Search results for: stability enhancement
3647 Parameter Measurement Systems to Evaluate Performance of Archers
Authors: Muhammad Zikril Hakim Md. Azizi, Norhafizan Ahmad, Raja Ariffin Raja Ghazilla
Abstract:
Postural stability, attention level of the archer and particularly the vibrations of the bow itself plays a prominent role in determining the athletes performance. Many techniques and systems had been developing to monitor the parameters of the archers during training. In Malaysia, archery coaches tend to use non-scientific ways that they are familiar with, to evaluate archer performance. An approach that provides more affordable yet accurate systems to the masses and relatively easy system deployment procedure need to be proposed. Hence, this project will address to fulfil the needs. Three area of the archer parameter were included for data monitoring sensors. Attention level can be measured using EEG sensor, centre of mass linked to the postural stability can be measured by foot pressure sensor, and the bow vibrations in three axis will be relayed by the vibrations sensors placed directly on the bow using wireless sensors. Arduino based microcontroller used to relay all the data back to the interfacing systems. Interface systems will be using Python language and C++ framework for user interface and hardware interfacing systems. All sensor data can be observed in real time using the in-house applications, and each sessions can be saved to common files so that coach and the team can have a further discussion and comparisons.Keywords: archery, graphical user interface, microcontroller, wireless sensor, monitoring system
Procedia PDF Downloads 3043646 Self-Tuning Power System Stabilizer Based on Recursive Least Square Identification and Linear Quadratic Regulator
Authors: J. Ritonja
Abstract:
Available commercial applications of power system stabilizers assure optimal damping of synchronous generator’s oscillations only in a small part of operating range. Parameters of the power system stabilizer are usually tuned for the selected operating point. Extensive variations of the synchronous generator’s operation result in changed dynamic characteristics. This is the reason that the power system stabilizer tuned for the nominal operating point does not satisfy preferred damping in the overall operation area. The small-signal stability and the transient stability of the synchronous generators have represented an attractive problem for testing different concepts of the modern control theory. Of all the methods, the adaptive control has proved to be the most suitable for the design of the power system stabilizers. The adaptive control has been used in order to assure the optimal damping through the entire synchronous generator’s operating range. The use of the adaptive control is possible because the loading variations and consequently the variations of the synchronous generator’s dynamic characteristics are, in most cases, essentially slower than the adaptation mechanism. The paper shows the development and the application of the self-tuning power system stabilizer based on recursive least square identification method and linear quadratic regulator. Identification method is used to calculate the parameters of the Heffron-Phillips model of the synchronous generator. On the basis of the calculated parameters of the synchronous generator’s mathematical model, the synthesis of the linear quadratic regulator is carried-out. The identification and the synthesis are implemented on-line. In this way, the self-tuning power system stabilizer adapts to the different operating conditions. A purpose of this paper is to contribute to development of the more effective power system stabilizers, which would replace currently used linear stabilizers. The presented self-tuning power system stabilizer makes the tuning of the controller parameters easier and assures damping improvement in the complete operating range. The results of simulations and experiments show essential improvement of the synchronous generator’s damping and power system stability.Keywords: adaptive control, linear quadratic regulator, power system stabilizer, recursive least square identification
Procedia PDF Downloads 2543645 A Mathematical Analysis of Behavioural Epidemiology: Drugs Users Transmission Dynamics Based on Level Education for Susceptible Population
Authors: Firman Riyudha, Endrik Mifta Shaiful
Abstract:
The spread of drug users is one kind of behavioral epidemiology that becomes a threat to every country in the world. This problem caused various crisis simultaneously, including financial or economic crisis, social, health, until human crisis. Most drug users are teenagers at school age. A new deterministic model would be constructed to determine the dynamics of the spread of drug users by considering level of education in a susceptible population. Based on the analytical model, two equilibria points were obtained; there were E₀ (zero user) and E₁ (endemic equilibrium). Existence of equilibrium and local stability of equilibria depended on the Basic Reproduction Ratio (R₀). This parameter was defined as the expected rate of secondary prevalence and primary prevalence in virgin population along spreading primary prevalence. The zero-victim equilibrium would be locally asymptotically stable if R₀ < 1 while if R₀ > 1 the endemic equilibrium would be locally asymptotically stable. The result showed that R₀ was proportional to the rate of interaction of each susceptible population based on educational level with the users' population. It is concluded that there was a need to be given a control in interaction, so that drug users population could be minimized. Numerical simulations were also provided to support analytical results.Keywords: drugs users, level education, mathematical model, stability
