowledge of the processes that take place on its surface. In this sense, the deactivation of the catalyst is one of the aspects considered relevant. In order to study this point, the processes of deactivation of TiO₂ during the gas phase degradation of ethanol have been studied. For this, catalysts with only the anatase phase (SA and PC100) and catalysts with anatase and rutile phases (P25 and P90) have been selected. In order to force the deactivation processes, different cycles have been performed, adding ethanol gas but avoiding the degradation of acetates to determine their effect on the process. The surface concentration of fluorine on the catalysts was semi-quantitatively determined by EDAX analysis. The photocatalytic experiments were done with four commercial catalysts (P25, SA, P90, and PC100) and the two fluoride catalysts indicated above. The interaction and photocatalytic degradation of ethanol were followed by Fourier transform infrared spectroscopy (FTIR). EDAX analysis has revealed the presence of sodium on the surface of fluorinated catalysts. In FTIR studies, it has been observed that the acetates adsorbed on the anatase phase in P25 and P90 give rise to electron transfer to surface traps that modify the electronic states of the semiconductor. These deactivation studies have also been carried out with fluorinated P25 and SA catalysts (F-P25 and F-SA) which have observed similar electron transfers but in the opposite direction during illumination. In these materials, it has been observed that the electrons present in the surface traps, as a consequence of the interaction Ti-F, react with the holes, causing a change in the electronic states of the semiconductor. In this way, deactivated states of these materials have been detected by different electron transfer routes. It has been identified that acetates produced from the degradation of ethanol in P25 and P90 are probably hydrated on the surface of the rutile phase. In the catalysts with only the anatase phase (SA and PC100), the deactivation is immediate if the acetates are not removed before adsorbing ethanol again. In F-P25 and F-SA has been observed that the acetates formed react with the sodium ions present on the surface and not with the Ti atoms because they are interacting with the fluorine.

Keywords: photocatalytic degradation, ethanol, TiO₂, deactivation process, F-P25

Procedia PDF Downloads 51
209 Novel Electrospun Polymeric Nanofibers Loaded Different Medicaments as Drug Delivery Systems for Regenerative Endodontics

Authors: Nura Brimo, Dilek Cokeliler Serdaroglu, Tansel Uyar, Busra Uysal, Elif Bahar Cakici, Miris Dikmen, Zerrin Canturk

Abstract:

Background: A combination of antibiotics, including metronidazole (MET), ciprofloxacin (CIP), and minocycline (MINO), has been demonstrated to disinfect bacteria in necrotic teeth before regenerative processes. It has been presented clinically that antibiotic pastes may drive to possible stem cell death and difficulties in removing from the canal system, which can limit the regenerative procedure. This study was designed to (1) synthesize nanofibrous webs containing various concentrations of different medicaments (triple, double, and calcium hydroxide,Ca(OH)2), and (2) coat thiselectrospun fibrous gutta-percha (GP) cones. Methods: Poly(vinylpyrrolidone) (PVP)-based electrospun fibrous webs were processed with low medicaments concentrations. Scanning Electron Microscopy (SEM), Energy Dispersive X-Ray Spectroscopy (EDX), and X-Ray Photoelectron Spectroscopy (XPS) were carried out to investigate fiber morphology, antibiotic incorporation, and characterized GP-coated fibrous webs, respectively. The chemical and physical properties of dentine were carried out via Fourier Transform Infrared Spectroscopy (FTIR) and Nano-SEM, respectively. The antimicrobial properties of the different fibrous webs were assessed against various bacteria by direct nanofiber/bacteria contact. Cytocompatibility was measured by applying the MTT method. Results: The mean fiber diameter of the experiment groups of medicament-containing fibers ranged in the nm scale and was significantly smaller than PVP fibers. EDX analysis confirmed the presence of medicaments in the nanofibers. XPS analysis presented a complete coating of the fibers with GPs; FTIR and Nano-SEM showed no chemical and physical configuration of intracanal medicaments on the dentine surface. Meanwhile, nanofibrous webs led to a significant reduction in the percentage of viable bacteria compared with the negative control and PVP. Conclusion: Our findings suggest that TA-NFs, DA-NFs, and Cₐ(OH)₂)-NFs coated GP cones have significant potential in eliminating intracanal bacteria, cell-friendly behavior, and clinical usage features.

Keywords: drug delivery, drug carrier, electrospinning, nano/microfibers, regenerative endodontic, morphology

Procedia PDF Downloads 89
208 A Web-Based Systems Immunology Toolkit Allowing the Visualization and Comparative Analysis of Publically Available Collective Data to Decipher Immune Regulation in Early Life

Authors: Mahbuba Rahman, Sabri Boughorbel, Scott Presnell, Charlie Quinn, Darawan Rinchai, Damien Chaussabel, Nico Marr

Abstract:

Collections of large-scale datasets made available in public repositories can be used to identify and fill gaps in biomedical knowledge. But first, these data need to be made readily accessible to researchers for analysis and interpretation. Here a collection of transcriptome datasets was made available to investigate the functional programming of human hematopoietic cells in early life. Thirty two datasets were retrieved from the NCBI Gene Expression Omnibus (GEO) and loaded in a custom, interactive web application called the Gene Expression browser (GXB), designed for visualization and query of integrated large-scale data. Multiple sample groupings and gene rank lists were created based on the study design and variables in each dataset. Web links to customized graphical views can be generated by users and subsequently be used to graphically present data in manuscripts for publication. The GXB tool also enables browsing of a single gene across datasets, which can provide information on the role of a given molecule across biological systems. The dataset collection is available online. As a proof-of-principle, one of the datasets (GSE25087) was re-analyzed to identify genes that are differentially expressed by regulatory T cells in early life. Re-analysis of this dataset and a cross-study comparison using multiple other datasets in the above mentioned collection revealed that PMCH, a gene encoding a precursor of melanin-concentrating hormone (MCH), a cyclic neuropeptide, is highly expressed in a variety of other hematopoietic cell types, including neonatal erythroid cells as well as plasmacytoid dendritic cells upon viral infection. Our findings suggest an as yet unrecognized role of MCH in immune regulation, thereby highlighting the unique potential of the curated dataset collection and systems biology approach to generate new hypotheses which can be tested in future mechanistic studies.

Keywords: early-life, GEO datasets, PMCH, interactive query, systems biology

Procedia PDF Downloads 270
207 The Verification Study of Computational Fluid Dynamics Model of the Aircraft Piston Engine

Authors: Lukasz Grabowski, Konrad Pietrykowski, Michal Bialy

Abstract:

This paper presents the results of the research to verify the combustion in aircraft piston engine Asz62-IR. This engine was modernized and a type of ignition system was developed. Due to the high costs of experiments of a nine-cylinder 1,000 hp aircraft engine, a simulation technique should be applied. Therefore, computational fluid dynamics to simulate the combustion process is a reasonable solution. Accordingly, the tests for varied ignition advance angles were carried out and the optimal value to be tested on a real engine was specified. The CFD model was created with the AVL Fire software. The engine in the research had two spark plugs for each cylinder and ignition advance angles had to be set up separately for each spark. The results of the simulation were verified by comparing the pressure in the cylinder. The courses of the indicated pressure of the engine mounted on a test stand were compared. The real course of pressure was measured with an optical sensor, mounted in a specially drilled hole between the valves. It was the OPTRAND pressure sensor, which was designed especially to engine combustion process research. The indicated pressure was measured in cylinder no 3. The engine was running at take-off power. The engine was loaded by a propeller at a special test bench. The verification of the CFD simulation results was based on the results of the test bench studies. The course of the simulated pressure obtained is within the measurement error of the optical sensor. This error is 1% and reflects the hysteresis and nonlinearity of the sensor. The real indicated pressure measured in the cylinder and the pressure taken from the simulation were compared. It can be claimed that the verification of CFD simulations based on the pressure is a success. The next step was to research on the impact of changing the ignition advance timing of spark plugs 1 and 2 on a combustion process. Moving ignition timing between 1 and 2 spark plug results in a longer and uneven firing of a mixture. The most optimal point in terms of indicated power occurs when ignition is simultaneous for both spark plugs, but so severely separated ignitions are assured that ignition will occur at all speeds and loads of engine. It should be confirmed by a bench experiment of the engine. However, this simulation research enabled us to determine the optimal ignition advance angle to be implemented into the ignition control system. This knowledge allows us to set up the ignition point with two spark plugs to achieve as large power as possible.

Keywords: CFD model, combustion, engine, simulation

Procedia PDF Downloads 340
206 Investigation of a Novel Dual Band Microstrip/Waveguide Hybrid Antenna Element

Authors: Raoudane Bouziyan, Kawser Mohammad Tawhid

Abstract:

Microstrip antennas are low in profile, light in weight, conformable in structure and are now developed for many applications. The main difficulty of the microstrip antenna is its narrow bandwidth. Several modern applications like satellite communications, remote sensing, and multi-function radar systems will find it useful if there is dual-band antenna operating from a single aperture. Some applications require covering both transmitting and receiving frequency bands which are spaced apart. Providing multiple antennas to handle multiple frequencies and polarizations becomes especially difficult if the available space is limited as with airborne platforms and submarine periscopes. Dual band operation can be realized from a single feed using slot loaded or stacked microstrip antenna or two separately fed antennas sharing a common aperture. The former design, when used in arrays, has certain limitations like complicated beam forming or diplexing network and difficulty to realize good radiation patterns at both the bands. The second technique provides more flexibility with separate feed system as beams in each frequency band can be controlled independently. Another desirable feature of a dual band antenna is easy adjustability of upper and lower frequency bands. This thesis presents investigation of a new dual-band antenna, which is a hybrid of microstrip and waveguide radiating elements. The low band radiator is a Shorted Annular Ring (SAR) microstrip antenna and the high band radiator is an aperture antenna. The hybrid antenna is realized by forming a waveguide radiator in the shorted region of the SAR microstrip antenna. It is shown that the upper to lower frequency ratio can be controlled by the proper choice of various dimensions and dielectric material. Operation in both linear and circular polarization is possible in either band. Moreover, both broadside and conical beams can be generated in either band from this antenna element. Finite Element Method based software, HFSS and Method of Moments based software, FEKO were employed to perform parametric studies of the proposed dual-band antenna. The antenna was not tested physically. Therefore, in most cases, both HFSS and FEKO were employed to corroborate the simulation results.

