Search results for: fuzzy sets
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1890

Search results for: fuzzy sets

780 Performants: A Digital Event Manager-Organizer

Authors: Ioannis Andrianakis, Manolis Falelakis, Maria Pavlidou, Konstantinos Papakonstantinou, Ermioni Avramidou, Dimitrios Kalogiannis, Nikolaos Milios, Katerina Bountakidou, Kiriakos Chatzidimitriou, Panagiotis Panagiotopoulos

Abstract:

Artistic events, such as concerts and performances, are challenging to organize because they involve many people with different skill sets. Small and medium venues often struggle to afford the costs and overheads of booking and hosting remote artists, especially if they lack sponsors or subsidies. This limits the opportunities for both venues and artists, especially those outside of big cities. However, more and more research shows that audiences prefer smaller-scale events and concerts, which benefit local economies and communities. To address this challenge, our project “PerformAnts: Digital Event Manager-Organizer” aims to develop a smart digital tool that automates and optimizes the processes and costs of live shows and tours. By using machine learning, applying best practices and training users through workshops, our platform offers a comprehensive solution for a growing market, enhances the mobility of artists and the accessibility of venues and allows professionals to focus on the creative aspects of concert production.

Keywords: event organization, creative industries, event promotion, machine learning

Procedia PDF Downloads 87
779 3D Human Reconstruction over Cloud Based Image Data via AI and Machine Learning

Authors: Kaushik Sathupadi, Sandesh Achar

Abstract:

Human action recognition modeling is a critical task in machine learning. These systems require better techniques for recognizing body parts and selecting optimal features based on vision sensors to identify complex action patterns efficiently. Still, there is a considerable gap and challenges between images and videos, such as brightness, motion variation, and random clutters. This paper proposes a robust approach for classifying human actions over cloud-based image data. First, we apply pre-processing and detection, human and outer shape detection techniques. Next, we extract valuable information in terms of cues. We extract two distinct features: fuzzy local binary patterns and sequence representation. Then, we applied a greedy, randomized adaptive search procedure for data optimization and dimension reduction, and for classification, we used a random forest. We tested our model on two benchmark datasets, AAMAZ and the KTH Multi-view football datasets. Our HMR framework significantly outperforms the other state-of-the-art approaches and achieves a better recognition rate of 91% and 89.6% over the AAMAZ and KTH multi-view football datasets, respectively.

Keywords: computer vision, human motion analysis, random forest, machine learning

Procedia PDF Downloads 36
778 Independence and Path Independence on Cayley Digraphs of Left Groups and Right Groups

Authors: Nuttawoot Nupo, Sayan Panma

Abstract:

A semigroup S is said to be a left (right) zero semigroup if S satisfies the equation xy=x (xy=y) for all x,y in S. In addition, the semigroup S is called a left (right) group if S is isomorphic to the direct product of a group and a left (right) zero semigroup. The Cayley digraph Cay(S,A) of a semigroup S with a connection set A is defined to be a digraph with the vertex set S and the arc set E(Cay(S,A))={(x,xa) | x∈S, a∈A} where A is any subset of S. All sets in this research are assumed to be finite. Let D be a digraph together with a vertex set V and an arc set E. Let u and v be two different vertices in V and I a nonempty subset of V. The vertices u and v are said to be independent if (u,v)∉E and (v,u)∉E. The set I is called an independent set of D if any two different vertices in I are independent. The independence number of D is the maximum cardinality of an independent set of D. Moreover, the vertices u and v are said to be path independent if there is no dipath from u to v and there is no dipath from v to u. The set I is called a path independent set of D if any two different vertices in I are path independent. The path independence number of D is the maximum cardinality of a path independent set of D. In this research, we describe a lower bound and an upper bound of the independence number of Cayley digraphs of left groups and right groups. Some examples corresponding to those bounds are illustrated here. Furthermore, the exact value of the path independence number of Cayley digraphs of left groups and right groups are also presented.

Keywords: Cayley digraphs, independence number, left groups, path independence number, right groups

Procedia PDF Downloads 231
777 Entrepreneurship Cure for Economic Under-Development in Nigeria: A Theoretical Perspective

Authors: Kurotimi Maurice Fems, Abara Onu, Francis W. D. Poazi

Abstract:

Scholars and development economists believe that the development of an economy depends largely on the creative and innovative ingenuity of its entrepreneurs. Others however, are of the opinion that the lack of entrepreneurs or entrepreneurial activities is not a constraint to economic development in any economy, particularly Nigeria. This paper sets out to explore the connectivity between entrepreneurship and economic development from a theoretical point of view, principally in Nigeria. A desk research approach was adopted where a conglomerate of literatures was reviewed on how entrepreneurship can spur economic growth or otherwise. The findings reveal that entrepreneurship is vital to the development of Nigeria and that, universities and other Higher Education Institutions must play the vital role of educating the people on entrepreneurship skills and competences. However, the problems and difficulties entrepreneurs face in Nigeria and the same problems suffocating the growth and development of its economy. Therefore, entrepreneurship cannot be said to be the sole cure for economic under-development in Nigeria but rather other factors such as empowering and granting the institutions autonomy and the provision of infrastructural capability, such as consistent electricity generation and supply, good system of transportation, implementing proposed economic policies in an effective and efficient manner etc., the cultural beliefs and mindset of the citizenry, was also found to be key in the development of any economy.

