Search results for: feed forward neural network
6236 Pellet Feed Improvements through Vitamin C Supplementation for Snakehead (Channa striata) Culture in Vietnam
Authors: Pham Minh Duc, Tran Thi Thanh Hien, David A. Bengtson
Abstract:
Laboratory feeding trial: the study was conducted to find out the optimal dietary vitamin C, or ascorbic acid (AA) levels in terms of the growth performance of snakehead. The growth trial included six treatments with five replications. Each treatment contained 0, 125, 250, 500, 1000 and 2000 mg AA equivalent kg⁻¹ diet which included six iso-nitrogenous (45% protein), iso-lipid (9% lipid) and isocaloric (4.2 Kcal.g¹). Eighty snakehead fingerlings (6.24 ± 0.17 g.fish¹) were assigned randomly in 0.5 m³ composite tanks. Fish were fed twice daily on demand for 8 weeks. The result showed that growth rates increased, protein efficiency ratio increased and the feed conversion ratio decreased in treatments with AA supplementation compared with control treatment. The survival rate of fish tends to increase with increase AA level. The number of RBCs, lysozyme in treatments with AA supplementation tended to rise significantly proportional to the concentration of AA. The number of WBCs of snakehead in treatments with AA supplementation was higher 2.1-3.6 times. In general, supplementation of AA in the diets for snakehead improved growth rate, feed efficiency and immune response. Hapa on-farm trial: based on the results of the laboratory feeding trial, the effects of AA on snakehead in hapas to simulate farm conditions, was tested using the following treatments: commercial feed; commercial feed plus hand mixed AA at 500; 750 and 1000 mg AA.kg⁻¹; SBM diet without AA; SBM diet plus 500; 750 and 1000 mg AA.kg⁻¹. The experiment was conducted in two experimental ponds (only SBM diet without AA placed in one pond and the rest in the other pond) with four replicate hapa each. Stocking density was 150 fish.m² and culture period was 5 months until market size was attained. The growth performance of snakehead and economic aspects were examined in this research.Keywords: fish health, growth rate, snakehead, Vitamin C
Procedia PDF Downloads 1026235 Blood Profile, Organs, and Carcass Analysis and Performance of Broilers Fed Cowpea Testa Based Diet
Authors: O. J. Osunkeye, P. O. Fakolade, B. E. Olorede
Abstract:
Broilers productions depend on the provision of adequate and goo quality feed containing all the nutrients, including proteins, carbohydrate, fats, vitamins, minerals and water. All these nutrients have to be provided at a required amount to support maximum productivity and normal physiological functions and demands. Among these nutrients proteins are particularly important, since they are essential for meat and muscle production, optimum growth and health status. Poultry production industry in the developing countries is been threatened because of the over dependency on Soybean meal as one of the key/major conventional protein stuff for feeding livestock. Even the competition between man and livestock for Soybean and other protein sources made the price of this feed stuff to be on the increase. Hence the needs to seek for an alternative feed stuff which is cheap and less competitive. This study showed the blood profile, organ and carcass characteristics and performance of broilers fed with Cowpea Testa Meal (CTM) based diets. Four diets were formulated with Cowpea Testa replacing Soybean at 0%, 15%, 30%, and 50% graded levels. One hundred and twenty day-old unsexed broiler birds were allotted to these four treatments with 3 replicates of 10 birds per replicate. The results showed no significant differences in all the haematological parameters measured (P>0.05), the serum metabolites analysis revealed significant different in Cholesterol (99.8 mg/dl, 112.84 mg/dl, 131.07 mg/dl and 97.66 mg/dl respectively) (P<0.05) among others. There were significant differences within the diets for average daily weight gain, average feed intake and feed to gain ratio. The birds on control (0%) and CTM gained more weight than those fed with 30% and 50% CTM diets. The organs and carcass primal cuts of the broilers expressed significant different for the spleen (0.12 g, 0.09 g, 0.11 g and 0.14 g respectively), lungs (0.97 g, 0.72 g, 0.77 g and 1.01g respectively) and proventriculus (0.96 g, 0.99 g, 0.81 g and 0.85 g respectively) (P<0.05). For the carcass, there were no significant differences (P<0.05) in the breast, thigh, drumstick, wing and neck except for the Back (21.27 g, 21.04 g, 17.71 g, and 17.89 g respectively). In conclusion, CTM inclusion in broiler’s diet could be used as an alternative feed stuff in replacement of Soybean meal up to 15% without any adverse effects as revealed by the blood profile and to increase the growth performance of the birds.Keywords: physiological functions, cholesterol, blood profiles, CTM and carcass analysis
Procedia PDF Downloads 6116234 CERD: Cost Effective Route Discovery in Mobile Ad Hoc Networks
Authors: Anuradha Banerjee
Abstract:
A mobile ad hoc network is an infrastructure less network, where nodes are free to move independently in any direction. The nodes have limited battery power; hence, we require energy efficient route discovery technique to enhance their lifetime and network performance. In this paper, we propose an energy-efficient route discovery technique CERD that greatly reduces the number of route requests flooded into the network and also gives priority to the route request packets sent from the routers that has communicated with the destination very recently, in single or multi-hop paths. This does not only enhance the lifetime of nodes but also decreases the delay in tracking the destination.Keywords: ad hoc network, energy efficiency, flooding, node lifetime, route discovery
Procedia PDF Downloads 3466233 Case for Simulating Consumer Response to Feed in Tariff Based on Socio-Economic Parameters
Authors: Fahad Javed, Tasneem Akhter, Maria Zafar, Adnan Shafique
Abstract:
Evaluation and quantification of techniques is critical element of research and development of technology. Simulations and models play an important role in providing the tools for such assessments. When we look at technologies which impact or is dependent on an average Joe consumer then modeling the socio-economic and psychological aspects of the consumer also gain an importance. For feed in tariff for home consumers which is being deployed for average consumer may force many consumers to be adapters of the technology. Understanding how consumers will adapt this technologies thus hold as much significance as evaluating how the techniques would work in consumer agnostic scenarios. In this paper we first build the case for simulators which accommodate socio-economic realities of the consumers to evaluate smart grid technologies, provide a glossary of data that can aid in this effort and present an abstract model to capture and simulate consumers' adaptation and behavioral response to smart grid technologies. We provide a case study to express the power of such simulators.Keywords: smart grids, simulation, socio-economic parameters, feed in tariff (FiT), forecasting
Procedia PDF Downloads 3566232 Optimisation of the Hydrometeorological-Hydrometric Network: A Case Study in Greece
Authors: E. Baltas, E. Feloni, G. Bariamis
Abstract:
The operation of a network of hydrometeorological-hydrometric stations is basic infrastructure for the management of water resources, as well as, for flood protection. The assessment of water resources potential led to the necessity of adoption management practices including a multi-criteria analysis for the optimum design of the region’s station network. This research work aims at the optimisation of a new/existing network, using GIS methods. The planning of optimum network stations is based on the guidelines of international organizations such as World Meteorological Organization (WMO). The uniform spatial distribution of the stations, the drainage basin for the hydrometric stations and criteria concerning the low terrain slope, the accessibility to the stations and proximity to hydrological interest sites, were taken into consideration for its development. The abovementioned methodology has been implemented for two different areas the Florina municipality and the Argolis area in Greece, and comparison of the results has been conducted.Keywords: GIS, hydrometeorological, hydrometric, network, optimisation
Procedia PDF Downloads 2856231 Improved Predictive Models for the IRMA Network Using Nonlinear Optimisation
Authors: Vishwesh Kulkarni, Nikhil Bellarykar
Abstract:
Cellular complexity stems from the interactions among thousands of different molecular species. Thanks to the emerging fields of systems and synthetic biology, scientists are beginning to unravel these regulatory, signaling, and metabolic interactions and to understand their coordinated action. Reverse engineering of biological networks has has several benefits but a poor quality of data combined with the difficulty in reproducing it limits the applicability of these methods. A few years back, many of the commonly used predictive algorithms were tested on a network constructed in the yeast Saccharomyces cerevisiae (S. cerevisiae) to resolve this issue. The network was a synthetic network of five genes regulating each other for the so-called in vivo reverse-engineering and modeling assessment (IRMA). The network was constructed in S. cereviase since it is a simple and well characterized organism. The synthetic network included a variety of regulatory interactions, thus capturing the behaviour of larger eukaryotic gene networks on a smaller scale. We derive a new set of algorithms by solving a nonlinear optimization problem and show how these algorithms outperform other algorithms on these datasets.Keywords: synthetic gene network, network identification, optimization, nonlinear modeling
Procedia PDF Downloads 1556230 Relationship between Feeding Type and the Occurrence of Aflatoxin M1 in Milk of High Yielding Dairy Cows
Authors: G. S. Sumanasekara, W. M. P. B. Weerasingheg
Abstract:
The major problem associated with concentrate feeds used for feeding cattle is declining quality by contamination with Aflatoxins. Objective: The aim of the study was to detect levels of Aflatoxin M1(AFM1) in cow milk , AFM1 levels present in milk related to different feed types and to identify the relationship between feed type and Aflatoxin M1 in milk. Design: cross sectional study design. Milk samples from each farm assessed for presence of AFM1 using High Performance Liquid Chromatographic method. Setting: Ten dairy farms located in Nuwara-Eliya district were randomly selected.AFM1 analysis was done using High Performance Liquid Chromatography(HPLC). Results: The results indicated that AFM1 was present in 50% of samples. Coconut poonac shown the most significant relationship among individual feeds having a correlation of 0.65 and P value of 0.042 . Among feed combinations, coconut poonac and beer pulp combination showed the highest correlation of 0.77 and P value of 0.05. Grasses had shown a very poor relationship with the AFM1 occurrence in milk (r=0.053, P=0.885). Relationship between overall concentrate feeds in the study and AFM1 in milk, it was clear that they had a significant relationship having correlation of 0.65 and P value of 0.042. Majority of samples lied between 0-10 ng L-1 of AFM1 and one sample exceeded above 30 ng L-1. Two samples had AFM1 concentrations between 22-32 ng L-1. One sample lied between 32-42ng L-1, did not exceed the EU recommended level of 50 ng L-1. The presence of AFM1 in milk under various management and feeding conditions is yet to be investigated in Sri Lanka.Keywords: aflatoxin M1, aspergillus, cattle feed, concentrates, cow milk, high perforamance liquid chromatography
Procedia PDF Downloads 2896229 Using Plant Oils in Total Mixed Ration on Voluntary Feed Intake and Blood Metabolize of Crossbred Thai Native X American Brahman Cattle
Authors: Wantanee Polviset, N. Prakobsaeng, N. Wetchakama, C. Yuangklang
Abstract:
The aim of this study was to evaluate the effect of soybean oil, palm oil and sunflower oil supplementations in total mixed ration on voluntary feed intake, dry matter (DM) digestibility and blood metabolize in crossbred Thai native x American Brahman Cattle. Three Thai native x American Brahman cattle, one-year-old with liveweight of 116±22.59 kg, were randomly assigned according to a 3 x 3 latin square design. Each period of feeding lasted for 21 days to receive three dietary treatments were soybean oil, palm oil and sunflower oil supplementation at 5%. During the experimental periods, all cattle were fed a diet with total mixed ration containing roughage to concentrate ratio of 40:60 and rice straw was used as a roughage source. Based on the present study, the results revealed that voluntary feed intake (kgDM/head/day) and %BW DM intake were not affected (P>0.05), whereas percentage of dry matter digestibility was greater with the soybean oil supplementation (P<0.01). It was also found that blood glucose, blood urea nitrogen, cholesterol, triglyceride, high density lipoprotein and low density lipoprotein in plasma were similar among treatments. Based on this study, supplementing 5% soybean oil in total mixed ration (TMR) diets was suitable in beef cattle without any effect dry matter digestibility and blood metabolites.Keywords: plant oils, feed intake, blood metabolize, crossbred Thai native x Brahman cattle
Procedia PDF Downloads 3196228 Evaluation of Robust Feature Descriptors for Texture Classification
Authors: Jia-Hong Lee, Mei-Yi Wu, Hsien-Tsung Kuo
Abstract:
Texture is an important characteristic in real and synthetic scenes. Texture analysis plays a critical role in inspecting surfaces and provides important techniques in a variety of applications. Although several descriptors have been presented to extract texture features, the development of object recognition is still a difficult task due to the complex aspects of texture. Recently, many robust and scaling-invariant image features such as SIFT, SURF and ORB have been successfully used in image retrieval and object recognition. In this paper, we have tried to compare the performance for texture classification using these feature descriptors with k-means clustering. Different classifiers including K-NN, Naive Bayes, Back Propagation Neural Network , Decision Tree and Kstar were applied in three texture image sets - UIUCTex, KTH-TIPS and Brodatz, respectively. Experimental results reveal SIFTS as the best average accuracy rate holder in UIUCTex, KTH-TIPS and SURF is advantaged in Brodatz texture set. BP neuro network works best in the test set classification among all used classifiers.Keywords: texture classification, texture descriptor, SIFT, SURF, ORB
Procedia PDF Downloads 3676227 Feature Extraction and Impact Analysis for Solid Mechanics Using Supervised Finite Element Analysis
Authors: Edward Schwalb, Matthias Dehmer, Michael Schlenkrich, Farzaneh Taslimi, Ketron Mitchell-Wynne, Horen Kuecuekyan
Abstract:
We present a generalized feature extraction approach for supporting Machine Learning (ML) algorithms which perform tasks similar to Finite-Element Analysis (FEA). We report results for estimating the Head Injury Categorization (HIC) of vehicle engine compartments across various impact scenarios. Our experiments demonstrate that models learned using features derived with a simple discretization approach provide a reasonable approximation of a full simulation. We observe that Decision Trees could be as effective as Neural Networks for the HIC task. The simplicity and performance of the learned Decision Trees could offer a trade-off of a multiple order of magnitude increase in speed and cost improvement over full simulation for a reasonable approximation. When used as a complement to full simulation, the approach enables rapid approximate feedback to engineering teams before submission for full analysis. The approach produces mesh independent features and is further agnostic of the assembly structure.Keywords: mechanical design validation, FEA, supervised decision tree, convolutional neural network.
