Search results for: very small power producers
9830 Simulink Library for Reference Current Generation in Active DC Traction Substations
Authors: Mihaela Popescu, Alexandru Bitoleanu
Abstract:
This paper is focused on the reference current calculation in the compensation mode of the active DC traction substations. The so-called p-q theory of the instantaneous reactive power is used as theoretical foundation. The compensation goal of total compensation is taken into consideration for the operation under both sinusoidal and nonsinusoidal voltage conditions, through the two objectives of unity power factor and perfect harmonic cancelation. Four blocks of reference current generation implement the conceived algorithms and they are included in a specific Simulink library, which is useful in a DSP dSPACE-based platform working under Matlab/Simulink. The simulation results validate the correctness of the implementation and fulfillment of the compensation tasks.Keywords: active power filter, DC traction, p-q theory, Simulink library
Procedia PDF Downloads 6749829 Genetic Variation of Autosomal STR Loci from Unrelated Individual in Iraq
Authors: H. Imad, Q. Cheah, J. Mohammad, O. Aamera
Abstract:
The aim of this study is twofold. One is to determine the genetic structure of Iraq population and the second objective of the study was to evaluate the importance of these loci for forensic genetic purposes. FTA® Technology (FTA™ paper DNA extraction) utilized to extract DNA. Twenty STR loci and Amelogenin including D3S1358, D13S317, PentaE, D16S539, D18S51, D2S1338, CSF1PO, Penta D, THO1, vWA, D21S11, D7S820, TPOX, D8S1179, FGA, D2S1338, D5S818, D6S1043, D12S391, D19S433, and Amelogenin amplified by using power plex21® kit. PCR products detected by genetic analyzer 3730xL then data analyzed by PowerStatsV1.2. Based on the allelic frequencies, several statistical parameters of genetic and forensic efficiency have been estimated. This includes the homozygosity and heterozygosity, effective number of alleles (n), the polymorphism information content (PIC), the power of discrimination (DP), and the power of exclusion (PE). The power of discrimination values for all tested loci was from 75% to 96% therefore, those loci can be safely used to establish a DNA-based database for Iraq population.Keywords: autosomal STR, genetic variation, Middle and South of Iraq, statistical parameters
Procedia PDF Downloads 3859828 Electrical Energy Harvesting Using Thermo Electric Generator for Rural Communities in India
Authors: N. Nandan A. M. Nagaraj, L. Sanjeev Kumar
Abstract:
In the rapidly growing population, the requirement of electrical power is increasing day by day. In order to meet the needs, we need to generate the power using alternate method. In this paper, a presentable approach is developed by analysis and can be implemented by utilizing heat energy, which is generated in numerous ways in some of the rural areas in India. The thermoelectric generator unit will be developed by combing with control circuits and converts, which is used to light the LED lamps. The temperature difference which is available in the kitchens, especially the exhaust pipes/chimneys of wooden fire stoves, where more heat is dissipated into the atmosphere, can be utilized for electrical power generation. Hence, the temperature rise of surroundings atmosphere can be reduced.Keywords: thermo electric generator, LED, converts, temperature
Procedia PDF Downloads 1429827 The Spectral Power Amplification on the Regular Lattices
Authors: Kotbi Lakhdar, Hachi Mostefa
Abstract:
We show that a simple transformation between the regular lattices (the square, the triangular, and the honeycomb) belonging to the same dimensionality can explain in a natural way the universality of the critical exponents found in phase transitions and critical phenomena. It suffices that the Hamiltonian and the lattice present similar writing forms. In addition, it appears that if a property can be calculated for a given lattice then it can be extrapolated simply to any other lattice belonging to the same dimensionality. In this study, we have restricted ourselves on the spectral power amplification (SPA), we note that the SPA does not have an effect on the critical exponents but does have an effect by the criticality temperature of the lattice; the generalisation to other lattice could be shown according to the containment principle.Keywords: ising model, phase transitions, critical temperature, critical exponent, spectral power amplification
Procedia PDF Downloads 3119826 Large Eddy Simulation with Energy-Conserving Schemes: Understanding Wind Farm Aerodynamics
Authors: Dhruv Mehta, Alexander van Zuijlen, Hester Bijl
Abstract:
Large Eddy Simulation (LES) numerically resolves the large energy-containing eddies of a turbulent flow, while modelling the small dissipative eddies. On a wind farm, these large scales carry the energy wind turbines extracts and are also responsible for transporting the turbines’ wakes, which may interact with downstream turbines and certainly with the atmospheric boundary layer (ABL). In this situation, it is important to conserve the energy that these wake’s carry and which could be altered artificially through numerical dissipation brought about by the schemes used for the spatial discretisation and temporal integration. Numerical dissipation has been reported to cause the premature recovery of turbine wakes, leading to an over prediction in the power produced by wind farms.An energy-conserving scheme is free from numerical dissipation and ensures that the energy of the wakes is increased or decreased only by the action of molecular viscosity or the action of wind turbines (body forces). The aim is to create an LES package with energy-conserving schemes to simulate wind turbine wakes correctly to gain insight into power-production, wake meandering etc. Such knowledge will be useful in designing more efficient wind farms with minimal wake interaction, which if unchecked could lead to major losses in energy production per unit area of the wind farm. For their research, the authors intend to use the Energy-Conserving Navier-Stokes code developed by the Energy Research Centre of the Netherlands.Keywords: energy-conserving schemes, modelling turbulence, Large Eddy Simulation, atmospheric boundary layer