Keywords: economic underdevelopment, entrepreneurial, entrepreneurship, infrastructural under-development, oil boom, SMEs, unemployable

Procedia PDF Downloads 273
776 The Classification of Parkinson Tremor and Essential Tremor Based on Frequency Alteration of Different Activities

Authors: Chusak Thanawattano, Roongroj Bhidayasiri

Abstract:

This paper proposes a novel feature set utilized for classifying the Parkinson tremor and essential tremor. Ten ET and ten PD subjects are asked to perform kinetic, postural and resting tests. The empirical mode decomposition (EMD) is used to decompose collected tremor signal to a set of intrinsic mode functions (IMF). The IMFs are used for reconstructing representative signals. The feature set is composed of peak frequencies of IMFs and reconstructed signals. Hypothesize that the dominant frequency components of subjects with PD and ET change in different directions for different tests, difference of peak frequencies of IMFs and reconstructed signals of pairwise based tests (kinetic-resting, kinetic-postural and postural-resting) are considered as potential features. Sets of features are used to train and test by classifier including the quadratic discriminant classifier (QLC) and the support vector machine (SVM). The best accuracy, the best sensitivity and the best specificity are 90%, 87.5%, and 92.86%, respectively.

Keywords: tremor, Parkinson, essential tremor, empirical mode decomposition, quadratic discriminant, support vector machine, peak frequency, auto-regressive, spectrum estimation

Procedia PDF Downloads 443
775 Energy Management System with Temperature Rise Prevention on Hybrid Ships

Authors: Asser S. Abdelwahab, Nabil H. Abbasy, Ragi A. Hamdy

Abstract:

Marine shipping has now become one of the major worldwide contributors to pollution and greenhouse gas emissions. Hybrid ships technology based on multiple energy sources has taken a great scope of research to get rid of ship emissions and cut down fuel expenses. Insufficiency between power generated and the demand load to withstand the transient behavior on ships during severe climate conditions will lead to a blackout. Thus, an efficient energy management system (EMS) is a mandatory scope for achieving higher system efficiency while enhancing the lifetime of the onboard storage systems is another salient EMS scope. Considering energy storage system conditions, both the battery state of charge (SOC) and temperature represent important parameters to prevent any malfunction of the storage system that eventually degrades the whole system. In this paper, a two battery packs ratio fuzzy logic control model is proposed. The overall aim is to control the charging/discharging current while including both the battery SOC and temperature in the energy management system. The full designs of the proposed controllers are described and simulated using Matlab. The results prove the successfulness of the proposed controller in stabilizing the system voltage during both loading and unloading while keeping the energy storage system in a healthy condition.

Keywords: energy storage system, power shipboard, hybrid ship, thermal runaway

Procedia PDF Downloads 201
774 Impact of Small and Medium Enterprises on Economic Development in the Gulf Cooperation Council: Quantitative Approaches

Authors: Hanadi Al-Mubaraki, Michael Busler

Abstract:

Both in the developed and developing countries as well as Gulf Cooperation Council (GCC), the small and medium-sized enterprises (SMEs) proven to be main drivers of jobs creation and tools to accelerate economic development and economic diversification. This paper seeks to investigate and identify the strengths and weakness of SME as a veritable tool in economic development. A survey method was used to gather data from 171 SME from Gulf Cooperation Council (GCC). The research methodology uses a quantitative approach (survey) while data were collected with a structured questionnaire and analyzed with several descriptive statistics. The results of the study, therefore, will present sets of the strengths of SME in GCC such as 1) government supported local products (59%), 2) promoting SME local products rather than international products (47%), 3) reduce the legal and administrative procedures of SME establishment (46%) and weakness of SME in GCC such as: 1) lack of funding during the initial phase of the project (46%), 2) lack of liquidity during project continuity (39%), and 3) strong competition in the domestic and global market (38%). The study findings will be guidelines for academia and practitioners such as governments, policymakers, funded organizations, universities and strategic institutions for successful implementation.

