Search results for: finite%20element%20model
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2365

Search results for: finite%20element%20model

1255 Semigroups of Linear Transformations with Fixed Subspaces: Green’s Relations and Ideals

Authors: Yanisa Chaiya, Jintana Sanwong

Abstract:

Let V be a vector space over a field and W a subspace of V. Let Fix(V,W) denote the set of all linear transformations on V with fix all elements in W. In this paper, we show that Fix(V,W) is a semigroup under the composition of maps and describe Green’s relations on this semigroup in terms of images, kernels and the dimensions of subspaces of the quotient space V/W where V/W = {v+W : v is an element in V} with v+W = {v+w : w is an element in W}. Let dim(U) denote the dimension of a vector space U and Vα = {vα : v is an element in V} where vα is an image of v under a linear transformation α. For any cardinal number a let a'= min{b : b > a}. We also show that the ideals of Fix(V,W) are precisely the sets. Fix(r) ={α ∊ Fix(V,W) : dim(Vα/W) < r} where 1 ≤ r ≤ a' and a = dim(V/W). Moreover, we prove that if V is a finite-dimensional vector space, then every ideal of Fix(V,W) is principle.

Keywords: Green’s relations, ideals, linear transformation semi-groups, principle ideals

Procedia PDF Downloads 279
1254 Circular Raft Footings Strengthened by Stone Columns under Static Loads

Authors: R. Ziaie Moayed, B. Mohammadi-Haji

Abstract:

Stone columns have been widely employed to improve the load-settlement characteristics of soft soils. The results of two small scale displacement control loading tests on stone columns were used in order to validate numerical finite element simulations. Additionally, a series of numerical calculations of static loading have been performed on strengthened raft footing to investigate the effects of using stone columns on bearing capacity of footings. The bearing capacity of single and group of stone columns under static loading compares with unimproved ground.

Keywords: circular raft footing, numerical analysis, validation, vertically encased stone column

Procedia PDF Downloads 292
1253 The Effects of Inferior Tilt Fixation on a Glenoid Components in Reverse Shoulder-Arthroplasty

Authors: Soo Min Kim, Soo-Won Chae, Soung-Yon Kim, Haea Lee, Ju Yong Kang, Juneyong Lee, Seung-Ho Han

Abstract:

Reverse total shoulder arthroplasty (RTSA) has become an effective treatment option for cuff tear arthropathy and massive, irreparable rotator cuff tears and indications for its use are expanding. Numerous methods for optimal fixation of the glenoid component have been suggested, such as inferior overhang, inferior tilt, to maximize initial fixation and prevent glenoid component loosening. The inferior tilt fixation of a glenoid component has been suggested, which is expected to decrease scapular notching and to improve the stability of a glenoid component fixation in reverse total shoulder arthroplasty. Inferior tilt fixation of the glenoid component has been suggested, which can improve stability and, because it provides the most uniform compressive forces and imparts the least amount of tensile forces and micromotion, reduce the likelihood of mechanical failure. Another study reported that glenoid component inferior tilt improved impingement-free range of motion as well as minimized the scapular notching. Several authors have shown that inferior tilt of a glenoid component reduces scapular notching. However, controversy still exists regarding its importance in the literature. In this study the influence of inferior tilt fixation on the primary stability of a glenoid component has been investigated. Finite element models were constructed from cadaveric scapulae and glenoid components were implanted with neutral and 10° inferior tilts. Most previous biomechanical studies regarding the effect of glenoid component inferior tilt used a solid rigid polyurethane foam or sawbones block, not cadaveric scapulae, to evaluate the stability of the RTSA. Relative micromotions at the bone-glenoid component interface, and the distribution of bone stresses under the glenoid component and around the screws were analyzed and compared between neutral and 10° inferior tilt groups. Contact area between bone and screws and cut surface area of the cancellous bone exposed after reaming of the glenoid have also been investigated because of the fact that cancellous and cortical bone thickness vary depending on the resection level of the inferior glenoid bone. The greater relative micromotion of the bone-glenoid component interface occurred in the 10° inferior tilt group than in the neutral tilt group, especially at the inferior area of the bone-glenoid component interface. Bone stresses under the glenoid component and around the screws were also higher in the 10° inferior tilt group than in the neutral tilt group, especially at the inferior third of the glenoid bone surface under the glenoid component and inferior scapula. Thus inferior tilt fixation of the glenoid component may adversely affect the primary stability and longevity of the reverse total shoulder arthroplasty.