Keywords: FEKO, HFSS, dual band, shorted annular ring patch

Procedia PDF Downloads 378
205 Treatment of Premalignant Lesions: Curcumin a Promising Non-Surgical Option

Authors: Heba A. Hazzah, Ragwa M. Farid, Maha M. A. Nasra, Mennatallah Zakria, Magda A. El Massik, Ossama Y. Abdallah

Abstract:

Introduction: Curcumin (Cur) is a polyphenol derived from the herbal remedy and dietary spice turmeric. It possesses diverse anti-inflammatory and anti-cancer properties following oral or topical administration. The buccal delivery of curcumin can be useful for both systemic and local disease treatments such as gingivitis, periodontal diseases, oral carcinomas, and precancerous oral lesions. Despite of its high activity, it suffers a limited application due to its low oral bioavailability, poor aqueous solubility, and instability. Aim: Preparation and characterization of curcumin solid lipid nanoparticles with a high loading capacity into a mucoadhesive gel for buccal application. Methodology: Curcumin was formulated as nanoparticles using different lipids, namely Gelucire 39/01, Gelucire 50/13, Precirol, Compritol, and Polaxomer 407 as a surfactant. The SLN were dispersed in a mucoadhesive gel matrix to be applied to the buccal mucosa. All formulations were evaluated for their content, entrapment efficiency, particle size, in vitro drug dialysis, ex vivo mucoadhesion test, and ex vivo permeation study using chicken buccal mucosa. Clinical evaluation was conducted on 15 cases suffering oral erythroplakia and erosive lichen planus. Results: The results showed high entrapment efficiency reaching almost 90 % using Gelucire 50, the loaded gel with Cur-SLN showed good adhesion property and 25 minutes in vivo residence time. In addition to stability enhancement for the Cur powder. All formulae did not show any drug permeated however, a significant amount of Cur was retained within the mucosal tissue. Pain and lesion sizes were significantly reduced upon topical treatment. Complete healing was observed after 6 weeks of treatment. Conclusion: These results open a room for the pharmaceutical technology to optimize the use of this golden magical powder to get the best out of it. In addition, the lack of local anti-inflammatory compounds with reduced side effects intensifies the importance of studying natural products for this purpose.

Keywords: curcumin, erythroplakia, mucoadhesive, pain, solid lipid nanoparticles

Procedia PDF Downloads 429
204 Preparation and Characterization of Supported Metal Nanocrystal Using Simple Heating Method for Renewable Diesel Synthesis from Nyamplung Oil (Calophyllum inophyllum Oil)

Authors: Aida Safiera, Andika Dwi Rubyantoro, Muhammad Bagus Prakasa

Abstract:

Indonesia’s needs of diesel oil each year are increasing and getting urge. However, that problems are not supported by the amount of oil production that still low and also influenced by the fact of oil reserve is reduced. Because of that, the government prefers to import from other countries than fulfill the needs of diesel. To anticipate that problem, development of fuel based on renewable diesel is started. Renewable diesel is renewable alternative fuel that is hydrocarbon derivative from decarbonylation of non-edible oil. Indonesia is rich with natural resources, including nyamplung oil (Calophyllum inophyllum oil) and zeolite. Nyamplung oil (Calophyllum inophyllum oil) has many stearic acids which are useful on renewable diesel synthesis meanwhile zeolite is cheap. Zeolite is many used on high temperature reaction and cracking process on oil industry. Zeolite also has advantages which are a high crystallization, surface area and pores. In this research, the main focus that becomes our attention is on preparation and characterization of metal nanocrystal. Active site that used in this research is Nickel Molybdenum (NiMo). The advantage of nanocrystal with nano scale is having larger surface area. The synthesis of metal nanocrystal will be done with conventional preparation modification method that is called simple heating. Simple heating method is a metal nanocrystal synthesis method using continuous media which is polymer liquid. This method is a simple method and produces a small particles size in a short time. Influence of metal nanocrystal growth on this method is the heating profile. On the synthesis of nanocrystal, the manipulated variables are temperature and calcination time. Results to achieve from this research are diameter size on nano scale (< 100 nm) and uniform size without any agglomeration. Besides that, the conversion of synthesis of renewable diesel is high and has an equal specification with petroleum diesel. Catalyst activities are tested by FT-IR and GC-TCD on decarbonylation process with a pressure 15 bar and temperature 375 °C. The highest conversion from this reaction is 35% with selectivity around 43%.

Keywords: renewable diesel, simple heating, metal nanocrystal, NiMo, zeolite

Procedia PDF Downloads 206
203 Exploring the Potential of Reduced Graphene Oxide/Polyaniline (rGo/PANI) Nanocomposites for High-Performance Supercapacitor Application

Authors: Ahmad Umar, Ahmed A. Ibrahim, Mohsen A. Alhamami

Abstract:

This study introduces a facile synthesis method for synthesizing reduced graphene oxide (rGO) nanosheets with surface decoration of polyaniline (PANI). The resultant rGO@PANI nanocomposite (NC) exhibit substantial potential as advanced electrode materials for high-performance supercapacitors. The strategic integration of PANI onto the rGO surface serves dual purposes, effectively mitigating the agglomeration of rGO films and augmenting their utility in supercapacitor applications. The PANI coating manifests a highly porous and nanosized morphology, fostering increased surface area and optimized mass transport by reducing diffusion kinetics. The nanosized structure of PANI contributes to the maximization of active sites, thereby bolstering the efficacy of the nanocomposites for diverse applications. The inherent conductive nature of the rGO surface significantly expedites electron transport, thereby amplifying the overall electrochemical performance of the nanocomposites. To systematically evaluate the influence of PANI concentration on the electrode performance, varying concentrations of PANI were incorporated. Notably, an elevated PANI concentration was found to enhance the response owing to the unique morphology of PANI. Remarkably, the 5% rGO@PANI NC emerged as the most promising candidate, demonstrating exceptional response characteristics with a specific capacitance of 314.2 F/g at a current density of 1 A/g. Furthermore, this catalyst exhibits outstanding long-term stability, retaining approximately 92% of its capacitance even after enduring 4000 cycles. This research underscores the significance of the synergistic integration of rGO and PANI in the design of high-performance supercapacitors. The elucidation of the underlying mechanisms governing the improved electrochemical properties contributes to the fundamental understanding of nanocomposite behavior, thereby paving the way for the rational design of next-generation energy storage materials.

