Search results for: large scale calorimeter
10493 The Relationship between the Personality Traits and Self-Compassion with Psychological Well-Being in Iranian College Students
Authors: Abdolamir Gatezadeh, Rezvan K. A. Mohamamdi, Arash Jelodari
Abstract:
It has been well established that personality traits and self-compassion are associated with psychological well-being. Thus, the current research aimed to investigate the underlying mechanisms in a collectivist culture. Method: One hundred and fifty college students were chosen and filled out Ryff's Psychological Well-Being Scale, the NEO Personality Inventory, and Neff's Self-Compassion Scale. Results: The results of correlation analysis showed that there were significant relationships between the personality traits (neuroticism, extraversion, agreeableness, and conscientiousness) and self-compassion (self-kindness, isolation, mindfulness, and the total score of self-compassion) with psychological well-being. The regression analysis showed that neuroticism, extraversion, and conscientiousness significantly predicted psychological well-being. Discussion and conclusion: The cultural implications and future orientations have been discussed.Keywords: college students, personality traits, psychological well-being, self-compassion
Procedia PDF Downloads 21410492 Routing and Energy Efficiency through Data Coupled Clustering in Large Scale Wireless Sensor Networks (WSNs)
Authors: Jainendra Singh, Zaheeruddin
Abstract:
A typical wireless sensor networks (WSNs) consists of several tiny and low-power sensors which use radio frequency to perform distributed sensing tasks. The longevity of wireless sensor networks (WSNs) is a major issue that impacts the application of such networks. While routing protocols are striving to save energy by acting on sensor nodes, recent studies show that network lifetime can be enhanced by further involving sink mobility. A common approach for energy efficiency is partitioning the network into clusters with correlated data, where the representative nodes simply transmit or average measurements inside the cluster. In this paper, we propose an energy- efficient homogenous clustering (EHC) technique. In this technique, the decision of each sensor is based on their residual energy and an estimate of how many of its neighboring cluster heads (CHs) will benefit from it being a CH. We, also explore the routing algorithm in clustered WSNs. We show that the proposed schemes significantly outperform current approaches in terms of packet delay, hop count and energy consumption of WSNs.Keywords: wireless sensor network, energy efficiency, clustering, routing
Procedia PDF Downloads 26410491 1D/3D Modeling of a Liquid-Liquid Two-Phase Flow in a Milli-Structured Heat Exchanger/Reactor
Authors: Antoinette Maarawi, Zoe Anxionnaz-Minvielle, Pierre Coste, Nathalie Di Miceli Raimondi, Michel Cabassud
Abstract:
Milli-structured heat exchanger/reactors have been recently widely used, especially in the chemical industry, due to their enhanced performances in heat and mass transfer compared to conventional apparatuses. In our work, the ‘DeanHex’ heat exchanger/reactor with a 2D-meandering channel is investigated both experimentally and numerically. The square cross-sectioned channel has a hydraulic diameter of 2mm. The aim of our study is to model local physico-chemical phenomena (heat and mass transfer, axial dispersion, etc.) for a liquid-liquid two-phase flow in our lab-scale meandering channel, which represents the central part of the heat exchanger/reactor design. The numerical approach of the reactor is based on a 1D model for the flow channel encapsulated in a 3D model for the surrounding solid, using COMSOL Multiphysics V5.5. The use of the 1D approach to model the milli-channel reduces significantly the calculation time compared to 3D approaches, which are generally focused on local effects. Our 1D/3D approach intends to bridge the gap between the simulation at a small scale and the simulation at the reactor scale at a reasonable CPU cost. The heat transfer process between the 1D milli-channel and its 3D surrounding is modeled. The feasibility of this 1D/3D coupling was verified by comparing simulation results to experimental ones originated from two previous works. Temperature profiles along the channel axis obtained by simulation fit the experimental profiles for both cases. The next step is to integrate the liquid-liquid mass transfer model and to validate it with our experimental results. The hydrodynamics of the liquid-liquid two-phase system is modeled using the ‘mixture model approach’. The mass transfer behavior is represented by an overall volumetric mass transfer coefficient ‘kLa’ correlation obtained from our experimental results in the millimetric size meandering channel. The present work is a first step towards the scale-up of our ‘DeanHex’ expecting future industrialization of such equipment. Therefore, a generalized scaled-up model of the reactor comprising all the transfer processes will be built in order to predict the performance of the reactor in terms of conversion rate and energy efficiency at an industrial scale.Keywords: liquid-liquid mass transfer, milli-structured reactor, 1D/3D model, process intensification
Procedia PDF Downloads 13010490 Effect of Aerobics Exercise on the Patient with Anxiety Disorder
Authors: Ahmed A. Abd El Rahim, Andrew Anis Fakhrey Mosaad
Abstract:
Background: An important psychological issue that has an impact on both mental and physical function is anxiety disorders. The general consensus is that aerobic exercise and physical activity are good for lowering anxiety and mood. Purpose: This study's goal was to look into how patients with anxiety disorders responded to aerobic exercise. Subjects: Anxiety disorders were identified in 30 individuals from the psychiatric hospital at Sohag University who were chosen based on inclusive criteria and had ages ranging from 25 to 45. Methods: Patients were split into two equal groups at random: For four weeks, three sessions per week, fifteen patients in group A (the study group), seven men and eight women, underwent medication therapy and aerobic exercise. Age (28.4 ± 2.11 years), weight (72.5 ± 10.06 kg), height (164.8 ± 9.64 cm), and BMI (26.65 ± 2.68 kg/m2) were all mean SD values. And in Group B (Control Group), only medication therapy was administered to 15 patients (9 males and 6 females). Age (29.6 ± 3.68), weight (75 ± 7.07 kg), height (166.9 ± 6.75) cm, and BMI (26.87 ± 1.11) kg/m2 were the mean SD values. Before and after the treatment, the Hamilton Anxiety Scale was used to gauge the patient's degree of anxiety. Results: Within the two groups, there were significant differences both before and after the treatment. Following therapy, there was a significant difference between the two groups; the study group displayed better improvement on the Hamilton Anxiety Scale. Conclusion: Patients with anxiety problems can benefit from aerobic activities and antianxiety drugs as effective treatments for lowering anxiety levels.Keywords: aerobic exercises, anxiety disorders, antianxiety medications, Hamilton anxiety scale
Procedia PDF Downloads 8310489 Teacher-Student Relationship and Achievement in Chinese: Potential Mediating Effects of Motivation
Authors: Yuan Liu, Hongyun Liu
Abstract:
Teacher-student relationship plays an important role on facilitating students’ learning behavior, school engagement, and academic outcomes. It is believed that good relationship will enhance the human agency—the intrinsic motivation—mainly through the strengthening of autonomic support, feeling of relatedness, and the individual’s competence to increase the academic outcomes. This is in line with self-determination theory (SDT), which generally views that the intrinsic motivation imbedded with human basic needs is one of the most important factors that would lead to better school engagement, academic outcomes, and well-being. Based on SDT, the present study explored the relation of among teacher-student relationship (teacher’s encouragement, respect), students’ motivation (extrinsic and intrinsic), and achievement outcomes. The study was based on a large scale academic assessment and questionnaire survey conducted by the Center for Assessment and Improvement of Basic Education Quality in Mainland China (2013) on Grade 8 students. The results indicated that intrinsic motivation mediated the relation between teacher-student relationship and academic achievement outcomes.Keywords: teacher-student relationship, intrinsic motivation, academic achievement, mediation
Procedia PDF Downloads 43310488 Motivation and Self-Concept in Language Learning: An Exploratory Study of English Language Learners
Authors: A. van Staden, M. M. Coetzee
Abstract:
Despite numerous efforts to increase the literacy level of South African learners, for example, through the implementation of educational policies such as the Revised National Curriculum statement, advocating mother-tongue instruction (during a child's formative years), in reality, the majority of South African children are still being educated in a second language (in most cases English). Moreover, despite the fact that a significant percentage of our country's budget is spent on the education sector and that both policy makers and educationalists have emphasized the importance of learning English in this globalized world, the poor overall academic performance and English literacy level of a large number of school leavers are still a major concern. As we move forward in an attempt to comprehend the nuances of English language and literacy development in our country, it is imperative to explore both extrinsic and intrinsic factors that contribute or impede the effective development of English as a second language. In the present study, the researchers set out to investigate how intrinsic factors such as motivation and self-concept contribute to or affect English language learning amongst high school learners in South Africa. Emanating from the above the main research question that guided this research is the following: Is there a significant relationship between high school learners' self-concept, motivation, and English second language performances? In order to investigate this hypothesis, this study utilized quantitative research methodology to investigate the interplay of self-concept and motivation in English language learning. For this purpose, we sampled 201 high school learners from various schools in South Africa. Methods of data gathering inter alia included the following: A biographical questionnaire; the Academic Motivational Scale and the Piers-Harris Self-Concept Scale. Pearson Product Moment Correlation Analyses yielded significant correlations between L2 learners' motivation and their English language proficiency, including demonstrating positive correlations between L2 learners' self-concept and their achievements in English. Accordingly, researchers have argued that the learning context, in which students learn English as a second language, has a crucial influence on students' motivational levels. This emphasizes the important role the teacher has to play in creating learning environments that will enhance L2 learners' motivation and improve their self-concepts.Keywords: motivation, self-concept, language learning, English second language learners (L2)
Procedia PDF Downloads 26610487 Using Daily Light Integral Concept to Construct the Ecological Plant Design Strategy of Urban Landscape
Authors: Chuang-Hung Lin, Cheng-Yuan Hsu, Jia-Yan Lin
Abstract:
It is an indispensible strategy to adopt greenery approach on architectural bases so as to improve ecological habitats, decrease heat-island effect, purify air quality, and relieve surface runoff as well as noise pollution, all of which are done in an attempt to achieve sustainable environment. How we can do with plant design to attain the best visual quality and ideal carbon dioxide fixation depends on whether or not we can appropriately make use of greenery according to the nature of architectural bases. To achieve the goal, it is a need that architects and landscape architects should be provided with sufficient local references. Current greenery studies focus mainly on the heat-island effect of urban with large scale. Most of the architects still rely on people with years of expertise regarding the adoption and disposition of plantation in connection with microclimate scale. Therefore, environmental design, which integrates science and aesthetics, requires fundamental research on landscape environment technology divided from building environment technology. By doing so, we can create mutual benefits between green building and the environment. This issue is extremely important for the greening design of the bases of green buildings in cities and various open spaces. The purpose of this study is to establish plant selection and allocation strategies under different building sunshade levels. Initially, with the shading of sunshine on the greening bases as the starting point, the effects of the shades produced by different building types on the greening strategies were analyzed. Then, by measuring the PAR( photosynthetic active radiation), the relative DLI( daily light integral) was calculated, while the DLI Map was established in order to evaluate the effects of the building shading on the established environmental greening, thereby serving as a reference for plant selection and allocation. The discussion results were to be applied in the evaluation of environment greening of greening buildings and establish the “right plant, right place” design strategy of multi-level ecological greening for application in urban design and landscape design development, as well as the greening criteria to feedback to the eco-city greening buildings.Keywords: daily light integral, plant design, urban open space
Procedia PDF Downloads 50810486 Predictors of Childhood Trauma and Dissociation in University Students
Authors: Erdinc Ozturk, Gizem Akcan
Abstract:
The aim of this study was to determine some psychosocial variables that predict childhood trauma and dissociation in university students. These psychosocial variables were perceived social support, relationship status, gender and life satisfaction. 250 (125 males, 125 females) university students (bachelor, master and postgraduate degree) were enrolled in this study. They were chosen from universities in Istanbul at the education year of 2016-2017. Dissociative Experiences Scale (DES), Childhood Trauma Questionnaire (CTQ), Multidimensional Perceived Social Support Scale, Life Satisfaction Scale and Relationship Scales Questionnaire were used to assess related variables. Demographic information form was given to students in order to have their demographic information. Frequency distribution, multiple linear regression, and t-test analysis were used for statistical analysis. As together, perceived social support, relationship status and life satisfaction were found to have predictive value on trauma among university students. However, as together, these psychosocial variables did not have predictive value on dissociation. Only, trauma and relationship status had significant predictive value on dissociation. Moreover, there was significant difference between males and females in terms of trauma; however, dissociation scores of participants were not significantly different in terms of gender.Keywords: childhood trauma, dissociation, perceived social support, relationship status, life satisfaction