Keywords: finite element analysis, glenoid component, inferior tilt, reverse total shoulder arthroplasty

Procedia PDF Downloads 274
1252 Solving Stochastic Eigenvalue Problem of Wick Type

Authors: Hassan Manouzi, Taous-Meriem Laleg-Kirati

Abstract:

In this paper we study mathematically the eigenvalue problem for stochastic elliptic partial differential equation of Wick type. Using the Wick-product and the Wiener-Ito chaos expansion, the stochastic eigenvalue problem is reformulated as a system of an eigenvalue problem for a deterministic partial differential equation and elliptic partial differential equations by using the Fredholm alternative. To reduce the computational complexity of this system, we shall use a decomposition-coordination method. Once this approximation is performed, the statistics of the numerical solution can be easily evaluated.

Keywords: eigenvalue problem, Wick product, SPDEs, finite element, Wiener-Ito chaos expansion

Procedia PDF Downloads 345
1251 Comparison of the Effect of Strand Diameters, Providing Beam to Column Connection

Authors: Mustafa Kaya

Abstract:

In this study, the effect of pre-stressed strand diameters, providing the beam-to-column connections, was investigated from both experimental, and analytical aspects. In the experimental studies, the strength and stiffness, the capacities of the precast specimens were compared. The precast specimen with strands of 15.24 mm reached an equal strength of the reference specimen. Parallel results were obtained during the analytical studies from the aspects of strength, and behavior, but in terms of stiffness, it was seen that the initial stiffness of the analytical models was lower than that of the tested specimen.

Keywords: post-tensioned connections, beam to column connections, finite element method, strand diameter

Procedia PDF Downloads 319
1250 A Methodology for Characterising the Tail Behaviour of a Distribution

Authors: Serge Provost, Yishan Zang

Abstract:

Following a review of various approaches that are utilized for classifying the tail behavior of a distribution, an easily implementable methodology that relies on an arctangent transformation is presented. The classification criterion is actually based on the difference between two specific quantiles of the transformed distribution. The resulting categories enable one to classify distributional tails as distinctly short, short, nearly medium, medium, extended medium and somewhat long, providing that at least two moments exist. Distributions possessing a single moment are said to be long tailed while those failing to have any finite moments are classified as having an extremely long tail. Several illustrative examples will be presented.

Keywords: arctangent transformation, tail classification, heavy-tailed distributions, distributional moments

Procedia PDF Downloads 107
1249 Mechanical Properties of Biological Tissues

Authors: Young June Yoon

Abstract:

We will present four different topics in estimating the mechanical properties of biological tissues. First we elucidate the viscoelastic behavior of collagen molecules whose diameter is a couple of nanometers. By using the molecular dynamics simulation, we observed the viscoelastic behavior in different pulling velocity. Second, the protein layer, so called ‘sheath’ in enamel microstructure reduces the stress concentration in enamel minerals. We examined the result by using the finite element methods. Third, the anisotropic elastic constants of dentin are estimated by micromechanical analysis and estimated results are close to the experimentally measured data. Last, new formulation between the fabric tensor and the wave velocity is established for calcaneus by employing the poroelasticity. This formulation can be simply used for future experiments.

Keywords: tissues, mechanics, mechanical properties, wave propagation

Procedia PDF Downloads 355
1248 Glushkov's Construction for Functional Subsequential Transducers

Authors: Aleksander Mendoza

Abstract:

Glushkov's construction has many interesting properties, and they become even more evident when applied to transducers. This article strives to show the vast range of possible extensions and optimisations for this algorithm. Special flavour of regular expressions is introduced, which can be efficiently converted to e-free functional subsequential weighted finite state transducers. Produced automata are very compact, as they contain only one state for each symbol (from input alphabet) of original expression and only one transition for each range of symbols, no matter how large. Such compactified ranges of transitions allow for efficient binary search lookup during automaton evaluation. All the methods and algorithms presented here were used to implement open-source compiler of regular expressions for multitape transducers.

Keywords: weighted automata, transducers, Glushkov, follow automata, regular expressions

Procedia PDF Downloads 141
1247 Tuned Mass Damper Vibration Control of Pedestrian Bridge

Authors: Qinglin Shu

Abstract:

Based on the analysis of the structural vibration comfort of a domestic bridge, this paper studies the vibration reduction control principle of TMD, the derivation process of design parameter optimization and how to simulate TMD in the finite element software ANSYS. The research shows that, in view of the problem that the comfort level of a bridge exceeds the limit in individual working conditions, the vibration reduction control design of the bridge can effectively reduce the vibration of the structure by using TMD. Calculations show that when the mass ratio of TMD is 0.01, the vibration reduction rate under different working conditions is more than 90%, and the dynamic displacement of the TMD mass block is within 0.01m, indicating that the design of TMD is reasonable and safe.