Keywords: reduced graphene oxide, polyaniline, nanocomposites, supercapacitors, energy storage

Procedia PDF Downloads 38
202 Design and Development of Permanent Magnet Quadrupoles for Low Energy High Intensity Proton Accelerator

Authors: Vikas Teotia, Sanjay Malhotra, Elina Mishra, Prashant Kumar, R. R. Singh, Priti Ukarde, P. P. Marathe, Y. S. Mayya

Abstract:

Bhabha Atomic Research Centre, Trombay is developing low energy high intensity Proton Accelerator (LEHIPA) as pre-injector for 1 GeV proton accelerator for accelerator driven sub-critical reactor system (ADSS). LEHIPA consists of RFQ (Radio Frequency Quadrupole) and DTL (Drift Tube Linac) as major accelerating structures. DTL is RF resonator operating in TM010 mode and provides longitudinal E-field for acceleration of charged particles. The RF design of drift tubes of DTL was carried out to maximize the shunt impedance; this demands the diameter of drift tubes (DTs) to be as low as possible. The width of the DT is however determined by the particle β and trade-off between a transit time factor and effective accelerating voltage in the DT gap. The array of Drift Tubes inside DTL shields the accelerating particle from decelerating RF phase and provides transverse focusing to the charged particles which otherwise tends to diverge due to Columbic repulsions and due to transverse e-field at entry of DTs. The magnetic lenses housed inside DTS controls the transverse emittance of the beam. Quadrupole magnets are preferred over solenoid magnets due to relative high focusing strength of former over later. The availability of small volume inside DTs for housing magnetic quadrupoles has motivated the usage of permanent magnet quadrupoles rather than Electromagnetic Quadrupoles (EMQ). This provides another advantage as joule heating is avoided which would have added thermal loaded in the continuous cycle accelerator. The beam dynamics requires uniformity of integral magnetic gradient to be better than ±0.5% with the nominal value of 2.05 tesla. The paper describes the magnetic design of the PMQ using Sm2Co17 rare earth permanent magnets. The paper discusses the results of five pre-series prototype fabrications and qualification of their prototype permanent magnet quadrupoles and a full scale DT developed with embedded PMQs. The paper discusses the magnetic pole design for optimizing integral Gdl uniformity and the value of higher order multipoles. A novel but simple method of tuning the integral Gdl is discussed.

Keywords: DTL, focusing, PMQ, proton, rate earth magnets

Procedia PDF Downloads 445
201 Improving Fluid Catalytic Cracking Unit Performance through Low Cost Debottlenecking

Authors: Saidulu Gadari, Manoj Kumar Yadav, V. K. Satheesh, Debasis Bhattacharyya, S. S. V. Ramakumar, Subhajit Sarkar

Abstract:

Most Fluid Catalytic Cracking Units (FCCUs) are big profit makers and hence, always operated with several constraints. It is the primary source for production of gasoline, light olefins as petrochemical feedstocks, feedstock for alkylate & oxygenates, LPG, etc. in a refinery. Increasing unit capacity and improving product yields as well as qualities such as gasoline RON have dramatic impact on the refinery economics. FCCUs are often debottlenecked significantly beyond their original design capacities. Depending upon the unit configuration, operating conditions, and feedstock quality, the FCC unit can have a variety of bottlenecks. While some of these are aimed to increase the feed rate, improve the conversion, etc., the others are aimed to improve the reliability of the equipment or overall unit. Apart from investment cost, the other factors considered generally while evaluating the debottlenecking options are shutdown days, faster payback, risk on investment, etc. A low-cost solution such as replacement of feed injectors, air distributor, steam distributors, spent catalyst distributor, efficient cyclone system, etc. are the preferred way of upgrading FCCU. It also has lower lead time from idea inception to implementation. This paper discusses various bottlenecks generally encountered in FCCU and presents a case study on improvement of performance of one of the FCCUs in IndianOil through implementation of cost-effective technical solution including use of improved internals in Reactor-Regeneration (R-R) section. After implementation reduction in regenerator air, gas superficial velocity in regenerator and cyclone velocities by about 10% and improvement of CLO yield from 10 to 6 wt% have been achieved. By ensuring proper pressure balance and optimum immersion of cyclone dipleg in the standpipe, frequent formation of perforations in regenerator cyclones could be addressed which in turn improved the unit on-stream factor.