Procedia PDF Downloads 4659825 Unified Power Quality Conditioner Presentation and Dimensioning
Authors: Abderrahmane Kechich, Othmane Abdelkhalek
Abstract:
Static converters behave as nonlinear loads that inject harmonic currents into the grid and increase the consumption of the inactive power. On the other hand, the increased use of sensitive equipment requires the application of sinusoidal voltages. As a result, the electrical power quality control has become a major concern in the field of power electronics. In this context, the active power conditioner (UPQC) was developed. It combines both serial and parallel structures; the series filter can protect sensitive loads and compensate for voltage disturbances such as voltage harmonics, voltage dips or flicker when the shunt filter compensates for current disturbances such as current harmonics, reactive currents and imbalance. This double feature is that it is one of the most appropriate devices. Calculating parameters is an important step and in the same time it’s not easy for that reason several researchers based on trial and error method for calculating parameters but this method is not easy for beginners researchers especially what about the controller’s parameters, for that reason this paper gives a mathematical way to calculate of almost all of UPQC parameters away from trial and error method. This paper gives also a new approach for calculating of PI regulators parameters for purpose to have a stable UPQC able to compensate for disturbances acting on the waveform of line voltage and load current in order to improve the electrical power quality.Keywords: UPQC, Shunt active filer, series active filer, PI controller, PWM control, dual-loop control
Procedia PDF Downloads 4039824 Low Power Consuming Electromagnetic Actuators for Pulsed Pilot Stages
Authors: M. Honarpardaz, Z. Zhang, J. Derkx, A. Trangärd, J. Larsson
Abstract:
Pilot stages are one of the most common positioners and regulators in industry. In this paper, we present two novel concepts for pilot stages with low power consumption to regulate a pneumatic device. Pilot 1, first concept, is designed based on a conventional frame core electro-magnetic actuator and a leaf spring to control the air flow and pilot 2 has an axisymmetric actuator and spring made of non-oriented electrical steel. Concepts are simulated in a system modeling tool to study their dynamic behavior. Both concepts are prototyped and tested. Experimental results are comprehensively analyzed and compared. The most promising concept that consumes less than 8 mW is highlighted and presented.Keywords: electro-magnetic actuator, multidisciplinary system, low power consumption, pilot stage
Procedia PDF Downloads 2589823 Developing Soil Accumulation Effect Correction Factor for Solar Photovoltaic Module
Authors: Kelebaone Tsamaase, Rapelang Kemoabe, Japhet Sakala, Edward Rakgati, Ishmael Zibani
Abstract:
Increasing demand for energy, depletion of non-renewable energy, effects of climate change, the abundance of renewable energy such as solar energy have increased the interest in investing in renewable energies, in particular solar photovoltaic (PV) energy. Solar photovoltaic energy systems as part of clean technology are considered to be environmentally friendly, freely available, offer clean production systems, long term costs benefits as opposed to conventional sources, and are the attractive power source for a wide range of applications in remote areas where there is no easy access to the national grid. To get maximum electrical power, maximum solar power should penetrate the module and be converted accordingly. However, some environmental and other geographical related factors reduce the electrical power. One of them is dust which accumulates on the surface of the module and forming a dust layer and in the process obstructing the solar power from penetrating PV module. This study intends to improve the performance of solar photovoltaic (PV) energy modules by establishing soil accumulation effects correction factor from dust characteristics and properties, and also from dust accumulation and retention pattern on PV module surface. The non-urban dry deposition flux model was adapted to determine monthly and yearly dust accumulation pattern. Consideration was done on prevailing environmental and other geographical conditions. Preliminary results showed that cumulative dust settlement increased during the months of July to October leading to a higher drop in module electrical output power.Keywords: dust, electrical power output, PV module, soil correction factor
Procedia PDF Downloads 1339822 The Production, Negotiation and Resistance of Short Video Producers
Abstract:
Based on the question of, "Are short video creators who are digital workers controlled by platform rules?" this study discusses the specific ways of platform rules control and the impact on short video creators. Based on the theory of digital labor, this paper adopts the method of in-depth interview and participant observation and chooses 24 producers of short video content of Tiktok to conduct in-depth interview. At the same time, through entering the short video creation field, the author carries on the four-month field investigation, obtains the creation process related data, and analyzes how the short video creator, as the digital labor, is controlled by the platform rule, as well as the creator in this process of compromise and resistance, a more comprehensive presentation of the short video creators of the labor process. It is found that the short video creators are controlled by the platform rules, mainly in the control of