Keywords: pedestrian bridges, human-induced vibration, comfort, tuned mass dampers

Procedia PDF Downloads 95
1246 A Study on Analysis of Magnetic Field in Induction Generator for Small Francis Turbine Generator

Authors: Young-Kwan Choi, Han-Sang Jeong, Yeon-Ho Ok, Jae-Ho Choi

Abstract:

The purpose of this study is to verify validity of design by testing output of induction generator through finite element analysis before manufacture of induction generator designed. Characteristics in the operating domain of induction generator can be understood through analysis of magnetic field according to load (rotational speed) of induction generator. Characteristics of induction generator such as induced voltage, current, torque, magnetic flux density (magnetic flux saturation), and loss can be predicted by analysis of magnetic field.

Keywords: electromagnetic analysis, induction generator, small hydro power generator, small francis turbine generator

Procedia PDF Downloads 1454
1245 Finite Element Method (FEM) Simulation, design and 3D Print of Novel Highly Integrated PV-TEG Device with Improved Solar Energy Harvest Efficiency

Authors: Jaden Lu, Olivia Lu

Abstract:

Despite the remarkable advancement of solar cell technology, the challenge of optimizing total solar energy harvest efficiency persists, primarily due to significant heat loss. This excess heat not only diminishes solar panel output efficiency but also curtails its operational lifespan. A promising approach to address this issue is the conversion of surplus heat into electricity. In recent years, there is growing interest in the use of thermoelectric generators (TEG) as a potential solution. The integration of efficient TEG devices holds the promise of augmenting overall energy harvest efficiency while prolonging the longevity of solar panels. While certain research groups have proposed the integration of solar cells and TEG devices, a substantial gap between conceptualization and practical implementation remains, largely attributed to low thermal energy conversion efficiency of TEG devices. To bridge this gap and meet the requisites of practical application, a feasible strategy involves the incorporation of a substantial number of p-n junctions within a confined unit volume. However, the manufacturing of high-density TEG p-n junctions presents a formidable challenge. The prevalent solution often leads to large device sizes to accommodate enough p-n junctions, consequently complicating integration with solar cells. Recently, the adoption of 3D printing technology has emerged as a promising solution to address this challenge by fabricating high-density p-n arrays. Despite this, further developmental efforts are necessary. Presently, the primary focus is on the 3D printing of vertically layered TEG devices, wherein p-n junction density remains constrained by spatial limitations and the constraints of 3D printing techniques. This study proposes a novel device configuration featuring horizontally arrayed p-n junctions of Bi2Te3. The structural design of the device is subjected to simulation through the Finite Element Method (FEM) within COMSOL Multiphysics software. Various device configurations are simulated to identify optimal device structure. Based on the simulation results, a new TEG device is fabricated utilizing 3D Selective laser melting (SLM) printing technology. Fusion 360 facilitates the translation of the COMSOL device structure into a 3D print file. The horizontal design offers a unique advantage, enabling the fabrication of densely packed, three-dimensional p-n junction arrays. The fabrication process entails printing a singular row of horizontal p-n junctions using the 3D SLM printing technique in a single layer. Subsequently, successive rows of p-n junction arrays are printed within the same layer, interconnected by thermally conductive copper. This sequence is replicated across multiple layers, separated by thermal insulating glass. This integration created in a highly compact three-dimensional TEG device with high density p-n junctions. The fabricated TEG device is then attached to the bottom of the solar cell using thermal glue. The whole device is characterized, with output data closely matching with COMSOL simulation results. Future research endeavors will encompass the refinement of thermoelectric materials. This includes the advancement of high-resolution 3D printing techniques tailored to diverse thermoelectric materials, along with the optimization of material microstructures such as porosity and doping. The objective is to achieve an optimal and highly integrated PV-TEG device that can substantially increase the solar energy harvest efficiency.

Keywords: thermoelectric, finite element method, 3d print, energy conversion

Procedia PDF Downloads 49
1244 Non-Circular Carbon Fiber Reinforced Polymers Chainring Failure Analysis

Authors: A. Elmikaty, Z. Thanawarothon, L. Mezeix

Abstract:

This paper presents a finite element model to simulate the teeth failure of non-circular composite chainring. Model consists of the chainring and a part of the chain. To reduce the size of the model, only the first 11 rollers are simulated. In order to validate the model, it is firstly applied to a circular aluminum chainring and evolution of the stress in the teeth is compared with the literature. Then, effect of the non-circular shape is studied through three different loading positions. Strength of non-circular composite chainring and failure scenario is investigated. Moreover, two composite lay-ups are proposed to observe the influence of the stacking. Results show that composite material can be used but the lay-up has a large influence on the strength. Finally, loading position does not have influence on the first composite failure that always occurs in the first tooth.