Keywords: FCC, low-cost, revamp, debottleneck, internals, distributors, cyclone, dipleg

Procedia PDF Downloads 191
200 Spatial Distribution and Source Identification of Trace Elements in Surface Soil from Izmir Metropolitan Area

Authors: Melik Kara, Gulsah Tulger Kara

Abstract:

The soil is a crucial component of the ecosystem, and in industrial and urban areas it receives large amounts of trace elements from several sources. Therefore, accumulated pollutants in surface soils can be transported to different environmental components, such as deep soil, water, plants, and dust particles. While elemental contamination of soils is caused mainly by atmospheric deposition, soil also affects the air quality since enriched trace elemental contents in atmospheric particulate matter originate from resuspension of polluted soils. The objectives of this study were to determine the total and leachate concentrations of trace elements in soils of city area in Izmir and characterize their spatial distribution and to identify the possible sources of trace elements in surface soils. The surface soil samples were collected from 20 sites. They were analyzed for total element concentrations and leachate concentrations. Analyses of trace elements (Ag, Al, As, B, Ba, Be, Bi, Ca, Cd, Ce, Co, Cr, Cs, Cu, Dy, Er, Eu, Fe, Ga, Gd, Hf, Ho, K, La, Li, Lu, Mg, Mn, Mo, Na, Nd, Ni, P, Pb, Pr, Rb, Sb, Sc, Se, Si, Sm, Sn, Sr, Tb, Th, Ti, Tl, Tm, U, V, W, Y, Yb, Zn and Zr) were carried out using ICP-MS (Inductively Coupled Plasma-Mass Spectrometer). The elemental concentrations were calculated along with overall median, kurtosis, and skewness statistics. Elemental composition indicated that the soil samples were dominated by crustal elements such as Si, Al, Fe, Ca, K, Mg and the sea salt element, Na which is typical for Aegean region. These elements were followed by Ti, P, Mn, Ba and Sr. On the other hand, Zn, Cr, V, Pb, Cu, and Ni (which are anthropogenic based elements) were measured as 61.6, 39.4, 37.9, 26.9, 22.4, and 19.4 mg/kg dw, respectively. The leachate element concentrations were showed similar sorting although their concentrations were much lower than total concentrations. In the study area, the spatial distribution patterns of elemental concentrations varied among sampling sites. The highest concentrations were measured in the vicinity of industrial areas and main roads. To determine the relationships among elements and to identify the possible sources, PCA (Principal Component Analysis) was applied to the data. The analysis resulted in six factors. The first factor exhibited high loadings of Co, K, Mn, Rb, V, Al, Fe, Ni, Ga, Se, and Cr. This factor could be interpreted as residential heating because of Co, K, Rb, and Se. The second factor associated positively with V, Al, Fe, Na, Ba, Ga, Sr, Ti, Se, and Si. Therefore, this factor presents mixed city dust. The third factor showed high loadings with Fe, Ni, Sb, As, Cr. This factor could be associated with industrial facilities. The fourth factor associated with Cu, Mo, Zn, Sn which are the marker elements of traffic. The fifth factor presents crustal dust, due to its high correlation with Si, Ca, and Mg. The last factor is loaded with Pb and Cd emitted from industrial activities.

Keywords: trace elements, surface soil, source apportionment, Izmir

Procedia PDF Downloads 115
199 Production and Purification of Monosaccharides by Hydrolysis of Sugar Cane Bagasse in an Ionic Liquid Medium

Authors: T. R. Bandara, H. Jaelani, G. J. Griffin

Abstract:

The conversion of lignocellulosic waste materials, such as sugar cane bagasse, to biofuels such as ethanol has attracted significant interest as a potential element for transforming transport fuel supplies to totally renewable sources. However, the refractory nature of the cellulosic structure of lignocellulosic materials has impeded progress on developing an economic process, whereby the cellulose component may be effectively broken down to glucose monosaccharides and then purified to allow downstream fermentation. Ionic liquid (IL) treatment of lignocellulosic biomass has been shown to disrupt the crystalline structure of cellulose thus potentially enabling the cellulose to be more readily hydrolysed to monosaccharides. Furthermore, conventional hydrolysis of lignocellulosic materials yields byproducts that are inhibitors for efficient fermentation of the monosaccharides. However, selective extraction of monosaccharides from an aqueous/IL phase into an organic phase utilizing a combination of boronic acids and quaternary amines has shown promise as a purification process. Hydrolysis of sugar cane bagasse immersed in an aqueous solution with IL (1-ethyl-3-methylimidazolium acetate) was conducted at different pH and temperature below 100 ºC. It was found that the use of a high concentration of hydrochloric acid to acidify the solution inhibited the hydrolysis of bagasse. At high pH (i.e. basic conditions), using sodium hydroxide, catalyst yields were reduced for total reducing sugars (TRS) due to the rapid degradation of the sugars formed. For purification trials, a supported liquid membrane (SLM) apparatus was constructed, whereby a synthetic solution containing xylose and glucose in an aqueous IL phase was transported across a membrane impregnated with phenyl boronic acid/Aliquat 336 to an aqueous phase. The transport rate of xylose was generally higher than that of glucose indicating that a SLM scheme may not only be useful for purifying sugars from undesirable toxic compounds, but also for fractionating sugars to improve fermentation efficiency.