Keywords: SME, economic development, GCC, strengths and weaknesses

Procedia PDF Downloads 145
773 New Two-Way Map-Reduce Join Algorithm: Hash Semi Join

Authors: Marwa Hussein Mohamed, Mohamed Helmy Khafagy, Samah Ahmed Senbel

Abstract:

Map Reduce is a programming model used to handle and support massive data sets. Rapidly increasing in data size and big data are the most important issue today to make an analysis of this data. map reduce is used to analyze data and get more helpful information by using two simple functions map and reduce it's only written by the programmer, and it includes load balancing , fault tolerance and high scalability. The most important operation in data analysis are join, but map reduce is not directly support join. This paper explains two-way map-reduce join algorithm, semi-join and per split semi-join, and proposes new algorithm hash semi-join that used hash table to increase performance by eliminating unused records as early as possible and apply join using hash table rather than using map function to match join key with other data table in the second phase but using hash tables isn't affecting on memory size because we only save matched records from the second table only. Our experimental result shows that using a hash table with hash semi-join algorithm has higher performance than two other algorithms while increasing the data size from 10 million records to 500 million and running time are increased according to the size of joined records between two tables.

Keywords: map reduce, hadoop, semi join, two way join

Procedia PDF Downloads 513
772 An Image Stitching Approach for Scoliosis Analysis

Authors: Siti Salbiah Samsudin, Hamzah Arof, Ainuddin Wahid Abdul Wahab, Mohd Yamani Idna Idris

Abstract:

Standard X-ray spine images produced by conventional screen-film technique have a limited field of view. This limitation may obstruct a complete inspection of the spine unless images of different parts of the spine are placed next to each other contiguously to form a complete structure. Another solution to producing a whole spine image is by assembling the digitized x-ray images of its parts automatically using image stitching. This paper presents a new Medical Image Stitching (MIS) method that utilizes Minimum Average Correlation Energy (MACE) filters to identify and merge pairs of x-ray medical images. The effectiveness of the proposed method is demonstrated in two sets of experiments involving two databases which contain a total of 40 pairs of overlapping and non-overlapping spine images. The experimental results are compared to those produced by the Normalized Cross Correlation (NCC) and Phase Only Correlation (POC) methods for comparison. It is found that the proposed method outperforms those of the NCC and POC methods in identifying both the overlapping and non-overlapping medical images. The efficacy of the proposed method is further vindicated by its average execution time which is about two to five times shorter than those of the POC and NCC methods.

Keywords: image stitching, MACE filter, panorama image, scoliosis

Procedia PDF Downloads 458
771 Evaluation of Geomechanical and Geometrical Parameters’ Effects on Hydro-Mechanical Estimation of Water Inflow into Underground Excavations

Authors: M. Mazraehli, F. Mehrabani, S. Zare

Abstract:

In general, mechanical and hydraulic processes are not independent of each other in jointed rock masses. Therefore, the study on hydro-mechanical coupling of geomaterials should be a center of attention in rock mechanics. Rocks in their nature contain discontinuities whose presence extremely influences mechanical and hydraulic characteristics of the medium. Assuming this effect, experimental investigations on intact rock cannot help to identify jointed rock mass behavior. Hence, numerical methods are being used for this purpose. In this paper, water inflow into a tunnel under significant water table has been estimated using hydro-mechanical discrete element method (HM-DEM). Besides, effects of geomechanical and geometrical parameters including constitutive model, friction angle, joint spacing, dip of joint sets, and stress factor on the estimated inflow rate have been studied. Results demonstrate that inflow rates are not identical for different constitutive models. Also, inflow rate reduces with increased spacing and stress factor.

Keywords: distinct element method, fluid flow, hydro-mechanical coupling, jointed rock mass, underground excavations

Procedia PDF Downloads 166
770 A Bivariate Inverse Generalized Exponential Distribution and Its Applications in Dependent Competing Risks Model

Authors: Fatemah A. Alqallaf, Debasis Kundu

Abstract:

The aim of this paper is to introduce a bivariate inverse generalized exponential distribution which has a singular component. The proposed bivariate distribution can be used when the marginals have heavy-tailed distributions, and they have non-monotone hazard functions. Due to the presence of the singular component, it can be used quite effectively when there are ties in the data. Since it has four parameters, it is a very flexible bivariate distribution, and it can be used quite effectively for analyzing various bivariate data sets. Several dependency properties and dependency measures have been obtained. The maximum likelihood estimators cannot be obtained in closed form, and it involves solving a four-dimensional optimization problem. To avoid that, we have proposed to use an EM algorithm, and it involves solving only one non-linear equation at each `E'-step. Hence, the implementation of the proposed EM algorithm is very straight forward in practice. Extensive simulation experiments and the analysis of one data set have been performed. We have observed that the proposed bivariate inverse generalized exponential distribution can be used for modeling dependent competing risks data. One data set has been analyzed to show the effectiveness of the proposed model.