Procedia PDF Downloads 27410485 Status of Bio-Graphene Extraction from Biomass: A Review
Authors: Simon Peter Wafula, Ziporah Nakabazzi Kitooke
Abstract:
Graphene is a carbon allotrope made of a two-dimensional shape. This material has got a number of materials researchers’ interest due to its properties that are special compared to ordinary material. Graphene is thought to enhance a number of material properties in the manufacturing, energy, and construction industries. Many studies consider graphene to be a wonder material, just like plastic in the 21st century. This shows how much should be invested in graphene research. This review highlights the status of graphene extracted from various biomass sources together with their appropriate extraction techniques, including the pretreatment methods for a better product. The functional groups and structure of graphene extracted using several common methods of synthesis are in this paper as well. The review explores methods like chemical vapor deposition (CVD), hydrothermal, chemical exfoliation method, liquid exfoliation, and Hummers. Comparative analysis of the various extraction techniques gives an insight into each of their advantages, challenges, and potential scalability. The review also highlights the pretreatment process for biomass before carbonation for better quality of bio-graphene. The various graphene modes, as well as their applications, are in this study. Recommendations for future research for improving the efficiency and sustainability of bio-graphene are highlighted.Keywords: exfoliation, nanomaterials, biochar, large-scale, two-dimension
Procedia PDF Downloads 4810484 Multiple Relaxation Times in the Gibbs Ensemble Monte Carlo Simulation of Phase Separation
Authors: Bina Kumari, Subir K. Sarkar, Pradipta Bandyopadhyay
Abstract:
The autocorrelation function of the density fluctuation is studied in each of the two phases in a Gibbs Ensemble Monte Carlo (GEMC) simulation of the problem of phase separation for a square well potential with various values of its range. We find that the normalized autocorrelation function is described very well as a linear combination of an exponential function with a time scale τ₂ and a stretched exponential function with a time scale τ₁ and an exponent α. Dependence of (α, τ₁, τ₂) on the parameters of the GEMC algorithm and the range of the square well potential is investigated and interpreted. We also analyse the issue of how to choose the parameters of the GEMC simulation optimally.Keywords: autocorrelation function, density fluctuation, GEMC, simulation
Procedia PDF Downloads 18310483 Shape Management Method of Large Structure Based on Octree Space Partitioning
Authors: Gichun Cha, Changgil Lee, Seunghee Park
Abstract:
The objective of the study is to construct the shape management method contributing to the safety of the large structure. In Korea, the research of the shape management is lack because of the new attempted technology. Terrestrial Laser Scanning (TLS) is used for measurements of large structures. TLS provides an efficient way to actively acquire accurate the point clouds of object surfaces or environments. The point clouds provide a basis for rapid modeling in the industrial automation, architecture, construction or maintenance of the civil infrastructures. TLS produce a huge amount of point clouds. Registration, Extraction and Visualization of data require the processing of a massive amount of scan data. The octree can be applied to the shape management of the large structure because the scan data is reduced in the size but, the data attributes are maintained. The octree space partitioning generates the voxel of 3D space, and the voxel is recursively subdivided into eight sub-voxels. The point cloud of scan data was converted to voxel and sampled. The experimental site is located at Sungkyunkwan University. The scanned structure is the steel-frame bridge. The used TLS is Leica ScanStation C10/C5. The scan data was condensed 92%, and the octree model was constructed with 2 millimeter in resolution. This study presents octree space partitioning for handling the point clouds. The basis is created by shape management of the large structures such as double-deck tunnel, building and bridge. The research will be expected to improve the efficiency of structural health monitoring and maintenance. "This work is financially supported by 'U-City Master and Doctor Course Grant Program' and the National Research Foundation of Korea(NRF) grant funded by the Korea government (MSIP) (NRF- 2015R1D1A1A01059291)."Keywords: 3D scan data, octree space partitioning, shape management, structural health monitoring, terrestrial laser scanning
Procedia PDF Downloads 29610482 Effects of Prescribed Surface Perturbation on NACA 0012 at Low Reynolds Number
Authors: Diego F. Camacho, Cristian J. Mejia, Carlos Duque-Daza
Abstract:
The recent widespread use of Unmanned Aerial Vehicles (UAVs) has fueled a renewed interest in efficiency and performance of airfoils, particularly for applications at low and moderate Reynolds numbers, typical of this kind of vehicles. Most of previous efforts in the aeronautical industry, regarding aerodynamic efficiency, had been focused on high Reynolds numbers applications, typical of commercial airliners and large size aircrafts. However, in order to increase the levels of efficiency and to boost the performance of these UAV, it is necessary to explore new alternatives in terms of airfoil design and application of drag reduction techniques. The objective of the present work is to carry out the analysis and comparison of performance levels between a standard NACA0012 profile against another one featuring a wall protuberance or surface perturbation. A computational model, based on the finite volume method, is employed to evaluate the effect of the presence of geometrical distortions on the wall. The performance evaluation is achieved in terms of variations of drag and lift coefficients for the given profile. In particular, the aerodynamic performance of the new design, i.e. the airfoil with a surface perturbation, is examined under conditions of incompressible and subsonic flow in transient state. The perturbation considered is a shaped protrusion prescribed as a small surface deformation on the top wall of the aerodynamic profile. The ultimate goal by including such a controlled smooth artificial roughness was to alter the turbulent boundary layer. It is shown in the present work that such a modification has a dramatic impact on the aerodynamic characteristics of the airfoil, and if properly adjusted, in a positive way. The computational model was implemented using the unstructured, FVM-based open source C++ platform OpenFOAM. A number of numerical experiments were carried out at Reynolds number 5x104, based on the length of the chord and the free-stream velocity, and angles of attack 6° and 12°. A Large Eddy Simulation (LES) approach was used, together with the dynamic Smagorinsky approach as subgrid scale (SGS) model, in order to account for the effect of the small turbulent scales. The impact of the surface perturbation on the performance of the airfoil is judged in terms of changes in the drag and lift coefficients, as well as in terms of alterations of the main characteristics of the turbulent boundary layer on the upper wall. A dramatic change in the whole performance can be appreciated, including an arguably large level of lift-to-drag coefficient ratio increase for all angles and a size reduction of laminar separation bubble (LSB) for a twelve-angle-of-attack.Keywords: CFD, LES, Lift-to-drag ratio, LSB, NACA 0012 airfoil