Keywords: CFRP, composite failure, FEA, non-circular chainring

Procedia PDF Downloads 277
1243 Numerical Study of a Nanofluid in a Truncated Cone

Authors: B. Mahfoud, A. Bendjaghlouli

Abstract:

Natural convection is simulated in a truncated cone filled with nanofluid. Inclined and top walls have constant temperature where the heat source is located on the bottom wall of the conical container which is thermally insulated. A finite volume approach is used to solve the governing equations using the SIMPLE algorithm for different parameters such as Rayleigh number, inclination angle of inclined walls of the enclosure and heat source length. The results showed an enhancement in cooling system by using a nanofluid, when conduction regime is assisted. The inclination angle of inclined sidewall and heat source length affect the heat transfer rate and the maximum temperature.

Keywords: heat source, truncated cone, nanofluid, natural convection

Procedia PDF Downloads 296
1242 Progressive Damage Analysis of Mechanically Connected Composites

Authors: Şeyma Saliha Fidan, Ozgur Serin, Ata Mugan

Abstract:

While performing verification analyses under static and dynamic loads that composite structures used in aviation are exposed to, it is necessary to obtain the bearing strength limit value for mechanically connected composite structures. For this purpose, various tests are carried out in accordance with aviation standards. There are many companies in the world that perform these tests in accordance with aviation standards, but the test costs are very high. In addition, due to the necessity of producing coupons, the high cost of coupon materials, and the long test times, it is necessary to simulate these tests on the computer. For this purpose, various test coupons were produced by using reinforcement and alignment angles of the composite radomes, which were integrated into the aircraft. Glass fiber reinforced and Quartz prepreg is used in the production of the coupons. The simulations of the tests performed according to the American Society for Testing and Materials (ASTM) D5961 Procedure C standard were performed on the computer. The analysis model was created in three dimensions for the purpose of modeling the bolt-hole contact surface realistically and obtaining the exact bearing strength value. The finite element model was carried out with the Analysis System (ANSYS). Since a physical break cannot be made in the analysis studies carried out in the virtual environment, a hypothetical break is realized by reducing the material properties. The material properties reduction coefficient was determined as 10%, which is stated to give the most realistic approach in the literature. There are various theories in this method, which is called progressive failure analysis. Because the hashin theory does not match our experimental results, the puck progressive damage method was used in all coupon analyses. When the experimental and numerical results are compared, the initial damage and the resulting force drop points, the maximum damage load values ​​, and the bearing strength value are very close. Furthermore, low error rates and similar damage patterns were obtained in both test and simulation models. In addition, the effects of various parameters such as pre-stress, use of bushing, the ratio of the distance between the bolt hole center and the plate edge to the hole diameter (E/D), the ratio of plate width to hole diameter (W/D), hot-wet environment conditions were investigated on the bearing strength of the composite structure.

Keywords: puck, finite element, bolted joint, composite

Procedia PDF Downloads 82
1241 Solution of Some Boundary Value Problems of the Generalized Theory of Thermo-Piezoelectricity

Authors: Manana Chumburidze

Abstract:

We have considered a non-classical model of dynamical problems for a conjugated system of differential equations arising in thermo-piezoelectricity, which was formulated by Toupin – Mindlin. The basic concepts and the general theory of solvability for isotropic homogeneous elastic media is considered. They are worked by using the methods the Laplace integral transform, potential method and singular integral equations. Approximate solutions of mixed boundary value problems for finite domain, bounded by the some closed surface are constructed. They are solved in explicitly by using the generalized Fourier's series method.

Keywords: thermo-piezoelectricity, boundary value problems, Fourier's series, isotropic homogeneous elastic media

Procedia PDF Downloads 450
1240 Stability Analysis of Three-Lobe Journal Bearing Lubricated with a Micropolar Fluids

Authors: Boualem Chetti

Abstract:

The dynamic characteristics of a three-lobe journal bearing lubricated with micropolar fluids are determined by the linear stability theory. Lubricating oil containing additives and contaminants is modeled as micropolar fluid. The modified Reynolds equation is obtained using the micropolar lubrication theory and the finite difference technique has been used to solve it. The dynamic characteristics in terms of stiffness, damping coefficients, the critical mass and whirl ratio are determined for various values of size of material characteristic length and the coupling number. The computed results show compared with Newtonian fluids, that micropolar fluid exhibits better stability.