Keywords: Block and Basu bivariate distributions, competing risks, EM algorithm, Marshall-Olkin bivariate exponential distribution, maximum likelihood estimators

Procedia PDF Downloads 143
769 Integrated Approach of Quality Function Deployment, Sensitivity Analysis and Multi-Objective Linear Programming for Business and Supply Chain Programs Selection

Authors: T. T. Tham

Abstract:

The aim of this study is to propose an integrated approach to determine the most suitable programs, based on Quality Function Deployment (QFD), Sensitivity Analysis (SA) and Multi-Objective Linear Programming model (MOLP). Firstly, QFD is used to determine business requirements and transform them into business and supply chain programs. From the QFD, technical scores of all programs are obtained. All programs are then evaluated through five criteria (productivity, quality, cost, technical score, and feasibility). Sets of weight of these criteria are built using Sensitivity Analysis. Multi-Objective Linear Programming model is applied to select suitable programs according to multiple conflicting objectives under a budget constraint. A case study from the Sai Gon-Mien Tay Beer Company is given to illustrate the proposed methodology. The outcome of the study provides a comprehensive picture for companies to select suitable programs to obtain the optimal solution according to their preference.

Keywords: business program, multi-objective linear programming model, quality function deployment, sensitivity analysis, supply chain management

Procedia PDF Downloads 123
768 Evaluation of Environmental Impact Assessment of Dam Using GIS/Remote Sensing-Review

Authors: Ntungamili Kenosi, Moatlhodi W. Letshwenyo

Abstract:

Negative environmental impacts due to construction of large projects such as dams have become an important aspect of land degradation. This paper will review the previous literature on the previous researches or study in the same area of study in the other parts of the world. After dam has been constructed, the actual environmental impacts are investigated and compared to the predicted results of the carried out Environmental Impact Assessment. GIS and Remote Sensing, play an important role in generating automated spatial data sets and in establishing spatial relationships. Results from other sources shows that the normalized vegetation index (NDVI) analysis was used to detect the spatial and temporal change of vegetation biomass in the study area. The result indicated that the natural vegetation biomass is declining. This is mainly due to the expansion of agricultural land and escalating human made structures in the area. Urgent environmental conservation is necessary when adjoining projects site. Less study on the evaluation of EIA on dam has been conducted in Botswana hence there is a need for the same study to be conducted and then it will be easy to be compared to other studies around the world.

Keywords: Botswana, dam, environmental impact assessment, GIS, normalized vegetation index (NDVI), remote sensing

Procedia PDF Downloads 405
767 On Estimating the Low Income Proportion with Several Auxiliary Variables

Authors: Juan F. Muñoz-Rosas, Rosa M. García-Fernández, Encarnación Álvarez-Verdejo, Pablo J. Moya-Fernández

Abstract:

Poverty measurement is a very important topic in many studies in social sciences. One of the most important indicators when measuring poverty is the low income proportion. This indicator gives the proportion of people of a population classified as poor. This indicator is generally unknown, and for this reason, it is estimated by using survey data, which are obtained by official surveys carried out by many statistical agencies such as Eurostat. The main feature of the mentioned survey data is the fact that they contain several variables. The variable used to estimate the low income proportion is called as the variable of interest. The survey data may contain several additional variables, also named as the auxiliary variables, related to the variable of interest, and if this is the situation, they could be used to improve the estimation of the low income proportion. In this paper, we use Monte Carlo simulation studies to analyze numerically the performance of estimators based on several auxiliary variables. In this simulation study, we considered real data sets obtained from the 2011 European Union Survey on Income and Living Condition. Results derived from this study indicate that the estimators based on auxiliary variables are more accurate than the naive estimator.

Keywords: inclusion probability, poverty, poverty line, survey sampling

Procedia PDF Downloads 458
766 Improving Forecasting Demand for Maintenance Spare Parts: Case Study

Authors: Abdulaziz Afandi

Abstract:

Minimizing the inventory cost, optimizing the inventory quantities, and increasing system operational availability are the main motivations to enhance forecasting demand of spare parts in a major power utility company in Medina. This paper reports in an effort made to optimize the orders quantities of spare parts by improving the method of forecasting the demand. The study focuses on equipment that has frequent spare parts purchase orders with uncertain demand. The pattern of the demand considers a lumpy pattern which makes conventional forecasting methods less effective. A comparison was made by benchmarking various methods of forecasting based on experts’ criteria to select the most suitable method for the case study. Three actual data sets were used to make the forecast in this case study. Two neural networks (NN) approaches were utilized and compared, namely long short-term memory (LSTM) and multilayer perceptron (MLP). The results as expected, showed that the NN models gave better results than traditional forecasting method (judgmental method). In addition, the LSTM model had a higher predictive accuracy than the MLP model.