Procedia PDF Downloads 38510481 Research on Land Use Pattern and Employment-Housing Space of Coastal Industrial Town Based on the Investigation of Liaoning Province, China
Authors: Fei Chen, Wei Lu, Jun Cai
Abstract:
During the Twelve Five period, China promulgated industrial policies promoting the relocation of energy-intensive industries to coastal areas in order to utilize marine shipping resources. Consequently, some major state-owned steel and gas enterprises have relocated and resulted in a large-scale coastal area development. However, some land may have been over-exploited with seamless coastline projects. To balance between employment and housing, new industrial coastal towns were constructed to support the industrial-led development. In this paper, we adopt a case-study approach to closely examine the development of several new industrial coastal towns of Liaoning Province situated in the Bohai Bay area, which is currently under rapid economic growth. Our investigations reflect the common phenomenon of long distance commuting and a massive amount of vacant residences. More specifically, large plant relocation caused hundreds of kilometers of daily commute and enterprises had to provide housing subsidies and education incentives to motivate employees to relocate to coastal areas. Nonetheless, many employees still refuse to relocate due to job stability, diverse needs of family members and access to convenient services. These employees averaged 4 hours of commute daily and some who lived further had to reside in temporary industrial housing units and subject to long-term family separation. As a result, only a small portion of employees purchase new coastal residences but mostly for investment and retirement purposes, leading to massive vacancy and ghost-town phenomenon. In contrast to the low demand, coastal areas tend to develop large amount of residences prior to industrial relocation, which may be directly related to local government finances. Some local governments have sold residential land to developers to general revenue to support the subsequent industrial development. Subject to the strong preference of ocean-view, residential housing developers tend to select coast-line land to construct new residential towns, which further reduces the access of marine resources for major industrial enterprises. This violates the original intent of developing industrial coastal towns and drastically limits the availability of marine resources. Lastly, we analyze the co-existence of over-exploiting residential areas and massive vacancies in reference to the demand and supply of land, as well as the demand of residential housing units with the choice criteria of enterprise employees.Keywords: coastal industry town, commuter traffic, employment-housing space, outer suburb industrial area
Procedia PDF Downloads 22110480 A Quantitative Survey Research on the Development and Assessment of Attitude toward Mathematics Instrument
Authors: Soofia Malik
Abstract:
The purpose of this study is to develop an instrument to measure undergraduate students’ attitudes toward mathematics (MAT) and to assess the data collected from the instrument for validity and reliability. The instrument is developed using five subscales: anxiety, enjoyment, self-confidence, value, and technology. The technology dimension is added as the fifth subscale of attitude toward mathematics because of the recent trend of incorporating online homework in mathematics courses as well as due to heavy reliance of higher education on using online learning management systems, such as Blackboard and Moodle. The sample consists of 163 (M = 82, F = 81) undergraduates enrolled in College Algebra course in the summer 2017 semester at a university in the USA. The data is analyzed to answer the research question: if and how do undergraduate students’ attitudes toward mathematics load using Principal Components Analysis (PCA)? As a result of PCA, three subscales emerged namely: anxiety/self-confidence scale, enjoyment, and value scale. After deleting the last five items or the last two subscales from the initial MAT scale, the Cronbach’s alpha was recalculated using the scores from 20 items and was found to be α = .95. It is important to note that the reliability of the initial MAT form was α = .93. This means that employing the final MAT survey form would yield consistent results in repeated uses. The final MAT form is, therefore, more reliable as compared to the initial MAT form.Keywords: college algebra, Cronbach's alpha reliability coefficient, Principal Components Analysis, PCA, technology in mathematics
Procedia PDF Downloads 12210479 Streamwise Vorticity in the Wake of a Sliding Bubble
Authors: R. O’Reilly Meehan, D. B. Murray
Abstract:
In many practical situations, bubbles are dispersed in a liquid phase. Understanding these complex bubbly flows is therefore a key issue for applications such as shell and tube heat exchangers, mineral flotation and oxidation in water treatment. Although a large body of work exists for bubbles rising in an unbounded medium, that of bubbles rising in constricted geometries has received less attention. The particular case of a bubble sliding underneath an inclined surface is common to two-phase flow systems. The current study intends to expand this knowledge by performing experiments to quantify the streamwise flow structures associated with a single sliding air bubble under an inclined surface in quiescent water. This is achieved by means of two-dimensional, two-component particle image velocimetry (PIV), performed with a continuous wave laser and high-speed camera. PIV vorticity fields obtained in a plane perpendicular to the sliding surface show that there is significant bulk fluid motion away from the surface. The associated momentum of the bubble means that this wake motion persists for a significant time before viscous dissipation. The magnitude and direction of the flow structures in the streamwise measurement plane are found to depend on the point on its path through which the bubble enters the plane. This entry point, represented by a phase angle, affects the nature and strength of the vortical structures. This study reconstructs the vorticity field in the wake of the bubble, converting the field at different instances in time to slices of a large-scale wake structure. This is, in essence, Taylor’s ”frozen turbulence” hypothesis. Applying this to the vorticity fields provides a pseudo three-dimensional representation from 2-D data, allowing for a more intuitive understanding of the bubble wake. This study provides insights into the complex dynamics of a situation common to many engineering applications, particularly shell and tube heat exchangers in the nucleate boiling regime.Keywords: bubbly flow, particle image velocimetry, two-phase flow, wake structures
Procedia PDF Downloads 37410478 Microbial Fuel Cells: Performance and Applications
Authors: Andrea Pietrelli, Vincenzo Ferrara, Bruno Allard, Francois Buret, Irene Bavasso, Nicola Lovecchio, Francesca Costantini, Firas Khaled
Abstract:
This paper aims to show some applications of microbial fuel cells (MFCs), an energy harvesting technique, as clean power source to supply low power device for application like wireless sensor network (WSN) for environmental monitoring. Furthermore, MFC can be used directly as biosensor to analyse parameters like pH and temperature or arranged in form of cluster devices in order to use as small power plant. An MFC is a bioreactor that converts energy stored in chemical bonds of organic matter into electrical energy, through a series of reactions catalysed by microorganisms. We have developed a lab-scale terrestrial microbial fuel cell (TMFC), based on soil that acts as source of bacteria and flow of nutrient and a lab-scale waste water microbial fuel cell (WWMFC), where waste water acts as flow of nutrient and bacteria. We performed large series of tests to exploit the capability as biosensor. The pH value has strong influence on the open circuit voltage (OCV) delivered from TMFCs. We analyzed three condition: test A and B were filled with same soil but changing pH from 6 to 6.63, test C was prepared using a different soil with a pH value of 6.3. Experimental results clearly show how with higher pH value a higher OCV was produced; indeed reactors are influenced by different values of pH which increases the voltage in case of a higher pH value until the best pH value of 7 is achieved. The influence of pH on OCV of lab-scales WWMFC was analyzed at pH value of 6.5, 7, 7.2, 7.5 and 8. WWMFCs are influenced from temperature more than TMFCs. We tested the power performance of WWMFCs considering four imposed values of ambient temperature. Results show how power performance increase proportionally with higher temperature values, doubling the output power from 20° to 40°. The best value of power produced from our lab-scale TMFC was equal to 310 μW using peaty soil, at 1KΩ, corresponding to a current of 0.5 mA. A TMFC can supply proper energy to low power devices of a WSN by means of the design of three stages scheme of an energy management system, which adapts voltage level of TMFC to those required by a WSN node, as 3.3V. Using a commercial DC/DC boost converter, that needs an input voltage of 700 mV, the current source of 0.5 mA, charges a capacitor of 6.8 mF until it will have accumulated an amount of charge equal to 700 mV in a time of 10 s. The output stage includes an output switch that close the circuit after a time of 10s + 1.5ms because the converter can boost the voltage from 0.7V to 3.3V in 1.5 ms. Furthermore, we tested in form of clusters connected in series up to 20 WWMFCs, we have obtained a high voltage value as output, around 10V, but low current value. MFC can be considered a suitable clean energy source to be used to supply low power devices as a WSN node or to be used directly as biosensor.Keywords: energy harvesting, low power electronics, microbial fuel cell, terrestrial microbial fuel cell, waste-water microbial fuel cell, wireless sensor network
Procedia PDF Downloads 20610477 Reliability Evidence of the Child Behavior Checklist (CBCL) Based on a Chinese Sample
Authors: Zhidong Zhang, Zhi-Chao Zhang, Georgiana Duarte
Abstract:
The Chinese version of the Child Behavior Checklist (CBCL) is the one of the Achenbach systems of empirically based assessment (ASEBA) scales, by which behavioral and emotional problems of early adolescents were examined. In order to further understand the robustness of the scale, its reliability has been examined. CBCL consists of 8 problems to measure internalizing, externalizing and social problems. In internalizing problem, there are Anxious, Withdrawn and Somatic Complaints. In this study, as an example, we only examined the anxious aspect which consisted of 13 questions. Cronbach alpha and factor analysis methods were used to examine the reliability of the scale. The result indicated that Cronbach alpha value was above 0.80.Keywords: anxious/depressed problems, ASEBA, CBCL, Cronbach Alpha, reliability
Procedia PDF Downloads 46110476 Empirical Analytical Modelling of Average Bond Stress and Anchorage of Tensile Bars in Reinforced Concrete
Authors: Maruful H. Mazumder, Raymond I. Gilbert
Abstract:
The design specifications for calculating development and lapped splice lengths of reinforcement in concrete are derived from a conventional empirical modelling approach that correlates experimental test data using a single mathematical equation. This paper describes part of a recently completed experimental research program to assess the effects of different structural parameters on the development length requirements of modern high strength steel reinforcing bars, including the case of lapped splices in large-scale reinforced concrete members. The normalized average bond stresses for the different variations of anchorage lengths are assessed according to the general form of a typical empirical analytical model of bond and anchorage. Improved analytical modelling equations are developed in the paper that better correlate the normalized bond strength parameters with the structural parameters of an empirical model of bond and anchorage.Keywords: bond stress, development length, lapped splice length, reinforced concrete
Procedia PDF Downloads 43610475 Identification of Microbial Community in an Anaerobic Reactor Treating Brewery Wastewater
Authors: Abimbola M. Enitan, John O. Odiyo, Feroz M. Swalaha
Abstract:
The study of microbial ecology and their function in anaerobic digestion processes are essential to control the biological processes. This is to know the symbiotic relationship between the microorganisms that are involved in the conversion of complex organic matter in the industrial wastewater to simple molecules. In this study, diversity and quantity of bacterial community in the granular sludge taken from the different compartments of a full-scale upflow anaerobic sludge blanket (UASB) reactor treating brewery wastewater was investigated using polymerase chain reaction (PCR) and real-time quantitative PCR (qPCR). The phylogenetic analysis showed three major eubacteria phyla that belong to Proteobacteria, Firmicutes and Chloroflexi in the full-scale UASB reactor, with different groups populating different compartment. The result of qPCR assay showed high amount of eubacteria with increase in concentration along the reactor’s compartment. This study extends our understanding on the diverse, topological distribution and shifts in concentration of microbial communities in the different compartments of a full-scale UASB reactor treating brewery wastewater. The colonization and the trophic interactions among these microbial populations in reducing and transforming complex organic matter within the UASB reactors were established.Keywords: bacteria, brewery wastewater, real-time quantitative PCR, UASB reactor
Procedia PDF Downloads 25710474 A Method Intensive Top-down Approach for Generating Guidelines for an Energy-Efficient Neighbourhood: A Case of Amaravati, Andhra Pradesh, India
Authors: Rituparna Pal, Faiz Ahmed
Abstract:
Neighbourhood energy efficiency is a newly emerged term to address the quality of urban strata of built environment in terms of various covariates of sustainability. The concept of sustainability paradigm in developed nations has encouraged the policymakers for developing urban scale cities to envision plans under the aegis of urban scale sustainability. The concept of neighbourhood energy efficiency is realized a lot lately just when the cities, towns and other areas comprising this massive global urban strata have started facing a strong blow from climate change, energy crisis, cost hike and an alarming shortfall in the justice which the urban areas required. So this step of urban sustainability can be easily referred more as a ‘Retrofit Action’ which is to cover up the already affected urban structure. So even if we start energy efficiency for existing cities and urban areas the initial layer remains, for which a complete model of urban sustainability still lacks definition. Urban sustainability is a broadly spoken off word with end number of parameters and policies through which the loop can be met. Out of which neighbourhood energy efficiency can be an integral part where the concept and index of neighbourhood scale