Keywords: three-lobe bearings, micropolar fluid, dynamic characteristics, stability analysis

Procedia PDF Downloads 341
1239 Computational and Experimental Determination of Acoustic Impedance of Internal Combustion Engine Exhaust

Authors: A. O. Glazkov, A. S. Krylova, G. G. Nadareishvili, A. S. Terenchenko, S. I. Yudin

Abstract:

The topic of the presented materials concerns the design of the exhaust system for a certain internal combustion engine. The exhaust system can be divided into two parts. The first is the engine exhaust manifold, turbocharger, and catalytic converters, which are called “hot part.” The second part is the gas exhaust system, which contains elements exclusively for reducing exhaust noise (mufflers, resonators), the accepted designation of which is the "cold part." The design of the exhaust system from the point of view of acoustics, that is, reducing the exhaust noise to a predetermined level, consists of working on the second part. Modern computer technology and software make it possible to design "cold part" with high accuracy in a given frequency range but with the condition of accurately specifying the input parameters, namely, the amplitude spectrum of the input noise and the acoustic impedance of the noise source in the form of an engine with a "hot part". Getting this data is a difficult problem: high temperatures, high exhaust gas velocities (turbulent flows), and high sound pressure levels (non-linearity mode) do not allow the calculated results to be applied with sufficient accuracy. The aim of this work is to obtain the most reliable acoustic output parameters of an engine with a "hot part" based on a complex of computational and experimental studies. The presented methodology includes several parts. The first part is a finite element simulation of the "cold part" of the exhaust system (taking into account the acoustic impedance of radiation of outlet pipe into open space) with the result in the form of the input impedance of "cold part". The second part is a finite element simulation of the "hot part" of the exhaust system (taking into account acoustic characteristics of catalytic units and geometry of turbocharger) with the result in the form of the input impedance of the "hot part". The next third part of the technique consists of the mathematical processing of the results according to the proposed formula for the convergence of the mathematical series of summation of multiple reflections of the acoustic signal "cold part" - "hot part". This is followed by conducting a set of tests on an engine stand with two high-temperature pressure sensors measuring pulsations in the nozzle between "hot part" and "cold part" of the exhaust system and subsequent processing of test results according to a well-known technique in order to separate the "incident" and "reflected" waves. The final stage consists of the mathematical processing of all calculated and experimental data to obtain a result in the form of a spectrum of the amplitude of the engine noise and its acoustic impedance.

Keywords: acoustic impedance, engine exhaust system, FEM model, test stand

Procedia PDF Downloads 38
1238 Generator Subgraphs of the Wheel

Authors: Neil M. Mame

Abstract:

We consider only finite graphs without loops nor multiple edges. Let G be a graph with E(G) = {e1, e2, …., em}. The edge space of G, denoted by ε(G), is a vector space over the field Z2. The elements of ε(G) are all the subsets of E(G). Vector addition is defined as X+Y = X Δ Y, the symmetric difference of sets X and Y, for X, Y ∈ ε(G). Scalar multiplication is defined as 1.X =X and 0.X = Ø for X ∈ ε(G). The set S ⊆ ε(G) is called a generating set if every element ε(G) is a linear combination of the elements of S. For a non-empty set X ∈ ε(G), the smallest subgraph with edge set X is called edge-induced subgraph of G, denoted by G[X]. The set EH(G) = { A ∈ ε(G) : G[A] ≅ H } denotes the uniform set of H with respect to G and εH(G) denotes the subspace of ε(G) generated by EH(G). If εH(G) is generating set, then we call H a generator subgraph of G. This paper gives the characterization for the generator subgraphs of the wheel that contain cycles and gives the necessary conditions for the acyclic generator subgraphs of the wheel.

Keywords: edge space, edge-induced subgraph, generator subgraph, wheel

Procedia PDF Downloads 455
1237 Intelligent and Optimized Placement for CPLD Devices

Authors: Abdelkader Hadjoudja, Hajar Bouazza

Abstract:

The PLD/CPLD devices are widely used for logic synthesis since several decades. Based on sum of product terms (PTs) architecture, the PLD/CPLD offer a high degree of flexibility to support various application requirements. They are suitable for large combinational logic, finite state machines as well as intensive I/O designs. CPLDs offer very predictable timing characteristics and are therefore ideal for critical control applications. This paper describes how the logic synthesis techniques, such as 1) XOR detection, 2) logic doubling, 3) complement of a Boolean function are combined, applied and used to optimize the CPLDs devices architecture that is based on PAL-like macrocells. Our goal is to use these techniques for minimizing the number of macrocells required to implement a circuit and minimize the delay of mapped circuit.