Procedia PDF Downloads 1396226 A Performance Model for Designing Network in Reverse Logistic
Authors: S. Dhib, S. A. Addouche, T. Loukil, A. Elmhamedi
Abstract:
In this paper, a reverse supply chain network is investigated for a decision making. This decision is surrounded by complex flows of returned products, due to the increasing quantity, the type of returned products and the variety of recovery option products (reuse, recycling, and refurbishment). The most important problem in the reverse logistic network (RLN) is to orient returned products to the suitable type of recovery option. However, returned products orientations from collect sources to the recovery disposition have not well considered in performance model. In this study, we propose a performance model for designing a network configuration on reverse logistics. Conceptual and analytical models are developed with taking into account operational, economic and environmental factors on designing network.Keywords: reverse logistics, network design, performance model, open loop configuration
Procedia PDF Downloads 4346225 Statistical Analysis of Surface Roughness and Tool Life Using (RSM) in Face Milling
Authors: Mohieddine Benghersallah, Lakhdar Boulanouar, Salim Belhadi
Abstract:
Currently, higher production rate with required quality and low cost is the basic principle in the competitive manufacturing industry. This is mainly achieved by using high cutting speed and feed rates. Elevated temperatures in the cutting zone under these conditions shorten tool life and adversely affect the dimensional accuracy and surface integrity of component. Thus it is necessary to find optimum cutting conditions (cutting speed, feed rate, machining environment, tool material and geometry) that can produce components in accordance with the project and having a relatively high production rate. Response surface methodology is a collection of mathematical and statistical techniques that are useful for modelling and analysis of problems in which a response of interest is influenced by several variables and the objective is to optimize this response. The work presented in this paper examines the effects of cutting parameters (cutting speed, feed rate and depth of cut) on to the surface roughness through the mathematical model developed by using the data gathered from a series of milling experiments performed.Keywords: Statistical analysis (RSM), Bearing steel, Coating inserts, Tool life, Surface Roughness, End milling.
Procedia PDF Downloads 4296224 A Convolutional Neural Network Based Vehicle Theft Detection, Location, and Reporting System
Authors: Michael Moeti, Khuliso Sigama, Thapelo Samuel Matlala
Abstract:
One of the principal challenges that the world is confronted with is insecurity. The crime rate is increasing exponentially, and protecting our physical assets especially in the motorist industry, is becoming impossible when applying our own strength. The need to develop technological solutions that detect and report theft without any human interference is inevitable. This is critical, especially for vehicle owners, to ensure theft detection and speedy identification towards recovery efforts in cases where a vehicle is missing or attempted theft is taking place. The vehicle theft detection system uses Convolutional Neural Network (CNN) to recognize the driver's face captured using an installed mobile phone device. The location identification function uses a Global Positioning System (GPS) to determine the real-time location of the vehicle. Upon identification of the location, Global System for Mobile Communications (GSM) technology is used to report or notify the vehicle owner about the whereabouts of the vehicle. The installed mobile app was implemented by making use of python as it is undoubtedly the best choice in machine learning. It allows easy access to machine learning algorithms through its widely developed library ecosystem. The graphical user interface was developed by making use of JAVA as it is better suited for mobile development. Google's online database (Firebase) was used as a means of storage for the application. The system integration test was performed using a simple percentage analysis. Sixty (60) vehicle owners participated in this study as a sample, and questionnaires were used in order to establish the acceptability of the system developed. The result indicates the efficiency of the proposed system, and consequently, the paper proposes the use of the system can effectively monitor the vehicle at any given place, even if it is driven outside its normal jurisdiction. More so, the system can be used as a database to detect, locate and report missing vehicles to different security agencies.Keywords: CNN, location identification, tracking, GPS, GSM
Procedia PDF Downloads 1626223 The Load Balancing Algorithm for the Star Interconnection Network
Authors: Ahmad M. Awwad, Jehad Al-Sadi
Abstract:
The star network is one of the promising interconnection networks for future high speed parallel computers, it is expected to be one of the future-generation networks. The star network is both edge and vertex symmetry, it was shown to have many gorgeous topological proprieties also it is owns hierarchical structure framework. Although much of the research work has been done on this promising network in literature, it still suffers from having enough algorithms for load balancing problem. In this paper we try to work on this issue by investigating and proposing an efficient algorithm for load balancing problem for the star network. The proposed algorithm is called Star Clustered Dimension Exchange Method SCDEM to be implemented on the star network. The proposed algorithm is based on the Clustered Dimension Exchange Method (CDEM). The SCDEM algorithm is shown to be efficient in redistributing the load balancing as evenly as possible among all nodes of different factor networks.Keywords: load balancing, star network, interconnection networks, algorithm