traffic rules, and the creators create content, compromise and resist under the guidance of traffic. First, while the platform seems to offer a flexible and autonomous way for creators to monetize, the threshold for participating in the event is actually very high for creators, and the rules for monetizing the event are vague. Under the influence of the flow rule, the creator is faced unstable incomes and high costs. Therefore, creators have to follow the rules of traffic to guide their own creation, began to flow-oriented content production, mainly reflected in the need to keep up-to-date, the pursuit of traffic to ride on the hot spots, in order to flow regardless, set up people "Born for the show", by the label solidified content creation. Secondly, the irregular working hours lead to the extension and overwork of the working hours, which leads to the internal friction of the short video creators at the spiritual level, and finally leads to the Rat Race of video creation. Thirdly, the video creator has completed the internalization and compromise of the platform rules in practice, which promotes the creator to continue to create independently, and forms the intrinsic motive force of the creator. Finally, the rule-controlled short video creators resist and fight in flexible ways, make use of the mechanism and rules of the platform to carry on the second creation, carry on the routine production, purchase the false flow, transfer the creation position to maintain own creation autonomy.Keywords: short videos, tiktok, production, digital labors
Procedia PDF Downloads 609821 Optimal Design of the Power Generation Network in California: Moving towards 100% Renewable Electricity by 2045
Authors: Wennan Long, Yuhao Nie, Yunan Li, Adam Brandt
Abstract:
To fight against climate change, California government issued the Senate Bill No. 100 (SB-100) in 2018 September, which aims at achieving a target of 100% renewable electricity by the end of 2045. A capacity expansion problem is solved in this case study using a binary quadratic programming model. The optimal locations and capacities of the potential renewable power plants (i.e., solar, wind, biomass, geothermal and hydropower), the phase-out schedule of existing fossil-based (nature gas) power plants and the transmission of electricity across the entire network are determined with the minimal total annualized cost measured by net present value (NPV). The results show that the renewable electricity contribution could increase to 85.9% by 2030 and reach 100% by 2035. Fossil-based power plants will be totally phased out around 2035 and solar and wind will finally become the most dominant renewable energy resource in California electricity mix.Keywords: 100% renewable electricity, California, capacity expansion, mixed integer non-linear programming
Procedia PDF Downloads 1719820 Thermodynamic Cycle Using Cyclopentane for Waste Heat Recovery Power Generation from Clinker Cooler Exhaust Flue Gas
Authors: Vijayakumar Kunche
Abstract:
Waste heat recovery from Pre Heater exhaust gases and Clinker cooler vent gases is now common place in Cement Industry. Most common practice is to use Steam Rankine cycle for heat to power conversion. In this process, waste heat from the flue gas is recovered through a Heat Recovery steam generator where steam is generated and fed to a conventional Steam turbine generator. However steam Rankine cycle tends to have lesser efficiency for smaller power plants with less than 5MW capacity and where the steam temperature at the inlet of the turbine is less than 350 deg C. further a steam Rankine cycle needs treated water and maintenance intensive. These problems can be overcome by using Thermodynamic cycle using Cyclopentane vapour in place of steam. This innovative cycle is best suited for Heat recovery in cement plants and results in best possible heat to power conversion efficiency. This paper discusses about Heat Recovery Power generation using innovative thermal cycle which uses Cyclopentane vapour in place of water- steam. And how this technology has been adopted for a Clinker cooler hot gas from mid-tap.Keywords: clinker cooler, energy efficiency, organic rankine cycle, waste heat recovery
Procedia PDF Downloads 2369819 Knowledge, Technology and Empowerment in Contemporary Scenario
Authors: Samir Roy
Abstract:
This paper investigates the relationship among knowledge, technology, and empowerment. In Physics power is defined as rate of doing work. In everyday use, the meaning of the word power is related to the capacity to bring change of value in the world. It appears that the popular aphorism “Knowledge is power” should be revisited in the context of contemporary states of affairs. For instance, classical mechanics is a system of knowledge, so also thermodynamics. But neither of them, per se, is sufficient to produce automobilin es. Boolean algebra, the logical foundation of digital electronic computers, was introduced by George Boole in 1847. But that knowledge was practically useless for almost one hundred years until digital electronics was developed in early twentieth century, which eventually led to invention of digital electronic computers. Empowerment of women is a burning issue in the arena of social justice. However, if we carefully analyze the functional elements of women’s empowerment, we find them to be highly technology driven as well as technology dependent in real life. On the other hand, technology has empowered modern states to maintain social order and promote democracy in an effective manner. This paper includes a few case studies to establish the close correspondence between knowledge, especially scientific knowledge, technology, and empowerment. It appears that in contemporary scenario, “Technology is power” is a more appropriate statement than the traditional aphorism “Knowledge is power”.Keywords: knowledge, science, technology, empowerment, change, social justice