Keywords: biomass, bagasse, hydrolysis, monosaccharide, supported liquid membrane, purification

Procedia PDF Downloads 230
198 Cationic Solid Lipid Nanoparticles Conjugated with Anti-Melantransferrin and Apolipoprotein E for Delivering Doxorubicin to U87MG Cells

Authors: Yung-Chih Kuo, Yung-I Lou

Abstract:

Cationic solid lipid nanoparticles (CSLNs) with anti-melanotransferrin (AMT) and apolipoprotein E (ApoE) were used to carry antimitotic doxorubicin (Dox) across the blood–brain barrier (BBB) for glioblastoma multiforme (GBM) treatment. Dox-loaded CSLNs were prepared in microemulsion, grafted covalently with AMT and ApoE, and applied to human brain microvascular endothelial cells (HBMECs), human astrocytes, and U87MG cells. Experimental results revealed that an increase in the weight percentage of stearyl amine (SA) from 0% to 20% increased the size of AMT-ApoE-Dox-CSLNs. In addition, an increase in the stirring rate from 150 rpm to 450 rpm decreased the size of AMT-ApoE-Dox-CSLNs. An increase in the weight percentage of SA from 0% to 20% enhanced the zeta potential of AMT-ApoE-Dox-CSLNs. Moreover, an increase in the stirring rate from 150 rpm to 450 rpm reduced the zeta potential of AMT-ApoE-Dox-CSLNs. AMT-ApoE-Dox-CSLNs exhibited a spheroid-like geometry, a minor irregular boundary deviating from spheroid, and a somewhat distorted surface with a few zigzags and sharp angles. The encapsulation efficiency of Dox in CSLNs decreased with increasing weight percentage of Dox and the order in the encapsulation efficiency of Dox was 10% SA > 20% SA > 0% SA. However, the reverse order was true for the release rate of Dox, suggesting that AMT-ApoE-Dox-CSLNs containing 10% SA had better-sustained release characteristics. An increase in the concentration of AMT from 2.5 to 7.5 μg/mL slightly decreased the grafting efficiency of AMT and an increase in that from 7.5 to 10 μg/mL significantly decreased the grafting efficiency. Furthermore, an increase in the concentration of ApoE from 2.5 to 5 μg/mL slightly reduced the grafting efficiency of ApoE and an increase in that from 5 to 10 μg/mL significantly reduced the grafting efficiency. Also, AMT-ApoE-Dox-CSLNs at 10 μg/mL of ApoE could slightly reduce the transendothelial electrical resistance (TEER) and increase the permeability of propidium iodide (PI). An incorporation of 10 μg/mL of ApoE could reduce the TEER and increase the permeability of PI. AMT-ApoE-Dox-CSLNs at 10 μg/mL of AMT and 5-10 μg/mL of ApoE could significantly enhance the permeability of Dox across the BBB. AMT-ApoE-Dox-CSLNs did not induce serious cytotoxicity to HBMECs. The viability of HBMECs was in the following order: AMT-ApoE-Dox-CSLNs = AMT-Dox-CSLNs = Dox-CSLNs > Dox. The order in the efficacy of inhibiting U87MG cells was AMT-ApoE-Dox-CSLNs > AMT-Dox-CSLNs > Dox-CSLNs > Dox. A surface modification of AMT and ApoE could promote the delivery of AMT-ApoE-Dox-CSLNs to cross the BBB via melanotransferrin and low density lipoprotein receptor. Thus, AMT-ApoE-Dox-CSLNs have appropriate physicochemical properties and can be a potential colloidal delivery system for brain tumor chemotherapy.

Keywords: anti-melanotransferrin, apolipoprotein E, cationic catanionic solid lipid nanoparticle, doxorubicin, U87MG cells

Procedia PDF Downloads 254
197 Microbial Fuel Cells and Their Applications in Electricity Generating and Wastewater Treatment

Authors: Shima Fasahat

Abstract:

This research is an experimental research which was done about microbial fuel cells in order to study them for electricity generating and wastewater treatment. These days, it is very important to find new, clean and sustainable ways for energy supplying. Because of this reason there are many researchers around the world who are studying about new and sustainable energies. There are different ways to produce these kind of energies like: solar cells, wind turbines, geothermal energy, fuel cells and many other ways. Fuel cells have different types one of these types is microbial fuel cell. In this research, an MFC was built in order to study how it can be used for electricity generating and wastewater treatment. The microbial fuel cell which was used in this research is a reactor that has two tanks with a catalyst solution. The chemical reaction in microbial fuel cells is a redox reaction. The microbial fuel cell in this research is a two chamber MFC. Anode chamber is an anaerobic one (ABR reactor) and the other chamber is a cathode chamber. Anode chamber consists of stabilized sludge which is the source of microorganisms that do redox reaction. The main microorganisms here are: Propionibacterium and Clostridium. The electrodes of anode chamber are graphite pages. Cathode chamber consists of graphite page electrodes and catalysts like: O2, KMnO4 and C6N6FeK4. The membrane which separates the chambers is Nafion117. The reason of choosing this membrane is explained in the complete paper. The main goal of this research is to generate electricity and treating wastewater. It was found that when you use electron receptor compounds like: O2, MnO4, C6N6FeK4 the velocity of electron receiving speeds up and in a less time more current will be achieved. It was found that the best compounds for this purpose are compounds which have iron in their chemical formula. It is also important to pay attention to the amount of nutrients which enters to bacteria chamber. By adding extra nutrients in some cases the result will be reverse.  By using ABR the amount of chemical oxidation demand reduces per day till it arrives to a stable amount.