Procedia PDF Downloads 3196222 Laying Performance of Itik Pinas (Anas platyrynchos Linnaeus) as Affected by Garlic (Allium sativum) Powder in Drinking Water
Authors: Gianne Bianca P. Manalo, Ernesto A. Martin, Vanessa V. Velasco
Abstract:
The laying performance, egg quality, egg classification, and income over feed cost of Improved Philippine Mallard duck (Itik Pinas) were examined as influenced by garlic powder in drinking water. A total of 48 ducks (42 females and 6 males) were used in the study. The ducks were allocated into two treatments - with garlic powder (GP) and without garlic powder (control) in drinking water. Each treatment had three replicates with eight ducks (7 females and 1 male) per replication. The results showed that there was a significant (P = 0.03) difference in average egg weight where higher values were attained by ducks with GP (77.67 g ± 0.64) than the control (75.64 g ± 0.43). The supplementation of garlic powder in drinking water, however, did not affect the egg production, feed intake, FCR, egg mass, livability, egg quality and egg classification. The Itik Pinas with GP in drinking water had numerically higher income over feed cost than those without. GP in drinking water can be considered in raising Itik Pinas. Further studies on increasing level of GP and long feeding duration also merit consideration to substantiate the findings.Keywords: phytogenic, garlic powder, Itik-Pinas, egg weight, egg production
Procedia PDF Downloads 816221 A Study of Traffic Assignment Algorithms
Authors: Abdelfetah Laouzai, Rachid Ouafi
Abstract:
In a traffic network, users usually choose their way so that it reduces their travel time between pairs origin-destination. This behavior might seem selfish as it produces congestions in different parts of the network. The traffic assignment problem (TAP) models the interactions between congestion and user travel decisions to obtain vehicles flows over each axis of the traffic network. The resolution methods of TAP serve as a tool allows predicting users’ distribution, identifying congesting points and affecting the travelers’ behavior in the choice of their route in the network following dynamic data. In this article, we will present a review about specific resolution approach of TAP. A comparative analysis is carried out on those approaches so that it highlights the characteristics, advantages and disadvantages of each.Keywords: network traffic, travel decisions, approaches, traffic assignment, flows
Procedia PDF Downloads 4726220 Intrusion Detection Using Dual Artificial Techniques
Authors: Rana I. Abdulghani, Amera I. Melhum
Abstract:
With the abnormal growth of the usage of computers over networks and under the consideration or agreement of most of the computer security experts who said that the goal of building a secure system is never achieved effectively, all these points led to the design of the intrusion detection systems(IDS). This research adopts a comparison between two techniques for network intrusion detection, The first one used the (Particles Swarm Optimization) that fall within the field (Swarm Intelligence). In this Act, the algorithm Enhanced for the purpose of obtaining the minimum error rate by amending the cluster centers when better fitness function is found through the training stages. Results show that this modification gives more efficient exploration of the original algorithm. The second algorithm used a (Back propagation NN) algorithm. Finally a comparison between the results of two methods used were based on (NSL_KDD) data sets for the construction and evaluation of intrusion detection systems. This research is only interested in clustering the two categories (Normal and Abnormal) for the given connection records. Practices experiments result in intrude detection rate (99.183818%) for EPSO and intrude detection rate (69.446416%) for BP neural network.Keywords: IDS, SI, BP, NSL_KDD, PSO
Procedia PDF Downloads 3826219 Neuron-Based Control Mechanisms for a Robotic Arm and Hand
Authors: Nishant Singh, Christian Huyck, Vaibhav Gandhi, Alexander Jones
Abstract:
A robotic arm and hand controlled by simulated neurons is presented. The robot makes use of a biological neuron simulator using a point neural model. The neurons and synapses are organised to create a finite state automaton including neural inputs from sensors, and outputs to effectors. The robot performs a simple pick-and-place task. This work is a proof of concept study for a longer term approach. It is hoped that further work will lead to more effective and flexible robots. As another benefit, it is hoped that further work will also lead to a better understanding of human and other animal neural processing, particularly for physical motion. This is a multidisciplinary approach combining cognitive neuroscience, robotics, and psychology.Keywords: cell assembly, force sensitive resistor, robot, spiking neuron
Procedia PDF Downloads 3476218 Application of Deep Learning and Ensemble Methods for Biomarker Discovery in Diabetic Nephropathy through Fibrosis and Propionate Metabolism Pathways
Authors: Oluwafunmibi Omotayo Fasanya, Augustine Kena Adjei
Abstract:
Diabetic nephropathy (DN) is a major complication of diabetes, with fibrosis and propionate metabolism playing critical roles in its progression. Identifying biomarkers linked to these pathways may provide novel insights into DN diagnosis and treatment. This study aims to identify biomarkers associated with fibrosis and propionate metabolism in DN. Analyze the biological pathways and regulatory mechanisms of these biomarkers. Develop a machine learning model to predict DN-related biomarkers and validate their functional roles. Publicly available transcriptome datasets related to DN (GSE96804 and GSE104948) were obtained from the GEO database (https://www.ncbi.nlm.nih.gov/gds), and 924 propionate metabolism-related genes (PMRGs) and 656 fibrosis-related genes (FRGs) were identified. The analysis began with the extraction of DN-differentially expressed genes (DN-DEGs) and propionate metabolism-related DEGs (PM-DEGs), followed by the intersection of these with fibrosis-related genes to identify key intersected genes. Instead of relying on traditional models, we employed a combination of deep neural networks (DNNs) and ensemble methods such as Gradient Boosting Machines (GBM) and XGBoost to enhance feature selection and biomarker discovery. Recursive feature elimination (RFE) was coupled with these advanced algorithms to refine the selection of the most critical biomarkers. Functional validation was conducted using convolutional neural networks (CNN) for gene set enrichment and immunoinfiltration analysis, revealing seven significant biomarkers—SLC37A4, ACOX2, GPD1, ACE2, SLC9A3, AGT, and PLG. These biomarkers are involved in critical biological processes such as fatty acid metabolism and glomerular development, providing a mechanistic link to DN progression. Furthermore, a TF–miRNA–mRNA regulatory network was constructed using natural language processing models to identify 8 transcription factors and 60 miRNAs that regulate these biomarkers, while a drug–gene interaction network revealed potential therapeutic targets such as UROKINASE–PLG and ATENOLOL–AGT. This integrative approach, leveraging deep learning and ensemble models, not only enhances the accuracy of biomarker discovery but also offers new perspectives on DN diagnosis and treatment, specifically targeting fibrosis and propionate metabolism pathways.Keywords: diabetic nephropathy, deep neural networks, gradient boosting machines (GBM), XGBoost
Procedia PDF Downloads 66217 Cognitive Relaying in Interference Limited Spectrum Sharing Environment: Outage Probability and Outage Capacity
Authors: Md Fazlul Kader, Soo Young Shin
Abstract:
In this paper, we consider a cognitive relay network (CRN) in which the primary receiver (PR) is protected by peak transmit power $\bar{P}_{ST}$ and/or peak interference power Q constraints. In addition, the interference effect from the primary transmitter (PT) is considered to show its impact on the performance of the CRN. We investigate the outage probability (OP) and outage capacity (OC) of the CRN by deriving closed-form expressions over Rayleigh fading channel. Results show that both the OP and OC improve by increasing the cooperative relay nodes as well as when the PT is far away from the SR.Keywords: cognitive relay, outage, interference limited, decode-and-forward (DF)
Procedia PDF Downloads 5106216 Improving Forecasting Demand for Maintenance Spare Parts: Case Study
Authors: Abdulaziz Afandi
Abstract:
Minimizing the inventory cost, optimizing the inventory quantities, and increasing system operational availability are the main motivations to enhance forecasting demand of spare parts in a major power utility company in Medina. This paper reports in an effort made to optimize the orders quantities of spare parts by improving the method of forecasting the demand. The study focuses on equipment that has frequent spare parts purchase orders with uncertain demand. The pattern of the demand considers a lumpy pattern which makes conventional forecasting methods less effective. A comparison was made by benchmarking various methods of forecasting based on experts’ criteria to select the most suitable method for the case study. Three actual data sets were used to make the forecast in this case study. Two neural networks (NN) approaches were utilized and compared, namely long short-term memory (LSTM) and multilayer perceptron (MLP). The results as expected, showed that the NN models gave better results than traditional forecasting method (judgmental method). In addition, the LSTM model had a higher predictive accuracy than the MLP model.Keywords: neural network, LSTM, MLP, forecasting demand, inventory management
Procedia PDF Downloads 1266215 Optimization of Manufacturing Process Parameters: An Empirical Study from Taiwan's Tech Companies
Authors: Chao-Ton Su, Li-Fei Chen
Abstract:
The parameter design is crucial to improving the uniformity of a product or process. In the product design stage, parameter design aims to determine the optimal settings for the parameters of each element in the system, thereby minimizing the functional deviations of the product. In the process design stage, parameter design aims to determine the operating settings of the manufacturing processes so that non-uniformity in manufacturing processes can be minimized. The parameter design, trying to minimize the influence of noise on the manufacturing system, plays an important role in the high-tech companies. Taiwan has many well-known high-tech companies, which show key roles in the global economy. Quality remains the most important factor that enables these companies to sustain their competitive advantage. In Taiwan however, many high-tech companies face various quality problems. A common challenge is related to root causes and defect patterns. In the R&D stage, root causes are often unknown, and defect patterns are difficult to classify. Additionally, data collection is not easy. Even when high-volume data can be collected, data interpretation is difficult. To overcome these challenges, high-tech companies in Taiwan use more advanced quality improvement tools. In addition to traditional statistical methods and quality tools, the new trend is the application of powerful tools, such as neural network, fuzzy theory, data mining, industrial engineering, operations research, and innovation skills. In this study, several examples of optimizing the parameter settings for the manufacturing process in Taiwan’s tech companies will be presented to illustrate proposed approach’s effectiveness. Finally, a discussion of using traditional experimental design versus the proposed approach for process optimization will be made.Keywords: quality engineering, parameter design, neural network, genetic algorithm, experimental design