Procedia PDF Downloads 429818 The Comparison between bFGF and Small Molecules in Derivation of Chicken Primordial Germ Cells and Embryonic Germ Cells
Authors: Maryam Farzaneh, Seyyedeh Nafiseh Hassani, Hossein Baharvand
Abstract:
Objective: Chicken gonadal tissue has a two population such primordial germ cells (PGCs) and stromal cells (somatic cells). PGCs and embryonic germ cells (EGCs) that is a pluripotent type of PGCs in long-term culture are suitable sources for the production of chicken pluripotent stem cell lines, transgenic birds, vaccine and recombinant protein production. In general, the effect of growth factors such bFGF and mouse LIF on derivation of PGCs in vitro are important and in this study we could see the unique effect of small molecules such PD032 and SB43 as a chemical, in comparison to growth factors. Materials and Methods: After incubation of fertilized chicken egg up to 6 days and isolation of primary gonadal tissues and culture of mixed cells like PGCs and stromal cells. PGCs proliferate in the present of fetal calf serum (FCS) and small molecules and in another group bFGF, that these factors are important for PGCs culture and derivation. Somatic cells produce a multilayer feeder under the PGCs in primary culture and PGCs make a small cluster under these cells. Results: In present of small molecules and high volume of FCS (15%), the present of EGCs as a pluripotent stem cells were clear four weeks, that they had a positive immune-staining and periodic acid-Schiff staining (PAS), but in present of growth factors like bFGF without any chemicals, the present of PGCs were clear but after 7 until 10 days, there were disappear. Conclusion: Until now we have seen many researches about derivation and maintenance of chicken PGCs, in the hope of understanding the mechanisms that occur during germline development and production of a therapeutic product by transgenic birds. There are still many unknowns in this area and this project will try to have efficient conditions for identification of suitable culture medium for long-term culture of PGCs in vitro without serum and feeder cells.Keywords: chicken gonadal primordial germ cells, pluripotent stem cells, growth factors, small molecules, transgenic birds
Procedia PDF Downloads 4349817 A 5G Architecture Based to Dynamic Vehicular Clustering Enhancing VoD Services Over Vehicular Ad hoc Networks
Authors: Lamaa Sellami, Bechir Alaya
Abstract:
Nowadays, video-on-demand (VoD) applications are becoming one of the tendencies driving vehicular network users. In this paper, considering the unpredictable vehicle density, the unexpected acceleration or deceleration of the different cars included in the vehicular traffic load, and the limited radio range of the employed communication scheme, we introduce the “Dynamic Vehicular Clustering” (DVC) algorithm as a new scheme for video streaming systems over VANET. The proposed algorithm takes advantage of the concept of small cells and the introduction of wireless backhauls, inspired by the different features and the performance of the Long Term Evolution (LTE)- Advanced network. The proposed clustering algorithm considers multiple characteristics such as the vehicle’s position and acceleration to reduce latency and packet loss. Therefore, each cluster is counted as a small cell containing vehicular nodes and an access point that is elected regarding some particular specifications.Keywords: video-on-demand, vehicular ad-hoc network, mobility, vehicular traffic load, small cell, wireless backhaul, LTE-advanced, latency, packet loss
Procedia PDF Downloads 1419816 Radio Frequency Energy Harvesting Friendly Self-Clocked Digital Low Drop-Out for System-On-Chip Internet of Things
Authors: Christos Konstantopoulos, Thomas Ussmueller
Abstract:
Digital low drop-out regulators, in contrast to analog counterparts, provide an architecture of sub-1 V regulation with low power consumption, high power efficiency, and system integration. Towards an optimized integration in the ultra-low-power system-on-chip Internet of Things architecture that is operated through a radio frequency energy harvesting scheme, the D-LDO regulator should constitute the main regulator that operates the master-clock and rest loads of the SoC. In this context, we present a D-LDO with linear search coarse regulation and asynchronous fine regulation, which incorporates an in-regulator clock generation unit that provides an autonomous, self-start-up, and power-efficient D-LDO design. In contrast to contemporary D-LDO designs that employ ring-oscillator architecture which start-up time is dependent on the frequency, this work presents a fast start-up burst oscillator based on a high-gain stage with wake-up time independent of coarse regulation frequency. The design is implemented in a 55-nm Global Foundries CMOS process. With the purpose to validate the self-start-up capability of the presented D-LDO in the presence of ultra-low input power, an on-chip test-bench with an RF rectifier is implemented as well, which provides the RF to DC operation and feeds the D-LDO. Power efficiency and load regulation curves of the D-LDO are presented as extracted from the RF to regulated DC operation. The D-LDO regulator presents 83.6 % power efficiency during the RF to DC operation with a 3.65 uA load current and voltage regulator referred input power of -27 dBm. It succeeds 486 nA maximum quiescent current with CL 75 pF, the maximum current efficiency of 99.2%, and 1.16x power efficiency improvement compared to analog voltage regulator counterpart oriented to SoC IoT loads. Complementary, the transient performance of the D-LDO is evaluated under the transient droop test, and the achieved figure-of-merit is compared with state-of-art implementations.Keywords: D-LDO, Internet of Things, RF energy harvesting, voltage regulators
Procedia PDF Downloads 1459815 Design a Small-Scale Irrigation Wind-Powered Water Pump Using a Savonius Type VAWT
Authors: Getnet Ayele Kebede, Tasew Tadiwose Zewdie
Abstract:
In this study, a novel design of a wind-powered water pump for small-scale irrigation application by using the Savonius wind turbine of Vertical Axis Wind Turbine(VAWT) with 2 blades has been used. Calculations have been made on the energy available in the wind and an energy analysis was then performed to see what wind speed is required for the system to work. The rotor has a radius of 0.53 m giving a swept area of 1.27 m2 and this gives a solidity of 0.5, which is the minimum theoretical optimum value for wind turbine. The average extracted torque of the wind turbine is 0.922 Nm and Tip speed ratio is one this shows, the tips are moving at equal the speed of the wind and by 2 rotating of blades. This is sufficient to sustain the desired flow rate of (0.3125X 10-3) m3 per second with a maximum head of 10m and the expected working is 4hr/day, and also overcome other barriers to motion such as friction. Based on this novel design, we are able to achieve a cost-effective solution and simultaneously effective in self-starting under low wind speeds and it can catch the wind from all directions.Keywords: Savonius wind turbine, Small-scale irrigation, Vertical Axis Wind Turbine, Water pump
Procedia PDF Downloads 1629814 Software-Defined Networks in Utility Power Networks
Authors: Ava Salmanpour, Hanieh Saeedi, Payam Rouhi, Elahe Hamzeil, Shima Alimohammadi, Siamak Hossein Khalaj, Mohammad Asadian
Abstract:
Software-defined network (SDN) is a network architecture designed to control network using software application in a central manner. This ability enables remote control of the whole network regardless of the network technology. In fact, in this architecture network intelligence is separated from physical infrastructure, it means that required network components can be implemented virtually using software applications. Today, power networks are characterized by a high range of complexity with a large number of intelligent devices, processing both huge amounts of data and important information. Therefore, reliable and secure communication networks are required. SDNs are the best choice to meet this issue. In this paper, SDN networks capabilities and characteristics will be reviewed and different basic controllers will be compared. The importance of using SDNs to escalate efficiency and reliability in utility power networks is going to be discussed and the comparison between the SDN-based power networks and traditional networks will be explained.Keywords: software-defined network, SDNs, utility network, open flow, communication, gas and electricity, controller
Procedia PDF Downloads 1139813 Numerical Investigation of a Spiral Bladed Tidal Turbine
Authors: Mohammad Fereidoonnezhad, Seán Leen, Stephen Nash, Patrick McGarry
Abstract:
From the perspective of research innovation, the tidal energy industry is still in its early stages. While a very small number of turbines have progressed to utility-scale deployment, blade breakage is commonly reported due to the enormous hydrodynamic loading applied to devices. The aim of this study is the development of computer simulation technologies for the design of next-generation fibre-reinforced composite tidal turbines. This will require significant technical advances in the areas of tidal turbine testing and multi-scale computational modelling. The complex turbine blade profiles are designed to incorporate non-linear distributions of airfoil sections to optimize power output and self-starting capability while reducing power fluctuations. A number of candidate blade geometries are investigated, ranging from spiral geometries to parabolic geometries, with blades arranged in both cylindrical and spherical configurations on a vertical axis turbine. A combined blade element theory (BET-start-up model) is developed in MATLAB to perform computationally efficient parametric design optimisation for a range of turbine blade geometries. Finite element models are developed to identify optimal fibre-reinforced composite designs to increase blade strength and fatigue life. Advanced fluid-structure-interaction models are also carried out to compute blade deflections following design optimisation.Keywords: tidal turbine, composite materials, fluid-structure-interaction, start-up capability
Procedia PDF Downloads 1229812 Classification of Cochannel Signals Using Cyclostationary Signal Processing and Deep Learning
Authors: Bryan Crompton, Daniel Giger, Tanay Mehta, Apurva Mody
Abstract:
The task of classifying radio frequency (RF) signals has seen recent success in employing deep neural network models. In this work, we present a combined signal processing and machine learning approach to signal classification for cochannel anomalous signals. The power spectral density and cyclostationary signal processing features of a captured signal are computed and fed into a neural net to produce a classification decision. Our combined signal preprocessing and machine learning approach allows for simpler neural networks with fast training times and small computational resource requirements for inference with longer preprocessing time.Keywords: signal processing, machine learning, cyclostationary signal processing, signal classification
Procedia PDF Downloads 1079811 Working Capital Management Practices in Small Businesses in Victoria
Authors: Ranjith Ihalanayake, Lalith Seelanatha, John Breen
Abstract:
In this study, we explored the current working capital management practices as applied in small businesses in Victoria, filling an existing theoretical and empirical gap in literature in general and in Australia in particular. Amidst the current global competitive and dynamic environment, the short term insolvency of small businesses is very critical for the long run survival. A firm’s short-term insolvency is dependent on the availability of sufficient working capital for feeding day to day operational activities. Therefore, given the reliance for short-term funding by small businesses, it has been recognized that the efficient management of working capital is crucial in respect of the prosperity and survival of such firms. Against this background, this research was an attempt to understand the current working capital management strategies and practices used by the small scale businesses. To this end, we conducted an internet survey among 220 small businesses operating in Victoria, Australia. The survey results suggest that the majority of respondents are owner-manager (73%) and male (68%). Respondents participated in this survey mostly have a degree (46%). About a half of respondents are more than 50 years old. Most of respondents (64%) have business management experience more than ten years. Similarly, majority of them (63%) had experience in the area of their current business. Types of business of the respondents are: Private limited company (41%), sole proprietorship (37%), and partnership (15%). In addition, majority of the firms are service companies (63%), followed by retailed companies (25%), and manufacturing (17%). Size of companies of this survey varies, 32% of them have annual sales $100,000 or under, while 22% of them have revenue more than $1,000,000 every year. In regards to the total assets, majority of respondents (43%) have total assets $100,000 or less while 20% of respondents have total assets more than $1,000,000. In regards to WCMPs, results indicate that almost 70% of respondents mentioned that they are responsible for managing their business working capital. The survey shows that majority of respondents (65.5%) use their business experience to identify the level of investment in working capital, compared to 22% of respondents who seek advice from professionals. The other 10% of respondents, however, follow industry practice to identify the level of working capital. The survey also shows that more than a half of respondents maintain good liquidity financial position for their business by having accounts payable less than accounts receivable. This study finds that majority of small business companies in western area of Victoria have a WCM policy but only about 8 % of them have a formal policy. Majority of the businesses (52.7%) have an informal policy while 39.5% have no policy. Of those who have a policy, 44% described their working capital management policies as a compromise policy while 35% described their policy as a conservative policy. Only 6% of respondents apply aggressive policy. Overall the results indicate that the small businesses pay less attention into the management of working capital of their business despite its significance in the successful operation of the business. This approach may be adopted during favourable economic times. However, during relatively turbulent economic conditions, such an approach could lead to greater financial difficulties i.e. short-term financial insolvency.Keywords: small business, working capital management, Australia, sufficient, financial insolvency
Procedia PDF Downloads 3549810 Optimal Capacitor Placement in Distribution Systems
Authors: Sana Ansari, Sirus Mohammadi
Abstract:
In distribution systems, shunt capacitors are used to reduce power losses, to improve voltage profile, and to increase the maximum flow through cables and transformers. This paper presents a new method to determine the optimal locations and economical sizing of fixed and/or switched shunt capacitors with a view to power losses reduction and voltage stability enhancement. General Algebraic Modeling System (GAMS) has been used to solve the maximization modules using the MINOS optimization software with Linear Programming (LP). The proposed method is tested on 33 node distribution system and the results show that the algorithm suitable for practical implementation on real systems with any size.Keywords: power losses, voltage stability, radial distribution systems, capacitor
Procedia PDF Downloads 6479809 Optimal Placement of the Unified Power Controller to Improve the Power System Restoration
Authors: Mohammad Reza Esmaili
Abstract:
One of the most important parts of the restoration process of a power network is the synchronizing of its subsystems. In this situation, the biggest concern of the system operators will be the reduction of the standing phase angle (SPA) between the endpoints of the two islands. In this regard, the system operators perform various actions and maneuvers so that the synchronization operation of the subsystems is successfully carried out and the system finally reaches acceptable stability. The most common of these actions include load control, generation control and, in some cases, changing the network topology. Although these maneuvers are simple and common, due to the weak network and extreme load changes, the restoration will be associated with low speed. One of the best ways to control the SPA is to use FACTS devices. By applying a soft control signal, these tools can reduce the SPA between two subsystems with more speed and accuracy, and the synchronization process can be done in less time. Meanwhile, the unified power controller (UPFC), a series-parallel compensator device with the change of transmission line power and proper adjustment of the phase angle, will be the proposed option in order to realize the subject of this research. Therefore, with the optimal placement of UPFC in a power system, in addition to improving the normal conditions of the system, it is expected to be effective in reducing the SPA during power system restoration. Therefore, the presented paper provides an optimal structure to coordinate the three problems of improving the division of subsystems, reducing the SPA and optimal power flow with the aim of determining the optimal location of UPFC and optimal subsystems. The proposed objective functions in this paper include maximizing the quality of the subsystems, reducing the SPA at the endpoints of the subsystems, and reducing the losses of the power system. Since there will be a possibility of creating contradictions in the simultaneous optimization of the proposed objective functions, the structure of the proposed optimization problem is introduced as a non-linear multi-objective problem, and the Pareto optimization method is used to solve it. The innovative technique proposed to implement the optimization process of the mentioned problem is an optimization algorithm called the water cycle (WCA). To evaluate the proposed method, the IEEE 39 bus power system will be used.Keywords: UPFC, SPA, water cycle algorithm, multi-objective problem, pareto