Keywords: CPLD, doubling, optimization, XOR

Procedia PDF Downloads 264
1236 Slip Limit Prediction of High-Strength Bolt Joints Based on Local Approach

Authors: Chang He, Hiroshi Tamura, Hiroshi Katsuchi, Jiaqi Wang

Abstract:

In this study, the aim is to infer the slip limit (static friction limit) of contact interfaces in bolt friction joints by analyzing other bolt friction joints with the same contact surface but in a different shape. By using the Weibull distribution to deal with microelements on the contact surface statistically, the slip limit of a certain type of bolt joint was predicted from other types of bolt joint with the same contact surface. As a result, this research succeeded in predicting the slip limit of bolt joins with different numbers of contact surfaces and with different numbers of bolt rows.

Keywords: bolt joints, slip coefficient, finite element method, Weibull distribution

Procedia PDF Downloads 149
1235 Epistemic Uncertainty Analysis of Queue with Vacations

Authors: Baya Takhedmit, Karim Abbas, Sofiane Ouazine

Abstract:

The vacations queues are often employed to model many real situations such as computer systems, communication networks, manufacturing and production systems, transportation systems and so forth. These queueing models are solved at fixed parameters values. However, the parameter values themselves are determined from a finite number of observations and hence have uncertainty associated with them (epistemic uncertainty). In this paper, we consider the M/G/1/N queue with server vacation and exhaustive discipline where we assume that the vacation parameter values have uncertainty. We use the Taylor series expansions approach to estimate the expectation and variance of model output, due to epistemic uncertainties in the model input parameters.

Keywords: epistemic uncertainty, M/G/1/N queue with vacations, non-parametric sensitivity analysis, Taylor series expansion

Procedia PDF Downloads 417
1234 Study the Effect of Friction on Barreling Behavior during Upsetting Process Using Anand Model

Authors: H. Mohammadi Majd, M. Jalali Azizpour, V. Tavaf, A. Jaderi

Abstract:

In upsetting processes contact friction significantly influence metal flow, stress-strain state and process parameters. Furthermore, tribological conditions influence workpiece deformation and its dimensional precision. A viscoplastic constitutive law, the Anand model, was applied to represent the inelastic deformation behavior in upsetting process. This paper presents research results of the influence of contact friction coefficient on a workpiece deformation in upsetting process.finite element parameters. This technique was tested for three different specimens simulations of the upsetting and the corresponding material and can be successfully employed to predict the deformation of the upsetting process.

Keywords: friction, upsetting, barreling, Anand model

Procedia PDF Downloads 316
1233 Unconfined Laminar Nanofluid Flow and Heat Transfer around a Square Cylinder with an Angle of Incidence

Authors: Rafik Bouakkaz

Abstract:

A finite-volume method simulation is used to investigate two dimensional unsteady flow of nanofluids and heat transfer characteristics past a square cylinder inclined with respect to the main flow in the laminar regime. The computations are carried out of nanoparticle volume fractions varying from 0 ≤ ∅ ≤ 5% for an inclination angle in the range 0° ≤ δ ≤ 45° at a Reynolds number of 100. The variation of stream line and isotherm patterns are presented for the above range of conditions. Also, it is noticed that the addition of nanoparticles enhances the heat transfer. Hence, the local Nusselt number is found to increase with increasing value of the concentration of nanoparticles for the fixed value of the inclination angle.

Keywords: copper nanoparticles, heat transfer, square cylinder, inclination angle

Procedia PDF Downloads 174
1232 Numerical Solution of Space Fractional Order Solute Transport System

Authors: Shubham Jaiswal

Abstract:

In the present article, a drive is taken to compute the solution of spatial fractional order advection-dispersion equation having source/sink term with given initial and boundary conditions. The equation is converted to a system of ordinary differential equations using second-kind shifted Chebyshev polynomials, which have finally been solved using finite difference method. The striking feature of the article is the fast transportation of solute concentration as and when the system approaches fractional order from standard order for specified values of the parameters of the system.