Procedia PDF Downloads 1456214 Medical Diagnosis of Retinal Diseases Using Artificial Intelligence Deep Learning Models
Authors: Ethan James
Abstract:
Over one billion people worldwide suffer from some level of vision loss or blindness as a result of progressive retinal diseases. Many patients, particularly in developing areas, are incorrectly diagnosed or undiagnosed whatsoever due to unconventional diagnostic tools and screening methods. Artificial intelligence (AI) based on deep learning (DL) convolutional neural networks (CNN) have recently gained a high interest in ophthalmology for its computer-imaging diagnosis, disease prognosis, and risk assessment. Optical coherence tomography (OCT) is a popular imaging technique used to capture high-resolution cross-sections of retinas. In ophthalmology, DL has been applied to fundus photographs, optical coherence tomography, and visual fields, achieving robust classification performance in the detection of various retinal diseases including macular degeneration, diabetic retinopathy, and retinitis pigmentosa. However, there is no complete diagnostic model to analyze these retinal images that provide a diagnostic accuracy above 90%. Thus, the purpose of this project was to develop an AI model that utilizes machine learning techniques to automatically diagnose specific retinal diseases from OCT scans. The algorithm consists of neural network architecture that was trained from a dataset of over 20,000 real-world OCT images to train the robust model to utilize residual neural networks with cyclic pooling. This DL model can ultimately aid ophthalmologists in diagnosing patients with these retinal diseases more quickly and more accurately, therefore facilitating earlier treatment, which results in improved post-treatment outcomes.Keywords: artificial intelligence, deep learning, imaging, medical devices, ophthalmic devices, ophthalmology, retina
Procedia PDF Downloads 1816213 Optimal Path Motion of Positional Electric Drive
Authors: M. A. Grigoryev, A. N. Shishkov, N. V. Savosteenko
Abstract:
The article identifies optimal path motion of positional electric drive, for example, the feed of cold pilgering mill. It is shown that triangle is the optimum shape of the speed curve, and the ratio of its sides depends on the type of load diagram, in particular from the influence of the main drive of pilgering mill, and is not dependent on the presence of backlash and elasticity in the system. This thesis is proved analytically, and confirmed the results are obtained by a mathematical model that take into account the influence of the main drive-to-drive feed. By statistical analysis of oscillograph traces obtained on the real object allowed to give recommendations on the optimal control of the electric drive feed cold pilgering mill 450. Based on the data that the load torque depends on by hit the pipe in rolls of pilgering mill, occurs in the interval (0,6…0,75) tc, the recommended ratio of start time to the braking time is 2:1. Optimized path motion allowed get up to 25% more RMS torque for the cycle that allowed increased the productivity of the mill.Keywords: optimal curve speed, positional electric drive, cold pilgering mill 450, optimal path motion
Procedia PDF Downloads 3166212 Adaptive Envelope Protection Control for the below and above Rated Regions of Wind Turbines
Authors: Mustafa Sahin, İlkay Yavrucuk
Abstract:
This paper presents a wind turbine envelope protection control algorithm that protects Variable Speed Variable Pitch (VSVP) wind turbines from damage during operation throughout their below and above rated regions, i.e. from cut-in to cut-out wind speed. The proposed approach uses a neural network that can adapt to turbines and their operating points. An algorithm monitors instantaneous wind and turbine states, predicts a wind speed that would push the turbine to a pre-defined envelope limit and, when necessary, realizes an avoidance action. Simulations are realized using the MS Bladed Wind Turbine Simulation Model for the NREL 5 MW wind turbine equipped with baseline controllers. In all simulations, through the proposed algorithm, it is observed that the turbine operates safely within the allowable limit throughout the below and above rated regions. Two example cases, adaptations to turbine operating points for the below and above rated regions and protections are investigated in simulations to show the capability of the proposed envelope protection system (EPS) algorithm, which reduces excessive wind turbine loads and expectedly increases the turbine service life.Keywords: adaptive envelope protection control, limit detection and avoidance, neural networks, ultimate load reduction, wind turbine power control
Procedia PDF Downloads 1356211 Security in Resource Constraints: Network Energy Efficient Encryption
Authors: Mona Almansoori, Ahmed Mustafa, Ahmad Elshamy
Abstract:
Wireless nodes in a sensor network gather and process critical information designed to process and communicate, information flooding through such network is critical for decision making and data processing, the integrity of such data is one of the most critical factors in wireless security without compromising the processing and transmission capability of the network. This paper presents mechanism to securely transmit data over a chain of sensor nodes without compromising the throughput of the network utilizing available battery resources available at the sensor node.Keywords: hybrid protocol, data integrity, lightweight encryption, neighbor based key sharing, sensor node data processing, Z-MAC