Procedia PDF Downloads 669808 Optimal Tuning of RST Controller Using PSO Optimization for Synchronous Generator Based Wind Turbine under Three-Phase Voltage Dips
Authors: K. Tahir, C. Belfedal, T. Allaoui, C. Gerard, M. Doumi
Abstract:
In this paper, we presented an optimized RST controller using Particle Swarm Optimization (PSO) meta-heuristic technique of the active and reactive power regulation of a grid connected wind turbine based on a wound field synchronous generator. This regulation is achieved below the synchronous speed, by means of a maximum power point tracking algorithm. The control of our system is tested under typical wind variations and parameters variation, fault grid condition by simulation. Some results are presented and discussed to prove simplicity and efficiency of the WRSG control for WECS. On the other hand, according to simulation results, variable speed driven WRSG is not significantly impacted in fault conditions.Keywords: wind energy, particle swarm optimization, wound rotor synchronous generator, power control, RST controller, maximum power point tracking
Procedia PDF Downloads 4519807 Impairments Correction of Six-Port Based Millimeter-Wave Radar
Authors: Dan Ohev Zion, Alon Cohen
Abstract:
In recent years, the presence of short-range millimeter-wave radar in civil application has increased significantly. Autonomous driving, security, 3D imaging and high data rate communication systems are a few examples. The next challenge is the integration inside small form-factor devices, such as smartphones (e.g. gesture recognition). The main challenge is implementation of a truly low-power, low-complexity high-resolution radar. The most popular approach is the Frequency Modulated Continuous Wave (FMCW) radar, with an analog multiplication front-end. In this paper, we present an approach for adaptive estimation and correction of impairments of such front-end, specifically implemented using the Six-Port Device (SPD) as the multiplier element. The proposed algorithm was simulated and implemented on a 60 GHz radar lab prototype.Keywords: radar, FMCW Radar, IQ mismatch, six port
Procedia PDF Downloads 1529806 A Review on Cloud Computing and Internet of Things
Authors: Sahar S. Tabrizi, Dogan Ibrahim
Abstract:
Cloud Computing is a convenient model for on-demand networks that uses shared pools of virtual configurable computing resources, such as servers, networks, storage devices, applications, etc. The cloud serves as an environment for companies and organizations to use infrastructure resources without making any purchases and they can access such resources wherever and whenever they need. Cloud computing is useful to overcome a number of problems in various Information Technology (IT) domains such as Geographical Information Systems (GIS), Scientific Research, e-Governance Systems, Decision Support Systems, ERP, Web Application Development, Mobile Technology, etc. Companies can use Cloud Computing services to store large amounts of data that can be accessed from anywhere on Earth and also at any time. Such services are rented by the client companies where the actual rent depends upon the amount of data stored on the cloud and also the amount of processing power used in a given time period. The resources offered by the cloud service companies are flexible in the sense that the user companies can increase or decrease their storage requirements or the processing power requirements at any time, thus minimizing the overall rental cost of the service they receive. In addition, the Cloud Computing service providers offer fast processors and applications software that can be shared by their clients. This is especially important for small companies with limited budgets which cannot afford to purchase their own expensive hardware and software. This paper is an overview of the Cloud Computing, giving its types, principles, advantages, and disadvantages. In addition, the paper gives some example engineering applications of Cloud Computing and makes suggestions for possible future applications in the field of engineering.Keywords: cloud computing, cloud systems, cloud services, IaaS, PaaS, SaaS
Procedia PDF Downloads 2339805 Fault Diagnosis in Induction Motor
Authors: Kirti Gosavi, Anita Bhole
Abstract:
The paper demonstrates simulation and steady-state performance of three phase squirrel cage induction motor and detection of rotor broken bar fault using MATLAB. This simulation model is successfully used in the fault detection of rotor broken bar for the induction machines. A dynamic model using PWM inverter and mathematical modelling of the motor is developed. The dynamic simulation of the small power induction motor is one of the key steps in the validation of the design process of the motor drive system and it is needed for eliminating advertent design errors and the resulting error in the prototype construction and testing. The simulation model will be helpful in detecting the faults in three phase induction motor using Motor current signature analysis.Keywords: squirrel cage induction motor, pulse width modulation (PWM), fault diagnosis, induction motor
Procedia PDF Downloads 6339804 Strategy of Balancing in Russian Energy Diplomacy toward Middle East
Authors: Davood Karimipour
Abstract:
Since long ago, Russia has been one of the most influential actors in regional equations in South West Asia. The geographic affinity of its vital interests with Western Asia has caused Moscow to have a high sensitivity to the balance of power in the Middle East, as its role in the Syrian crisis clearly demonstrated the importance. In recent years, Moscow has tried to use the energy diplomacy tool in maintaining the balance of power between the major powers in the region. The paper, based on the qualitative case study method, investigates how Russia’s energy diplomacy plays a role in the balance of regional forces in the Middle East, studying the country’s conduct towards Iran, Saudi Arabia, Turkey, and Israel. The hypothesis presented that Russia, using energy tools, is trying to push the regional powers toward cooperation in order to increase the influence in the region, increase power in global markets, and controlling the US to restore power balance in the region. Its cooperation in the Iranian gas industry, the country’s relations with Saudis in the framework of OPEC, cooperation with the Turkish Kurds and the presence in the Israeli gas industry are an example of these Russian energy diplomacy initiatives in West Asia, which is the common point of the Moscow approach to South West Asia.Keywords: Russia, balance of power, energy diplomacy, Middle East
Procedia PDF Downloads 1659803 Estimation of Microbial-N Supply to Small Intestine in Angora Goats Fed by Different Roughage Sources
Authors: Nurcan Cetinkaya
Abstract:
The aim of the study was to estimate the microbial-N flow to small intestine based on daily urinary purine derivatives(PD) mainly xanthine, hypoxanthine, uric acid and allantoin excretion in Angora goats fed by grass hay and concentrate (Period I); barley straw and concentrate (Period II). Daily urine samples were collected during last 3 days of each period from 10 individually penned Angora bucks( LW 30-35 Kg, 2-3 years old) receiving ad libitum grass hay or barley straw and 300 g/d concentrate. Fresh water was always available. 4N H2SO4 was added to collected daily urine .samples to keep pH under 3 to avoid of uric acid precipitation. Diluted urine samples were stored at -20°C until analysis. Urine samples were analyzed for xanthine, hypoxanthine, uric acid, allantoin and creatinine by High-Performance Liquid Chromatographic Method (HPLC). Urine was diluted 1:15 in ratio with water and duplicate samples were prepared for HPLC analysis. Calculated mean levels (n=60) for urinary xanthine, hypoxanthine, uric acid, allantoin, total PD and creatinine excretion were 0.39±0.02 , 0.26±0.03, 0.59±0.06, 5.91±0.50, 7.15±0.57 and 3.75±0.40 mmol/L for Period I respectively; 0.35±0.03, 0.21±0.02, 0.55±0.05, 5.60±0.47, 6.71±0.46 and 3.73±0.41 mmol/L for Period II respectively.Mean values of Period I and II were significantly different (P< 0.05) except creatinine excretion. Estimated mean microbial-N supply to the small intestine for Period I and II in Angora goats were 5.72±0.46 and 5.41±0.61 g N/d respectively. The effects of grass hay and barley straw feeding on microbial-N supply to small intestine were found significantly different (P< 0.05). In conclusion, grass hay showed a better effect on the ruminal microbial protein synthesis compared to barley straw, therefore; grass hay is suggested as roughage source in Angora goat feeding.Keywords: angora goat, HPLC method, microbial-N supply to small intestine, urinary purine derivatives
Procedia PDF Downloads 2239802 Characteristics of Domestic Sewage in Small Urban Communities
Authors: Shohreh Azizi, Memory Tekere, Wag Nel
Abstract:
An evaluation of the characteristics of wastewater generated from small communities was carried out in relation to decentralized approach for domestic sewage treatment plant and design of biological nutrient removal system. The study included the survey of the waste from various individual communities such as a hotel, a residential complex, an office premise, and an educational institute. The results indicate that the concentration of organic pollutant in wastewater from the residential complex is higher than the waste from all the other communities with COD 664 mg/l, BOD 370.2 mg/l and TSS 248.8 mg/l. And the waste water from office premise indicates low organic load with COD428 mg/l, BOD 232mg/l and TSS 157mg/l. The wastewater from residential complex was studied under activated sludge process to evaluate this technology for decentralized wastewater treatment. The Activated sludge process was operated at different 12to 4 hrs hydraulic retention times and the optimum 6 hrs HRT was selected, therefore the average reduction of COD (85.92%) and BOD (91.28 %) was achieved. The issue of sludge recycling, maintenance of biomass concentration and high HRT reactor (10 L) volume are making the system non-practical for smaller communities.Keywords: wastewater, small communities, activated sludge process, decentralized system
Procedia PDF Downloads 3579801 Energy Dynamics of Solar Thermionic Power Conversion with Emitter of Graphene
Authors: Olukunle C. Olawole, Dilip K. De, Moses Emetere, Omoje Maxwell
Abstract:
Graphene can stand very high temperature up to 4500 K in vacuum and has potential for application in thermionic energy converter. In this paper, we discuss the application of energy dynamics principles and the modified Richardson-Dushman Equation, to estimate the efficiency of solar power conversion to electrical power by a solar thermionic energy converter (STEC) containing emitter made of graphene. We present detailed simulation of power output for different solar insolation, diameter of parabolic concentrator, area of the graphene emitter (same as that of the collector), temperature of the collector, physical dimensions of the emitter-collector etc. After discussing possible methods of reduction or elimination of space charge problem using magnetic field and gate, we finally discuss relative advantages of using emitters made of graphene, carbon nanotube and metals respectively in a STEC.Keywords: graphene, high temperature, modified Richardson-Dushman equation, solar thermionic energy converter
Procedia PDF Downloads 310