Keywords: neural network, LSTM, MLP, forecasting demand, inventory management

Procedia PDF Downloads 127
765 Comparison of Different k-NN Models for Speed Prediction in an Urban Traffic Network

Authors: Seyoung Kim, Jeongmin Kim, Kwang Ryel Ryu

Abstract:

A database that records average traffic speeds measured at five-minute intervals for all the links in the traffic network of a metropolitan city. While learning from this data the models that can predict future traffic speed would be beneficial for the applications such as the car navigation system, building predictive models for every link becomes a nontrivial job if the number of links in a given network is huge. An advantage of adopting k-nearest neighbor (k-NN) as predictive models is that it does not require any explicit model building. Instead, k-NN takes a long time to make a prediction because it needs to search for the k-nearest neighbors in the database at prediction time. In this paper, we investigate how much we can speed up k-NN in making traffic speed predictions by reducing the amount of data to be searched for without a significant sacrifice of prediction accuracy. The rationale behind this is that we had a better look at only the recent data because the traffic patterns not only repeat daily or weekly but also change over time. In our experiments, we build several different k-NN models employing different sets of features which are the current and past traffic speeds of the target link and the neighbor links in its up/down-stream. The performances of these models are compared by measuring the average prediction accuracy and the average time taken to make a prediction using various amounts of data.

Keywords: big data, k-NN, machine learning, traffic speed prediction

Procedia PDF Downloads 363
764 Enhancing Knowledge Graph Convolutional Networks with Structural Adaptive Receptive Fields for Improved Node Representation and Information Aggregation

Authors: Zheng Zhihao

Abstract:

Recently, Knowledge Graph Framework Network (KGCN) has developed powerful capabilities in knowledge representation and reasoning tasks. However, traditional KGCN often uses a fixed weight mechanism when aggregating information, failing to make full use of rich structural information, resulting in a certain expression ability of node representation, and easily causing over-smoothing problems. In order to solve these challenges, the paper proposes an new graph neural network model called KGCN-STAR (Knowledge Graph Convolutional Network with Structural Adaptive Receptive Fields). This model dynamically adjusts the perception of each node by introducing a structural adaptive receptive field. wild range, and a subgraph aggregator is designed to capture local structural information more effectively. Experimental results show that KGCN-STAR shows significant performance improvement on multiple knowledge graph data sets, especially showing considerable capabilities in the task of representation learning of complex structures.

Keywords: knowledge graph, graph neural networks, structural adaptive receptive fields, information aggregation

Procedia PDF Downloads 33
763 The Principles of Democracy and Development: The Political and Philosophical Foundations of Development-Democracy in Africa

Authors: Fadeke Olu-Owolabi, Fayomi Oluyemi

Abstract:

The political and societal orders face the awesome task of overcoming the difficulties which lead to growing tensions and conflicts in Africa. At the core of analysis is the question, how stable and adaptable are established democracies, new democracies, and political and societal actors? The idea of development-democracy as implying the strong linkage between economic development and political democracy appropriately describes the distinguishing characteristic of this new demand for democracy in Africa. The theoretical study examines the political and philosophical foundation of the idea of development-democracy and the arguments presented to support the need for its adoption in Africa today. This paper critically examines the polemic between the advocates of developmental dictatorship and developmental-democracy and argues for the adoption of the latter in Africa. The paper sets out to expose for the political and philosophical foundation of developmental democracy maintaining that only democracy can facilitate development. This argument is supported further by the claim that both democracy and development are two sides of the same coin in the sense that the two are both ethical concepts. The paper also maintained that the only way by which democracy is worthwhile is when it is developmental. Finally, the paper affirms that since the two concepts of democracy and development are like the Siamese twins then the way out of Africa’s present crisis of development is to wholeheartedly embrace democracy. It posits that when genuine democracy is adopted, genuine and sustainable development can then be attained.