Keywords: anaerobic baffled reactor, bioenergy, electrode, energy efficient, microbial fuel cell, renewable chemicals, sustainable

Procedia PDF Downloads 199
196 Rethinking Classical Concerts in the Digital Era: Transforming Sound, Experience, and Engagement for the New Generation

Authors: Orit Wolf

Abstract:

Classical music confronts a crucial challenge: updating cherished concert traditions for the digital age. This paper is a journey, and a quest to make classical concerts resonate with a new generation. It's not just about asking questions; it's about exploring the future of classical concerts and their potential to captivate and connect with today's audience in an era defined by change. The younger generation, known for their love of diversity, interactive experiences, and multi-sensory immersion, cannot be overlooked. This paper explores innovative strategies that forge deep connections with audiences whose relationship with classical music differs from the past. The urgency of this challenge drives the transformation of classical concerts. Examining classical concerts is necessary to understand how they can harmonize with contemporary sensibilities. New dimensions in audiovisual experiences that enchant the emerging generation are sought. Classical music must embrace the technological era while staying open to fusion and cross-cultural collaboration possibilities. The role of technology and Artificial Intelligence (AI) in reshaping classical concerts is under research. The fusion of classical music with digital experiences and dynamic interdisciplinary collaborations breathes new life into the concert experience. It aligns classical music with the expectations of modern audiences, making it more relevant and engaging. Exploration extends to the structure of classical concerts. Conventions are challenged, and ways to make classical concerts more accessible and captivating are sought. Inspired by innovative artistic collaborations, musical genres and styles are redefined, transforming the relationship between performers and the audience. This paper, therefore, aims to be a catalyst for dialogue and a beacon of innovation. A set of critical inquiries integral to reshaping classical concerts for the digital age is presented. As the world embraces digital transformation, classical music seeks resonance with contemporary audiences, redefining the concert experience while remaining true to its roots and embracing revolutions in the digital age.

Keywords: new concert formats, reception of classical music, interdiscplinary concerts, innovation in the new musical era, mash-up, cross culture, innovative concerts, engaging musical performances

Procedia PDF Downloads 31
195 Mesoporous Titania Thin Films for Gentamicin Delivery and Bone Morphogenetic Protein-2 Immobilization

Authors: Ane Escobar, Paula Angelomé, Mihaela Delcea, Marek Grzelczak, Sergio Enrique Moya

Abstract:

The antibacterial capacity of bone-anchoring implants can be improved by the use of antibiotics that can be delivered to the media after the surgery. Mesoporous films have shown great potential in drug delivery for orthopedic applications, since pore size and thickness can be tuned to produce different surface area and free volume inside the material. This work shows the synthesis of mesoporous titania films (MTF) by sol-gel chemistry and evaporation-induced self-assembly (EISA) on top of glass substrates. Pores with a diameter of 12nm were observed by Transmission Electron Microscopy (TEM). A film thickness of 100 nm was measured by Scanning Electron Microscopy (SEM). Gentamicin was used to study the antibiotic delivery from the film by means of High-performance liquid chromatography (HPLC). The Staphilococcus aureus strand was used to evaluate the effectiveness of the penicillin loaded films toward inhibiting bacterial colonization. MC3T3-E1 pre-osteoblast cell proliferation experiments proved that MTFs have a good biocompatibility and are a suitable surface for MC3T3-E1 cell proliferation. Moreover, images taken by Confocal Fluorescence Microscopy using labeled vinculin, showed good adhesion of the MC3T3-E1 cells to the MTFs, as well as complex actin filaments arrangement. In order to improve cell proliferation Bone Morphogenetic Protein-2 (BMP-2) was adsorbed on top of the mesoporous film. The deposition of the protein was proved by measurements in the contact angle, showing an increment in the hydrophobicity while the protein concentration is higher. By measuring the dehydrogenase activity in MC3T3-E1 cells cultured in dually functionalized mesoporous titatina films with gentamicin and BMP-2 is possible to find an improvement in cell proliferation. For this purpose, the absorption of a yellow-color formazan dye, product of a water-soluble salt (WST-8) reduction by the dehydrogenases, is measured. In summary, this study proves that by means of the surface modification of MTFs with proteins and loading of gentamicin is possible to achieve an antibacterial effect and a cell growth improvement.

Keywords: antibacterial, biocompatibility, bone morphogenetic protein-2, cell proliferation, gentamicin, implants, mesoporous titania films, osteoblasts

Procedia PDF Downloads 143
194 Mechanical and Tribological Performances of (Nb: H-D: a-C) Thin Films for Biomedical Applications

Authors: Sara Khamseh, Kambiz Javanruee, Hamid Khorsand

Abstract:

Plenty of metallic materials are used for biomedical applications like hip joints and screws. Besides, it is reported that metal platforms such as stainless steel show significant deterioration because of wear and friction. The surface of metal substrates has been coated with a variety of multicomponent coatings to prevail these problems. The carbon-based multicomponent coatings such as metal-added amorphous carbon and diamond coatings are crucially important because of their remarkable tribological performance and chemical stability. In the current study, H-D contained Nb: (a-C) multicomponent coatings (H-D: hexagonal diamond, a-C: amorphous carbon) coated on A 304 steel substrates using an unbalanced magnetron (UBM) sputtering system. The effects of Nb and H-D content and ID/IG ratio on microstructure, mechanical and tribological characteristics of (Nb: H-D: a-C) composite coatings were investigated. The results of Raman spectroscopy represented that a-C phase with a Graphite-like structure (GLC with high value of sp2 carbon bonding) is formed, and its domain size increased with increasing Nb content of the coatings. Moreover, the Nb played a catalyst for the formation of the H-D phase. The nanoindentation hardness value of the coatings ranged between ~17 to ~35 GPa and (Nb: H-D: a-C) composite coatings with more H-D content represented higher hardness and plasticity index. It seems that the existence of extra-hard H-D particles straightly increased hardness. The tribological performance of the coatings was evaluated using the pin-on-disc method under the wet environment of SBF (Simulated Body Fluid). The COF value of the (Nb: H-D: a-C) coatings decreased with an increasing ID/IG ratio. The lower coefficient of friction is a result of the lamelliform array of graphitic domains. Also, the wear rate of the coatings decreased with increasing H-D content of the coatings. Based on the literature, a-C coatings with high hardness and H3/E2 ratio represent lower wear rates and better tribological performance. According to the nanoindentation analysis, hardness and H3/E2 ratio of (Nb: H-D: a-C) multicomponent coatings increased with increasing H-D content, which in turn decreased the wear rate of the coatings. The mechanical and tribological potency of (Nb: H-D: a-C) composite coatings on A 304 steel substrates paved the way for the development of innovative advanced coatings to ameliorate the performance of A 304 steel for biomedical applications.

Keywords: COF, mechanical properties, (Nb: H-D: a-C) coatings, wear rate

Procedia PDF Downloads 74
193 Synthesis of Multi-Functional Iron Oxide Nanoparticles for Targeted Drug Delivery in Cancer Treatment

Authors: Masome Moeni, Roya Abedizadeh, Elham Aram, Hamid Sadeghi-Abandansari, Davood Sabour, Robert Menzel, Ali Hassanpour

Abstract:

Significant number of studies and preclinical research in formulation of cancer nano-pharmaceutics have led to an improvement in cancer care. Nonetheless, the antineoplastic agents have ‘failed to live up to its promise’ since their clinical performance is moderately low. For almost ninety years, iron oxide nanoparticles (IONPS) have managed to keep its reputation in clinical application due to their low toxicity, versatility and multi-modal capabilities. Drug Administration approved utilization of IONPs for diagnosis of cancer as contrast media in magnetic resonance imaging, as heat mediator in magnetic hyperthermia and for the treatment of iron deficiency. Furthermore, IONPs have high drug-loading capacity, which makes them good candidates as therapeutic agent transporters. There are yet challenges to overcome for successful clinical application of IONPs, including stability of drug and poor delivery, which might lead to (i) drug resistance, (ii) shorter blood circulation time, and (iii) rapid elimination and adverse side effects from the system. In this study, highly stable and super paramagnetic IONPs were prepared for efficient and targeted drug delivery in cancer treatment. The synthesis procedure was briefly involved the production of IONPs via co-precipitation followed by coating with tetraethyl orthosilicate and 3-aminopropylethoxysilane and grafting with folic acid for stability targeted purposes and controlled drug release. Physiochemical and morphological properties of modified IONPs were characterised using different analytical techniques. The resultant IONPs exhibited clusters of 10 nm spherical shape crystals with less than 100 nm size suitable for drug delivery. The functionalized IONP showed mesoporous features, high stability, dispersibility and crystallinity. Subsequently, the functionalized IONPs were successfully loaded with oxaliplatin, a chemotherapeutic agent, for a controlled drug release in an actively targeting cancer cells. FT-IR observations confirmed presence of oxaliplatin functional groups, while ICP-MS results verified the drug loading was ~ 1.3%.

Keywords: cancer treatment, chemotherapeutic agent, drug delivery, iron oxide, multi-functional nanoparticle

Procedia PDF Downloads 58
192 Effects of Application of Rice Husk Charcoal-Coated Urea and Rice Straw Compost on Growth, Yield, and Soil Properties of Rice

Authors: D. A. S. Gamage, B. F. A Basnayake, W. A. J. M. de Costa

Abstract:

Rice is one of the world’s most important cereals. Increasing food production both to meet in-country requirements and to help overcome food crises is one of the major issues facing Sri Lanka today. However, productive land is limited and has mostly been utilized either for food crop production or other uses. Agriculture plays an important and strategic role in the performance of Sri Lankan national economy. A variety of modern agricultural inputs have been introduced, namely ploughs and harvesters, pesticides, fertilizers and lime. Besides, there are several agricultural institutions developing and updating the management of agricultural sector. Modern agricultural inputs cooperate as a catalyst in raising the productivity. However, in the eagerness of gaining profits from the efficient and productive techniques, this modern agricultural input has affected the environment and living things especially those which have been blended from various chemical substance. The increased pressure to maintain a high level of rice output for consumption has resulted in increased use of pesticides and inorganic fertilizer on rice fields in Sri Lanka. The application of inorganic fertilizer has become a burdened to the country in many ways. The excessive reuse of the ground water resources with a considerable application of organic and chemical fertilizers will lead to a deterioration of the quality and quantity of water. Biochar is a form of charcoal produced through the heating of natural organic materials. It has received significant attention recently for its potential as a soil conditioner, a fertilizer and as a means of storing carbon in a sustainable manner. It is the best solution for managing the agricultural wastes while providing a useful product for increasing agricultural productivity and protecting the environment. The objective of this study was to evaluate rice husk charcoal coated urea as a slow releasing fertilizer and compare the total N, P, K, organic matter in soil and yield of rice production.

Keywords: biochar, paddy husk, soil conditioner, rice straw compost

Procedia PDF Downloads 333