indicators, block level indicators and building physics parameters can be understood, analyzed and concluded to help emerge guidelines for urban scale sustainability. The future of neighbourhood energy efficiency not only lies in energy efficiency but also important parameters like quality of life, access to green, access to daylight, outdoor comfort, natural ventilation etc. So apart from designing less energy-hungry buildings, it is required to create a built environment which will create less stress on buildings to consume more energy. A lot of literary analysis has been done in the Western countries prominently in Spain, Paris and also Hong Kong, leaving a distinct gap in the Indian scenario in exploring the sustainability at the urban strata. The site for the study has been selected in the upcoming capital city of Amaravati which can be replicated with similar neighbourhood typologies in the area. The paper suggests a methodical intent to quantify energy and sustainability indices in detail taking by involving several macro, meso and micro level covariates and parameters. Several iterations have been made both at macro and micro level and have been subjected to simulation, computation and mathematical models and finally to comparative analysis. Parameters at all levels are analyzed to suggest the best case scenarios which in turn is extrapolated to the macro level finally coming out with a proposal model for energy efficient neighbourhood and worked out guidelines with significance and correlations derived.Keywords: energy quantification, macro scale parameters, meso scale parameters, micro scale parameters
Procedia PDF Downloads 17510473 Photocatalytic Eco-Active Ceramic Slabs to Abate Air Pollution under LED Light
Authors: Claudia L. Bianchi, Giuseppina Cerrato, Federico Galli, Federica Minozzi, Valentino Capucci
Abstract:
At the beginning of the industrial productions, porcelain gres tiles were considered as just a technical material, aesthetically not very beautiful. Today thanks to new industrial production methods, both properties, and beauty of these materials completely fit the market requests. In particular, the possibility to prepare slabs of large sizes is the new frontier of building materials. Beside these noteworthy architectural features, new surface properties have been introduced in the last generation of these materials. In particular, deposition of TiO₂ transforms the traditional ceramic into a photocatalytic eco-active material able to reduce polluting molecules present in air and water, to eliminate bacteria and to reduce the surface dirt thanks to the self-cleaning property. The problem of photocatalytic materials resides in the fact that it is necessary a UV light source to activate the oxidation processes on the surface of the material, processes that are turned off inexorably when the material is illuminated by LED lights and, even more so, when we are in darkness. First, it was necessary a thorough study change the existing plants to deposit the photocatalyst very evenly and this has been done thanks to the advent of digital printing and the development of an ink custom-made that stabilizes the powdered TiO₂ in its formulation. In addition, the commercial TiO₂, which is used for the traditional photocatalytic coating, has been doped with metals in order to activate it even in the visible region and thus in the presence of sunlight or LED. Thanks to this active coating, ceramic slabs are able to purify air eliminating odors and VOCs, and also can be cleaned with very soft detergents due to the self-cleaning properties given by the TiO₂ present at the ceramic surface. Moreover, the presence of dopant metals (patent WO2016157155) also allows the material to work as well as antibacterial in the dark, by eliminating one of the negative features of photocatalytic building materials that have so far limited its use on a large scale. Considering that we are constantly in contact with bacteria, some of which are dangerous for health. Active tiles are 99,99% efficient on all bacteria, from the most common such as Escherichia coli to the most dangerous such as Staphilococcus aureus Methicillin-resistant (MRSA). DIGITALIFE project LIFE13 ENV/IT/000140 – award for best project of October 2017.Keywords: Ag-doped microsized TiO₂, eco-active ceramic, photocatalysis, digital coating
Procedia PDF Downloads 22710472 A Genetic Algorithm for the Load Balance of Parallel Computational Fluid Dynamics Computation with Multi-Block Structured Mesh
Authors: Chunye Gong, Ming Tie, Jie Liu, Weimin Bao, Xinbiao Gan, Shengguo Li, Bo Yang, Xuguang Chen, Tiaojie Xiao, Yang Sun
Abstract:
Large-scale CFD simulation relies on high-performance parallel computing, and the load balance is the key role which affects the parallel efficiency. This paper focuses on the load-balancing problem of parallel CFD simulation with structured mesh. A mathematical model for this load-balancing problem is presented. The genetic algorithm, fitness computing, two-level code are designed. Optimal selector, robust operator, and local optimization operator are designed. The properties of the presented genetic algorithm are discussed in-depth. The effects of optimal selector, robust operator, and local optimization operator are proved by experiments. The experimental results of different test sets, DLR-F4, and aircraft design applications show the presented load-balancing algorithm is robust, quickly converged, and is useful in real engineering problems.Keywords: genetic algorithm, load-balancing algorithm, optimal variation, local optimization
Procedia PDF Downloads 18110471 Application of the Pattern Method to Form the Stable Neural Structures in the Learning Process as a Way of Solving Modern Problems in Education
Authors: Liudmyla Vesper
Abstract:
The problems of modern education are large-scale and diverse. The aspirations of parents, teachers, and experts converge - everyone interested in growing up a generation of whole, well-educated persons. Both the family and society are expected in the future generation to be self-sufficient, desirable in the labor market, and capable of lifelong learning. Today's children have a powerful potential that is difficult to realize in the conditions of traditional school approaches. Focusing on STEM education in practice often ends with the simple use of computers and gadgets during class. "Science", "technology", "engineering" and "mathematics" are difficult to combine within school and university curricula, which have not changed much during the last 10 years. Solving the problems of modern education largely depends on teachers - innovators, teachers - practitioners who develop and implement effective educational methods and programs. Teachers who propose innovative pedagogical practices that allow students to master large-scale knowledge and apply it to the practical plane. Effective education considers the creation of stable neural structures during the learning process, which allow to preserve and increase knowledge throughout life. The author proposed a method of integrated lessons – cases based on the maths patterns for forming a holistic perception of the world. This method and program are scientifically substantiated and have more than 15 years of practical application experience in school and student classrooms. The first results of the practical application of the author's methodology and curriculum were announced at the International Conference "Teaching and Learning Strategies to Promote Elementary School Success", 2006, April 22-23, Yerevan, Armenia, IREX-administered 2004-2006 Multiple Component Education Project. This program is based on the concept of interdisciplinary connections