Keywords: democracy, development, polemic, principles

Procedia PDF Downloads 528
762 The Principles of Democracy and Development: The Political and Philosophical Foundations of Development-Development in Africa

Authors: Fadeke E. Olu-Owolabi, Fayomi Oluyemi

Abstract:

The political and societal orders face the awesome task of overcoming the difficulties which lead to growing tensions and conflicts in Africa. At the core of analysis is the question, how stable and adaptable are established democracies, new democracies, and political and societal actors? The idea of development-democracy as implying the strong linkage between economic development and political democracy appropriately describes the distinguishing characteristic of this new demand for democracy in Africa. The theoretical study examines the political and philosophical foundation of the idea of development-democracy and the arguments presented to support the need for its adoption in Africa today. This paper critically examines the polemic between the advocates of developmental dictatorship and developmental-democracy and argues for the adoption of the latter in Africa. The paper sets out to expose for the political and philosophical foundation of developmental democracy maintaining that only democracy can facilitate development. This argument is supported further by the claim that both democracy and development are two sides of the same coin in the sense that the two are both ethical concepts. The paper also maintained that the only way by which democracy is worthwhile is when it is developmental. Finally the paper affirms that since the two concepts of democracy and development are like the Siamese twins then the way out of Africa’s present crisis of development is to wholeheartedly embrace democracy. It posits that when genuine democracy is adopted, genuine and sustainable development can then be attained.

Keywords: democracy, development, polemic, principles

Procedia PDF Downloads 435
761 A General Framework for Knowledge Discovery from Echocardiographic and Natural Images

Authors: S. Nandagopalan, N. Pradeep

Abstract:

The aim of this paper is to propose a general framework for storing, analyzing, and extracting knowledge from two-dimensional echocardiographic images, color Doppler images, non-medical images, and general data sets. A number of high performance data mining algorithms have been used to carry out this task. Our framework encompasses four layers namely physical storage, object identification, knowledge discovery, user level. Techniques such as active contour model to identify the cardiac chambers, pixel classification to segment the color Doppler echo image, universal model for image retrieval, Bayesian method for classification, parallel algorithms for image segmentation, etc., were employed. Using the feature vector database that have been efficiently constructed, one can perform various data mining tasks like clustering, classification, etc. with efficient algorithms along with image mining given a query image. All these facilities are included in the framework that is supported by state-of-the-art user interface (UI). The algorithms were tested with actual patient data and Coral image database and the results show that their performance is better than the results reported already.

Keywords: active contour, Bayesian, echocardiographic image, feature vector

Procedia PDF Downloads 445
760 Comparative Study on Manet Using Soft Computing Techniques

Authors: Amarjit Singh, Tripatdeep Singh Dua, Vikas Attri

Abstract:

Mobile Ad-hoc Network is a combination of several nodes that create dynamically a specific network without using any base infrastructure. In this study all the mobile nodes can depended upon each other to send any data. Mobile host can pick up data and forwarding to their destination path. Basically MANET depend upon their Quality of Service which is highly constraints to the user. To give better services we need to improve the QOS. In these days MANET QOS requirement to use soft computing techniques. These techniques depend upon their specific requirement and which exists using MANET concepts. Using a soft computing techniques various protocol and algorithms may be considered. In this paper, we provide comparative study review of existing work done in MANET using various kind of soft computing techniques. Our review research is based on their specific protocol or algorithm which provide concern solution of QOS need. We discuss about various protocol through which routing in MANET. In Second section we clear the concepts of Soft Computing and their types. In third section we review the MANET using different kind of soft computing techniques work done before. In forth section we need to understand the concept of QoS requirement which exists in MANET and we done comparative study on different protocol used before and last we conclude the purpose of using MANET with soft computing techniques metrics.

Keywords: mobile ad-hoc network, fuzzy improved genetic approach, neural network, routing protocol, wireless mesh network

Procedia PDF Downloads 349
759 Influence of Season, Temperature, and Photoperiod on Growth of the Land Snail Helix aperta

Authors: S. Benbellil-Tafoughalt, J. M. Koene

Abstract:

Growth strategies are often plastic and influenced by environmental conditions. Terrestrial gastropods are particularly affected by seasonal and climatic variables, and growth rate and size at maturity are key traits in their life history. Therefore, we investigated juvenile growth of Helix aperta snails under four combinations of temperature and photoperiod using two sets of young snails, born in the laboratory from adults collected in either the autumn (aestivating snails) or spring (active snails). Parental snails were collected from Bakaro (Northeastern Algeria). Higher temperature increased adult size and reduced time to reproduction. Long day photoperiod also increased the final body weight, but had no effect on the length of the growth period. The season of birth had significant effects on length of the growth period and weight of hatchings, whereas this weight difference disappeared by adulthood. The spring snails took less time to develop and reached similar adult body weight as the autumn snails. These differences may be due to differences in egg size or quality between the snails from different seasons. More rapid growth in spring snails results in larger snails entering aestivation, a period with size-related mortality in this species.