Keywords: spatial fractional order advection-dispersion equation, second-kind shifted Chebyshev polynomial, collocation method, conservative system, non-conservative system

Procedia PDF Downloads 240
1231 The Cracks Propagation Monitoring of a Cantilever Beam Using Modal Analysis

Authors: Morteza Raki, Abolghasem Zabihollah, Omid Askari

Abstract:

Cantilever beam is a simplified sample of a lot of mechanical components used in a wide range of applications, including many industries such as gas turbine blade. Due to the nature of the operating conditions, beams are subject to variety of damages especially crack propagates. Crack propagation may lead to catastrophic failure during operation. Therefore, online detection of crack presence and its propagation is very important and may reduce possible significant cost of the whole system failure. This paper aims to investigate the effect of cracks presence and crack propagation on one end fixed beam`s vibration. A finite element model will be developed for the blade in which the modal response of the structure with and without crack will be studied. 

Keywords: blade, crack propagation, health monitoring, modal analysis

Procedia PDF Downloads 320
1230 Exergy Analysis of Regenerative Organic Rankine Cycle Using Turbine Bleeding

Authors: Kyoung Hoon Kim

Abstract:

This work presents an exergetical performance analysis of regenerative organic Rankine cycle (ORC) using turbine bleeding based on the second law of thermodynamics for recovery of finite thermal energy. Effects of system parameters such as turbine bleeding pressure and turbine bleeding fraction are theoretically investigated on the exergy destructions (anergies) at various components of the system as well as the exergy and the second-law efficiencies. Under the conditions of the critical fraction of turbine bleeding, the simulation results show that the exergy efficiency decreases monotonically with respect to the bleeding pressure, however, the second-law efficiency has a peak with respect to the turbine bleeding pressure.

Keywords: organic Rankine cycle, ORC, regeneration, turbine bleeding, exergy, second-law efficiency

Procedia PDF Downloads 485
1229 3D Non-Linear Analyses by Using Finite Element Method about the Prediction of the Cracking in Post-Tensioned Dapped-End Beams

Authors: Jatziri Y. Moreno-Martínez, Arturo Galván, Israel Enrique Herrera Díaz, José Ramón Gasca Tirado

Abstract:

In recent years, for the elevated viaducts in Mexico City, a construction system based on precast/pre-stressed concrete elements has been used, in which the bridge girders are divided in two parts by imposing a hinged support in sections where the bending moments that are originated by the gravity loads in a continuous beam are minimal. Precast concrete girders with dapped ends are a representative sample of a behavior that has complex configurations of stresses that make them more vulnerable to cracking due to flexure–shear interaction. The design procedures for ends of the dapped girders are well established and are based primarily on experimental tests performed for different configurations of reinforcement. The critical failure modes that can govern the design have been identified, and for each of them, the methods for computing the reinforcing steel that is needed to achieve adequate safety against failure have been proposed. Nevertheless, the design recommendations do not include procedures for controlling diagonal cracking at the entrant corner under service loading. These cracks could cause water penetration and degradation because of the corrosion of the steel reinforcement. The lack of visual access to the area makes it difficult to detect this damage and take timely corrective actions. Three-dimensional non-linear numerical models based on Finite Element Method to study the cracking at the entrant corner of dapped-end beams were performed using the software package ANSYS v. 11.0. The cracking was numerically simulated by using the smeared crack approach. The concrete structure was modeled using three-dimensional solid elements SOLID65 capable of cracking in tension and crushing in compression. Drucker-Prager yield surface was used to include the plastic deformations. The longitudinal post-tension was modeled using LINK8 elements with multilinear isotropic hardening behavior using von Misses plasticity. The reinforcement was introduced with smeared approach. The numerical models were calibrated using experimental tests carried out in “Instituto de Ingeniería, Universidad Nacional Autónoma de México”. In these numerical models the characteristics of the specimens were considered: typical solution based on vertical stirrups (hangers) and on vertical and horizontal hoops with a post-tensioned steel which contributed to a 74% of the flexural resistance. The post-tension is given by four steel wires with a 5/8’’ (16 mm) diameter. Each wire was tensioned to 147 kN and induced an average compressive stress of 4.90 MPa on the concrete section of the dapped end. The loading protocol consisted on applying symmetrical loading to reach the service load (180 kN). Due to the good correlation between experimental and numerical models some additional numerical models were proposed by considering different percentages of post-tension in order to find out how much it influences in the appearance of the cracking in the reentrant corner of the dapped-end beams. It was concluded that the increasing of percentage of post-tension decreases the displacements and the cracking in the reentrant corner takes longer to appear. The authors acknowledge at “Universidad de Guanajuato, Campus Celaya-Salvatierra” and the financial support of PRODEP-SEP (UGTO-PTC-460) of the Mexican government. The first author acknowledges at “Instituto de Ingeniería, Universidad Nacional Autónoma de México”.