and its implementation in the process of continuous learning. This allows students to save and increase knowledge throughout life according to a single pattern. The pattern principle stores information on different subjects according to one scheme (pattern), using long-term memory. This is how neural structures are created. The author also admits that a similar method can be successfully applied to the training of artificial intelligence neural networks. However, this assumption requires further research and verification. The educational method and program proposed by the author meet the modern requirements for education, which involves mastering various areas of knowledge, starting from an early age. This approach makes it possible to involve the child's cognitive potential as much as possible and direct it to the preservation and development of individual talents. According to the methodology, at the early stages of learning students understand the connection between school subjects (so-called "sciences" and "humanities") and in real life, apply the knowledge gained in practice. This approach allows students to realize their natural creative abilities and talents, which makes it easier to navigate professional choices and find their place in life.Keywords: science education, maths education, AI, neuroplasticity, innovative education problem, creativity development, modern education problem
Procedia PDF Downloads 6110470 Research on the Spatial Organization and Collaborative Innovation of Innovation Corridors from the Perspective of Ecological Niche: A Case Study of Seven Municipal Districts in Jiangsu Province, China
Authors: Weikang Peng
Abstract:
The innovation corridor is an important spatial carrier to promote regional collaborative innovation, and its development process is the spatial re-organization process of regional innovation resources. This paper takes the Nanjing-Zhenjiang G312 Industrial Innovation Corridor, which involves seven municipal districts in Jiangsu Province, as empirical evidence. Based on multi-source spatial big data in 2010, 2016, and 2022, this paper applies triangulated irregular network (TIN), head/tail breaks, regional innovation ecosystem (RIE) niche fitness evaluation model, and social network analysis to carry out empirical research on the spatial organization and functional structural evolution characteristics of innovation corridors and their correlation with the structural evolution of collaborative innovation network. The results show, first, the development of innovation patches in the corridor has fractal characteristics in time and space and tends to be multi-center and cluster layout along the Nanjing Bypass Highway and National Highway G312. Second, there are large differences in the spatial distribution pattern of niche fitness in the corridor in various dimensions, and the niche fitness of innovation patches along the highway has increased significantly. Third, the scale of the collaborative innovation network in the corridor is expanding fast. The core of the network is shifting from the main urban area to the periphery of the city along the highway, with small-world and hierarchical levels, and the core-edge network structure is highlighted. With the development of the Innovation Corridor, the main collaborative mode in the corridor is changing from collaboration within innovation patches to collaboration between innovation patches, and innovation patches with high ecological suitability tend to be the active areas of collaborative innovation. Overall, polycentric spatial layout, graded functional structure, diversified innovation clusters, and differentiated environmental support play an important role in effectively constructing collaborative innovation linkages and the stable expansion of the scale of collaborative innovation within the innovation corridor.Keywords: innovation corridor development, spatial structure, niche fitness evaluation model, head/tail breaks, innovation network
Procedia PDF Downloads 1810469 Characterization of Electrospun Carbon Nanofiber Doped Polymer Composites
Authors: Atilla Evcin, Bahri Ersoy, Süleyman Akpınar, I. Sinan Atlı
Abstract:
Ceramic, polymer and composite nanofibers are nowadays begun to be utilized in many fields of nanotechnology. By the means of dimensions, these fibers are as small as nano scale but because of having large surface area and microstructural characteristics, they provide unique mechanic, optical, magnetic, electronic and chemical properties. In terms of nanofiber production, electrospinning has been the most widely used technique in recent years. In this study, carbon nanofibers have been synthesized from solutions of Polyacrylonitrile (PAN)/ N,N-dimethylformamide (DMF) by electrospinning method. The carbon nanofibers have been stabilized by oxidation at 250 °C for 2 h in air and carbonized at 750 °C for 1 h in H2/N2. Images of carbon nanofibers have been taken with scanning electron microscopy (SEM). The images have been analyzed to study the fiber morphology and to determine the distribution of the fiber diameter using FibraQuant 1.3 software. Then polymer composites have been produced from mixture of carbon nanofibers and silicone polymer. The final polymer composites have been characterized by X-ray diffraction method and scanning electron microscopy (SEM) energy dispersive X-ray (EDX) measurements. These results have been reported and discussed. At result, homogeneous carbon nanofibers with 100-167 nm of diameter were obtained with optimized electrospinning conditions.Keywords: electrospinning, characterization, composites, nanofiber
Procedia PDF Downloads 39210468 Evaluating Effectiveness of Training and Development Corporate Programs: The Russian Agribusiness Context
Authors: Ekaterina Tikhonova
Abstract:
This research is aimed to evaluate the effectiveness of T&D (Training and Development) on the example of two T&D programs for the Executive TOP Management run in 2012, 2015-2016 in Komos Group. This study is commissioned to research the effectiveness of two similar corporate T&D programs (within one company) in two periods of time (2012, 2015-2016) through evaluating the programs’ effectiveness using the four-level Kirkpatrick’s model of evaluating T&D programs and calculating ROI as an instrument for T&D program measuring by Phillips’ formula. The research investigates the correlation of two figures: the ROI calculated and the rating percentage scale per the ROI implementation (Wagle’s scale). The study includes an assessment of feedback 360 (Kirkpatrick's model) and Phillips’ ROI Methodology that provides a step-by-step process for collecting data, summarizing and processing the collected information. The data is collected from the company accounting data, the HR budgets, MCFO and the company annual reports for the research periods. All analyzed data and reports are organized and presented in forms of tables, charts, and graphs. The paper also gives a brief description of some constrains of the research considered. After ROI calculation, the study reveals that ROI ranges between the average implementation (65% to 75%) by Wagle’s scale that can be considered as a positive outcome. The paper also gives some recommendations how to use ROI in practice and describes main benefits of ROI implementation.Keywords: ROI, organizational performance, efficacy of T&D program, employee performance
Procedia PDF Downloads 25010467 Assessment of Indigenous People Living Condition in Coal Mining Region: An Evidence from Dhanbad, India
Authors: Arun Kumar Yadav
Abstract:
Coal contributes a significant role in India’s developmental mission. But, ironically, on the other side it causes large scale population displacement and significant changes in indigenous people’s livelihood mechanism. Dhanbad which is regarded as one of the oldest and large mining area, as well as a “Coal Capital of India”. Here, mining exploration work started nearly a century ago. But with the passage of time, mining brings a lot of changes in the life of local people. In this context, study tries to do comparative situational analysis of the changes in the living condition of dwellers living in mines affected and non-mines affected villages based on livelihood approach. Since, this place has long history of mining so it is very difficult to conduct before and after comparison between mines and non-mines affected areas. Consequently, the present study is based on relative comparison approach to elucidate the actual scenario. By using primary survey data which was collected by the author during the month of September 2014 to March 2015 at Dhanbad, Jharkhand. The data were collected from eight villages, these were categorised broadly into mines and non-mines affected villages. Further at micro level, mines affected villages has been categorised into open cast and underground mines. This categorization will help us to capture the deeper understanding about the issues of mine affected villages group. Total of 400 household were surveyed. Result depicts that in every sphere mining affected villages are more vulnerable. Regarding financial capital, although mine affected villages are engaged in mining work and get higher mean income. But in contrast, non-mine affected villages are more occupationally diversified. They have an opportunity to earn money from diversified extents like agricultural land, working in mining area, selling coal informally as well as receiving remittances. Non-mines affected villages are in better physical capital which comprises of basic infrastructure to support livelihood. They have an access to secured shelter, adequate water supply & sanitation, and affordable information and transport. Mining affected villages are more prone to health risks. Regarding social capital, it shows that in comparison to last five years, law and order has been improved in mine affected villages.Keywords: displacement, indigenous, livelihood, mining
Procedia PDF Downloads 31110466 The Evolutionary Characteristics and Mechanisms and of Multi-scale Intercity Innovation Enclave Networks in China’s Yangtze River Delta Region
Authors: Yuhua Yang, Yingcheng Li
Abstract:
As a new form of intercity economic cooperation, innovation enclaves have received much attention from governments and scholars in China, which are of great significance in promoting the flow of innovation elements and advancing regional integration. Utilizing inter-city linkages of innovation enclaves within and beyond the Yangtze River Delta Region, we construct multi-scalar innovation enclave networks in 2018 and 2022, and analyze the evolutionary characteristics and underlying mechanisms of the networks. Overall, we find that: (1) The intercity innovation enclave networks have the characteristics of preferential connection and are gradually forming a clear multi-scale and hierarchical structure, with Shanghai, Hangzhou and Nanjing as the core and other cities as the general nodes; (2) The intercity innovation enclave networks exhibit local clustering dominated by geographical proximity connections, and are becoming more noticeable in the effect of distance decay and functionally polycentric as the spatial scale decreases; (3) The intercity innovation enclave networks are influenced by both functional distance and multidimensional proximity. While the innovation potential differences caused by urban attributes internally drive the formation of innovation enclave cooperation, geographic proximity, technological proximity and institutional proximity externally affect the selection of cooperation partners.Keywords: economic enclave, intercity cooperation, proximity, yangtze river delta region
Procedia PDF Downloads 2310465 Balancing the Need for Closure: A Requirement for Effective Mood Development in Flow
Authors: Cristian Andrei Nica
Abstract:
The state of flow relies on cognitive elements that sustain openness for information processing in order to promote goal attainment. However, the need for closure may create mental constraints, which can impact affectivity levels. This study aims to observe the extent in which need for closure moderates the interaction between flow and affectivity, taking into account the mediating role of the mood repair motivation in the interaction process between need for closure and affectivity. Using a non-experimental, correlational design, n=73 participants n=18 men and n=55 women, ages between 19-64 years (m= 28.02) (SD=9.22), completed the Positive Affectivity-Negative Affectivity Schedule, the need for closure scale-revised, the mood repair items and an adapted version of the flow state scale 2, in order to assess the trait aspects of flow. Results show that need for closure significantly moderates the flow-affectivity process, while the tolerance of ambiguity sub-scale is positively associated with negative affectivity and negatively to positive affectivity. At the same time, mood repair motivation significantly mediates the interaction between need for closure and positive affectivity, whereas the mediation process for negative affectivity is insignificant. Need for closure needs to be considered when promoting the development of positive emotions. It has been found that the motivation to repair one’s mood mediates the interaction between need for closure and positive affectivity. According to this study, flow can trigger positive emotions when the person is willing to engage in mood regulation strategies and approach meaningful experiences with an open mind.Keywords: flow, mood regulation, mood repair motivation, need for closure, negative affectivity, positive affectivity
Procedia PDF Downloads 12110464 Effects of Cognitive Reframe on Depression among Secondary School Adolescents: The Moderating Role of Self-Esteem
Authors: Olayinka M. Ayannuga
Abstract:
This study explored the effect of cognitive reframe in reducing depression among Senior Secondary School Adolescents. It adopted a pre-test, post-test, control quasi-experimental research design with a 2x2 factorial matrix. Participants included 120 depressed adolescents randomly drawn from public Senior Secondary School Two (SSS.II) students in Lagos State, Nigeria. Sixty participants were randomly selected and assigned to the treatment and control groups. Participants in the Cognitive Reframe (CR) group were trained for 8 weeks, while those in the Control group were given a placebo. Two instruments were used for data collection namely: Self – Esteem Scale (SES: Rosenberg 1965: α = 0.85), and The Self Rating Depression Scale (SDS: Zung, 1972; α 0 = 0.87) were administered at pretest level. However, only the Self-Rating Depression Scale (SDS) was re-administered at post-test to measure the effect of the intervention. The results revealed that there was a significant effect of cognitive reframe training programmes on secondary school adolescents’ depression, also there were significant effects of self-esteem on secondary school adolescents’ depression. The study showed that the technique is capable of reducing depression among adolescents. It was recommended, amongst others, that Counselling psychologists, Curriculum planners and Teachers could explore incorporating the contents of cognitive reframe into the secondary school curriculum for students’ capacity building to reduce depression tendencies.Keywords: adolescents, cognitive reframe, depression, self – esteem
Procedia PDF Downloads 282