Keywords: growth, Hélix aperta, photoperiod, temperature

Procedia PDF Downloads 336
758 Tracking Filtering Algorithm Based on ConvLSTM

Authors: Ailing Yang, Penghan Song, Aihua Cai

Abstract:

The nonlinear maneuvering target tracking problem is mainly a state estimation problem when the target motion model is uncertain. Traditional solutions include Kalman filtering based on Bayesian filtering framework and extended Kalman filtering. However, these methods need prior knowledge such as kinematics model and state system distribution, and their performance is poor in state estimation of nonprior complex dynamic systems. Therefore, in view of the problems existing in traditional algorithms, a convolution LSTM target state estimation (SAConvLSTM-SE) algorithm based on Self-Attention memory (SAM) is proposed to learn the historical motion state of the target and the error distribution information measured at the current time. The measured track point data of airborne radar are processed into data sets. After supervised training, the data-driven deep neural network based on SAConvLSTM can directly obtain the target state at the next moment. Through experiments on two different maneuvering targets, we find that the network has stronger robustness and better tracking accuracy than the existing tracking methods.

Keywords: maneuvering target, state estimation, Kalman filter, LSTM, self-attention

Procedia PDF Downloads 176
757 Flood-Induced River Disruption: Geomorphic Imprints and Topographic Effects in Kelantan River Catchment from Kemubu to Kuala Besar, Kelantan, Malaysia

Authors: Mohamad Muqtada Ali Khan, Nor Ashikin Shaari, Donny Adriansyah bin Nazaruddin, Hafzan Eva Bt Mansoor

Abstract:

Floods play a key role in landform evolution of an area. This process is likely to alter the topography of the earth’s surface. The present study area, Kota Bharu is very prone to floods extends from upstream of Kelantan River near Kemubu to the downstream area near Kuala Besar. These flood events which occur every year in the study area exhibit a strong bearing on river morphological set-up. In the present study, three satellite imageries of different time periods have been used to manifest the post-flood landform changes. The pre-processing of the images such as subset, geometric corrections and atmospheric corrections were carried-out using ENVI 4.5 followed by the analysis processes. Twenty sets of cross sections were plotted using software Erdas 9.2, ERDAS and ArcGis 10 for the all three images. The results show a significant change in the length of the cross section which suggest that the geomorphological processes play a key role in carving and shaping the river banks during the floods.

Keywords: flood induced, geomorphic imprints, Kelantan river, Malaysia

Procedia PDF Downloads 545
756 Supervised/Unsupervised Mahalanobis Algorithm for Improving Performance for Cyberattack Detection over Communications Networks

Authors: Radhika Ranjan Roy

Abstract:

Deployment of machine learning (ML)/deep learning (DL) algorithms for cyberattack detection in operational communications networks (wireless and/or wire-line) is being delayed because of low-performance parameters (e.g., recall, precision, and f₁-score). If datasets become imbalanced, which is the usual case for communications networks, the performance tends to become worse. Complexities in handling reducing dimensions of the feature sets for increasing performance are also a huge problem. Mahalanobis algorithms have been widely applied in scientific research because Mahalanobis distance metric learning is a successful framework. In this paper, we have investigated the Mahalanobis binary classifier algorithm for increasing cyberattack detection performance over communications networks as a proof of concept. We have also found that high-dimensional information in intermediate features that are not utilized as much for classification tasks in ML/DL algorithms are the main contributor to the state-of-the-art of improved performance of the Mahalanobis method, even for imbalanced and sparse datasets. With no feature reduction, MD offers uniform results for precision, recall, and f₁-score for unbalanced and sparse NSL-KDD datasets.

Keywords: Mahalanobis distance, machine learning, deep learning, NS-KDD, local intrinsic dimensionality, chi-square, positive semi-definite, area under the curve

Procedia PDF Downloads 78
755 Changing Roles for Academic Leaders: A Comparative Study between Sweden and South Africa

Authors: Åse Nygren, Linda du Plessis

Abstract:

Academic leadership has traditionally been associated with collegiality, consensus and a limitation in time. These factors alone have resulted in a complex and fuzzy leadership culture in academia, combined with a strong sense of autonomy among researchers and teachers. A more competitive educational market have resulted in increased audit as well as recent autonomy reforms with higher demands on effectiveness, cost awareness and accountability in higher education. In recent years, with the introduction of new public management, academic leadership has been in a state of transition moving from collegiality towards manergerialism. University reforms and changes, which have gradually taken place in most western countries in the past decade, including Sweden and South-Africa, have contributed to the notion that collegial academic leadership is questioned. Academic leadership is traditionally associated with vice-chancellors, deans and heads of departments. This paper will focus on “outer circle” of academic leaders, consisting of, for example, program directors, directors of disciplines, course coordinators and research leaders. We investigate the meaning of collegiality for these groups of academic leaders in Sweden and South-Africa. The paper rests on a comparative study made on universities both in Sweden and in South-Africa. The aim of the comparison is to achieve a wider scope and to investigate perspectives from both inside and outside of Bologna.