Keywords: concrete dapped-end beams, cracking control, finite element analysis, postension

Procedia PDF Downloads 202
1228 Evaluation of Stone Column Behavior Strengthened Circular Raft Footing under Static Load

Authors: R. Ziaie Moayed, B. Mohammadi-Haji

Abstract:

Stone columns have been widely employing to improve the load-settlement characteristics of soft soils. The results of two small scale displacement control loading tests on stone columns were used in order to validate numerical finite element simulations. Additionally, a series of numerical calculations of static loading have been performed on strengthened raft footing to investigate the effects of using stone columns on bearing capacity of footings. The bearing capacity of single and group of stone columns under static loading compares with unimproved ground.

Keywords: circular raft footing, numerical analysis, validation, vertically encased stone column

Procedia PDF Downloads 277
1227 Adjustment of the Level of Vibrational Force on Targeted Teeth

Authors: Amin Akbari, Dongcai Wang, Huiru Li, Xiaoping Du, Jie Chen

Abstract:

The effect of vibrational force (VF) on accelerating orthodontic tooth movement depends on the level of delivered stimulation to the tooth in terms of peak load (PL), which requires contacts between the tooth and the VF device. A personalized device ensures the contacts, but the resulting PL distribution on the teeth is unknown. Furthermore, it is unclear whether the PL on particular teeth can be adjusted to the prescribed values. The objective of this study was to investigate the efficacy of apersonalized VF device in controlling the level of stimulation on two teeth, the mandibular canines and 2nd molars. A 3-D finite element (FE) model of human dentition, including teeth, PDL, and alveolar bone, was created from the cone beam computed tomography images of an anonymous subject. The VF was applied to the teeth through a VFdevice consisting of a mouthpiece with engraved tooth profile of the subject and a VF source that applied 0.3 N force with the frequency of 30 Hz. The dentition and mouthpiece were meshed using 10-node tetrahedral elements. Interface elements were created at the interfaces between the teeth and the mouthpiece. The upper and lower teeth bite on the mouthpiece to receive the vibration. The depth of engraved individual tooth profile could be adjusted, which was accomplished by adding a layer of material as an interference or removing a layer of material as a clearance to change the PL on the tooth. The interference increases the PL while the clearance decreases it. Fivemouthpiece design cases were simulated, which included a mouthpiece without interference/clearance; the mouthpieces with bilateral interferences on both mandibular canines and 2nd molars with magnitudes of 0.1, 0.15, and 0.2-mm, respectively; and mouthpiece with bilateral 0.3-mm clearances on the four teeth. Then, the force distributions on the entire dentition were compared corresponding to these adjustments. The PL distribution on the teeth is uneven when there is no interference or clearance. Among all teeth, the anterior segment receives the highest level of PL. Adding 0.1, 0.15, and 0.2-mm interferences to the canines and 2nd molars bilaterally leads to increase of the PL on the canines by 10, 62, and 73 percent and on the 2nd molar by 14, 55, and 87 percent, respectively. Adding clearances to the canines and 2nd molars by removing the contactsbetween these teeth and the mouthpiece results in zero PL on them. Moreover, introducing interference to mandibular canines and 2nd molarsredistributes the PL on the entireteeth. The share of the PL on the anterior teeth are reduced. The use of the personalized mouthpiece ensures contactsof the teeth to the mouthpiece so that all teeth can be stimulated. However, the PL distribution is uneven. Adding interference between a tooth and the mouthpiece increases the PL while introducing clearance decreases the PL. As a result, the PL is redistributed. This study confirms that the level of VF stimulation on the individual tooth can be adjusted to a prescribed value.

Keywords: finite element method, orthodontic treatment, stress analysis, tooth movement, vibrational force

Procedia PDF Downloads 212
1226 A Unified Fitting Method for the Set of Unified Constitutive Equations for Modelling Microstructure Evolution in Hot Deformation

Authors: Chi Zhang, Jun Jiang

Abstract:

Constitutive equations are very important in finite element (FE) modeling, and the accuracy of the material constants in the equations have significant effects on the accuracy of the FE models. A wide range of constitutive equations are available; however, fitting the material constants in the constitutive equations could be complex and time-consuming due to the strong non-linearity and relationship between the constants. This work will focus on the development of a set of unified MATLAB programs for fitting the material constants in the constitutive equations efficiently. Users will only need to supply experimental data in the required format and run the program without modifying functions or precisely guessing the initial values, or finding the parameters in previous works and will be able to fit the material constants efficiently.

Keywords: constitutive equations, FE modelling, MATLAB program, non-linear curve fitting

Procedia PDF Downloads 82