Procedia PDF Downloads 1436210 The Ability of Forecasting the Term Structure of Interest Rates Based on Nelson-Siegel and Svensson Model
Authors: Tea Poklepović, Zdravka Aljinović, Branka Marasović
Abstract:
Due to the importance of yield curve and its estimation it is inevitable to have valid methods for yield curve forecasting in cases when there are scarce issues of securities and/or week trade on a secondary market. Therefore in this paper, after the estimation of weekly yield curves on Croatian financial market from October 2011 to August 2012 using Nelson-Siegel and Svensson models, yield curves are forecasted using Vector auto-regressive model and Neural networks. In general, it can be concluded that both forecasting methods have good prediction abilities where forecasting of yield curves based on Nelson Siegel estimation model give better results in sense of lower Mean Squared Error than forecasting based on Svensson model Also, in this case Neural networks provide slightly better results. Finally, it can be concluded that most appropriate way of yield curve prediction is neural networks using Nelson-Siegel estimation of yield curves.Keywords: Nelson-Siegel Model, neural networks, Svensson Model, vector autoregressive model, yield curve
Procedia PDF Downloads 3296209 Adaptive Routing Protocol for Dynamic Wireless Sensor Networks
Authors: Fayez Mostafa Alhamoui, Adnan Hadi Mahdi Al- Helali
Abstract:
The main issue in designing a wireless sensor network (WSN) is the finding of a proper routing protocol that complies with the several requirements of high reliability, short latency, scalability, low power consumption, and many others. This paper proposes a novel routing algorithm that complies with these design requirements. The new routing protocol divides the WSN into several sub-networks and each sub-network is divided into several clusters. This division is designed to reduce the number of radio transmission and hence decreases the power consumption. The network division may be changed dynamically to adapt with the network changes and allows the realization of the design requirements.Keywords: wireless sensor networks, routing protocols, AD HOC topology, cluster, sub-network, WSN design requirements
Procedia PDF Downloads 5356208 Effect of Supplementing Ziziphus Spina-Christi Leaf Meal to Natural Pasture Hay on Feed Intake, Body Weight Gain, Digestibility, and Carcass Characteristics of Tigray Highland Sheep
Authors: Abrha Reta, Ajebu Nurfeta, Genet Mengistu, Mohammed Beyan
Abstract:
Fodder trees such as Ziziphus spina-christi have the potential to enhance the utilization of natural grazing resources and also to mitigate seasonal feed shortages. The experiment was conducted with the objective of evaluating the effect of supplementing Ziziphus spina-christi leaf meal (ZSCLM) to natural pasture hay on feed intake, body weight gain, digestibility, and carcass characteristics of Tigray highland sheep. A randomized complete block design was employed with 5 blocks based on initial body weight, and sheep were randomly assigned to five treatments. Treatments were: 100g concentrate mix + ad libtum natural pasture hay (T1), T1+ 100g ZSCLM (T2), T1 + 200g ZSCLM (T3), T1 + 300g ZSCLM (T4), and T1 + 400g ZSCLM (T5) on dry matter (DM) basis. Dry matter intake was greater (P<0.05) in sheep on T5 compared to T3 and T1, while the total DM intake among T2, T4, and T5 were similar. Crude protein and metabolizable energy intake differed (P<0.05) among treatments with highest and lowest values in T5 and T1, respectively. Average daily gain was higher (P<0.05) in sheep kept on T2, T3, and T4 diets than T1. Higher (P<0.05) DM digestibility was found in T4 and T5 than T1. The highest (P<0.05) OM and CP digestibility was observed in sheep fed T3, T4, and T5 diets. Rib eye muscle area was higher (P<0.05) for T4 than T1 and T2. Dressing percentage was similar (P>0.05) among treatments. The current study indicated that supplementation of Tigray highland sheep with 200g air-dried Ziziphus spina-christi leaf meal leaves with 100g of concentrate mixture in their diet significantly increased feed intake and apparent digestibility, body weight gain, hot carcass weight, and rib eye muscle area by improving feed conversion efficiency.Keywords: body weight, carcass, digestibility, and ziziphus spina-christi leaf meal
Procedia PDF Downloads 1096207 Time Organization for Decongesting Urban Mobility: New Methodology Identifying People's Behavior
Authors: Yassamina Berkane, Leila Kloul, Yoann Demoli
Abstract:
Quality of life, environmental impact, congestion of mobility means, and infrastructures remain significant challenges for urban mobility. Solutions like car sharing, spatial redesign, eCommerce, and autonomous vehicles will likely increase the unit veh-km and the density of cars in urban traffic, thus reducing congestion. However, the impact of such solutions is not clear for researchers. Congestion arises from growing populations that must travel greater distances to arrive at similar locations (e.g., workplaces, schools) during the same time frame (e.g., rush hours). This paper first reviews the research and application cases of urban congestion methods through recent years. Rethinking the question of time, it then investigates people’s willingness and flexibility to adapt their arrival and departure times from workplaces. We use neural networks and methods of supervised learning to apply a new methodology for predicting peoples' intentions from their responses in a questionnaire. We created and distributed a questionnaire to more than 50 companies in the Paris suburb. Obtained results illustrate that our methodology can predict peoples' intentions to reschedule their activities (work, study, commerce, etc.).Keywords: urban mobility, decongestion, machine learning, neural network
Procedia PDF Downloads 192