Keywords: academic leadership, new public management, collegiality, consensus

Procedia PDF Downloads 415
754 Wage Differentiation Patterns of Households Revisited for Turkey in Same Industry Employment: A Pseudo-Panel Approach

Authors: Yasin Kutuk, Bengi Yanik Ilhan

Abstract:

Previous studies investigate the wage differentiations among regions in Turkey between couples who work in the same industry and those who work in different industries by using the models that is appropriate for cross sectional data. However, since there is no available panel data for this investigation in Turkey, pseudo panels using repeated cross-section data sets of the Household Labor Force Surveys 2004-2014 are employed in order to open a new way to examine wage differentiation patterns. For this purpose, household heads are separated into groups with respect to their household composition. These groups’ membership is assumed to be fixed over time such as age groups, education, gender, and NUTS1 (12 regions) Level. The average behavior of them can be tracked overtime same as in the panel data. Estimates using the pseudo panel data would be consistent with the estimates using genuine panel data on individuals if samples are representative of the population which has fixed composition, characteristics. With controlling the socioeconomic factors, wage differentiation of household income is affected by social, cultural and economic changes after global economic crisis emerged in US. It is also revealed whether wage differentiation is changing among the birth cohorts.

Keywords: wage income, same industry, pseudo panel, panel data econometrics

Procedia PDF Downloads 397
753 Formation of Academia-Industry Collaborative Model to Improve the Quality of Teaching-Learning Process

Authors: M. Dakshayini, P. Jayarekha

Abstract:

In traditional output-based education system, class room lecture and laboratory are the traditional delivery methods used during the course. Written examination and lab examination have been used as a conventional tool for evaluating student’s performance. Hence, there are certain apprehensions that the traditional education system may not efficiently prepare the students for competent professional life. This has led for the change from Traditional output-based education to Outcome-Based Education (OBE). OBE first sets the ideal programme learning outcome consecutively on increasing degree of complexity that students are expected to master. The core curriculum, teaching methodologies and assessment tools are then designed to achieve the proposed outcomes mainly focusing on what students can actually attain after they are taught. In this paper, we discuss a promising applications based learning and evaluation component involving industry collaboration to improve the quality of teaching and student learning process. Incorporation of this component definitely improves the quality of student learning in engineering education and helps the student to attain the competency as per the graduate attributes. This may also reduce the Industry-academia gap.

Keywords: outcome-based education, programme learning outcome, teaching-learning process, evaluation, industry collaboration

Procedia PDF Downloads 449
752 Research on Optimization Strategies for the Negative Space of Urban Rail Transit Based on Urban Public Art Planning

Authors: Kexin Chen

Abstract:

As an important method of transportation to solve the demand and supply contradiction generated in the rapid urbanization process, urban rail traffic system has been rapidly developed over the past ten years in China. During the rapid development, the space of urban rail Transit has encountered many problems, such as space simplification, sensory experience dullness, and poor regional identification, etc. This paper, focus on the study of the negative space of subway station and spatial softening, by comparing and learning from foreign cases. The article sorts out cases at home and abroad, make a comparative study of the cases, analysis more diversified setting of public art, and sets forth propositions on the domestic type of public art in the space of urban rail transit for reference, then shows the relationship of the spatial attribute in the space of urban rail transit and public art form. In this foundation, it aims to characterize more diverse setting ways for public art; then suggests the three public art forms corresponding properties, such as static presenting mode, dynamic image mode, and spatial softening mode; finds out the method of urban public art to optimize negative space.

Keywords: diversification, negative space, optimization strategy, public art planning

Procedia PDF Downloads 207
751 Global City Typologies: 300 Cities and Over 100 Datasets

Authors: M. Novak, E. Munoz, A. Jana, M. Nelemans

Abstract:

Cities and local governments the world over are interested to employ circular strategies as a means to bring about food security, create employment and increase resilience. The selection and implementation of circular strategies is facilitated by modeling the effects of strategies locally and understanding the impacts such strategies have had in other (comparable) cities and how that would translate locally. Urban areas are heterogeneous because of their geographic, economic, social characteristics, governance, and culture. In order to better understand the effect of circular strategies on urban systems, we create a dataset for over 300 cities around the world designed to facilitate circular strategy scenario modeling. This new dataset integrates data from over 20 prominent global national and urban data sources, such as the Global Human Settlements layer and International Labour Organisation, as well as incorporating employment data from over 150 cities collected bottom up from local departments and data providers. The dataset is made to be reproducible. Various clustering techniques are explored in the paper. The result is sets of clusters of cities, which can be used for further research, analysis, and support comparative, regional, and national policy making on circular cities.

Keywords: data integration, urban innovation, cluster analysis, circular economy, city profiles, scenario modelling

Procedia PDF Downloads 180