Procedia PDF Downloads 4813644 Aerodynamics and Aeroelastics Studies of Hanger Bridge with H-Beam Profile Using Wind Tunnel
Authors: Matza Gusto Andika, Malinda Sabrina, Syarie Fatunnisa
Abstract:
Aerodynamic and aeroelastics studies on the hanger bridge profile are important to analyze the aerodynamic phenomenon and Aeroelastics stability of hanger. Wind tunnel tests were conducted on a model of H-beam profile from hanger bridge. The purpose of this study is to investigate steady aerodynamic characteristics such as lift coefficient (Cl), drag coefficient (Cd), and moment coefficient (Cm) under the different angle of attack for preliminary prediction of aeroelastics stability problems. After investigation the steady aerodynamics characteristics from the model, dynamic testing is also conducted in wind tunnel to know the aeroelastics phenomenon which occurs at the H-beam hanger bridge profile. The studies show that the torsional vortex induced vibration occur when the wind speed is 7.32 m/s until 9.19 m/s with maximum amplitude occur when the wind speed is 8.41 m/s. The result of wind tunnel testing is matching to hanger vibration where occur in the field, so wind tunnel studies has successful to model the problem. In order that the H-beam profile is not good enough for the hanger bridge and need to be modified to minimize the Aeroelastics problem. The modification can be done with structure dynamics modification or aerodynamics modification.Keywords: aerodynamics, aeroelastic, hanger bridge, h-beam profile, vortex induced vibration, wind tunnel
Procedia PDF Downloads 3543643 Quantitative Evaluation of Endogenous Reference Genes for ddPCR under Salt Stress Using a Moderate Halophile
Authors: Qinghua Xing, Noha M. Mesbah, Haisheng Wang, Jun Li, Baisuo Zhao
Abstract:
Droplet digital PCR (ddPCR) is being increasingly adopted for gene detection and quantification because of its higher sensitivity and specificity. According to previous observations and our lab data, it is essential to use endogenous reference genes (RGs) when investigating gene expression at the mRNA level under salt stress. This study aimed to select and validate suitable RGs for gene expression under salt stress using ddPCR. Six candidate RGs were selected based on the tandem mass tag (TMT)-labeled quantitative proteomics of Alkalicoccus halolimnae at four salinities. The expression stability of these candidate genes was evaluated using statistical algorithms (geNorm, NormFinder, BestKeeper and RefFinder). There was a small fluctuation in cycle threshold (Ct) value and copy number of the pdp gene. Its expression stability was ranked in the vanguard of all algorithms, and was the most suitable RG for quantification of expression by both qPCR and ddPCR of A. halolimnae under salt stress. Single RG pdp and RG combinations were used to normalize the expression of ectA, ectB, ectC, and ectD under four salinities. The present study constitutes the first systematic analysis of endogenous RG selection for halophiles responding to salt stress. This work provides a valuable theory and an approach reference of internal control identification for ddPCR-based stress response models.Keywords: endogenous reference gene, salt stress, ddPCR, RT-qPCR, Alkalicoccus halolimnae
Procedia PDF Downloads 1113642 Using Q-Learning to Auto-Tune PID Controller Gains for Online Quadcopter Altitude Stabilization
Authors: Y. Alrubyli
Abstract:
Unmanned Arial Vehicles (UAVs), and more specifically, quadcopters need to be stable during their flights. Altitude stability is usually achieved by using a PID controller that is built into the flight controller software. Furthermore, the PID controller has gains that need to be tuned to reach optimal altitude stabilization during the quadcopter’s flight. For that, control system engineers need to tune those gains by using extensive modeling of the environment, which might change from one environment and condition to another. As quadcopters penetrate more sectors, from the military to the consumer sectors, they have been put into complex and challenging environments more than ever before. Hence, intelligent self-stabilizing quadcopters are needed to maneuver through those complex environments and situations. Here we show that by using online reinforcement learning with minimal background knowledge, the altitude stability of the quadcopter can be achieved using a model-free approach. We found that by using background knowledge instead of letting the online reinforcement learning algorithm wander for a while to tune the PID gains, altitude stabilization can be achieved faster. In addition, using this approach will accelerate development by avoiding extensive simulations before applying the PID gains to the real-world quadcopter. Our results demonstrate the possibility of using the trial and error approach of reinforcement learning combined with background knowledge to achieve faster quadcopter altitude stabilization in different environments and conditions.Keywords: reinforcement learning, Q-leanring, online learning, PID tuning, unmanned aerial vehicle, quadcopter
Procedia PDF Downloads 1833641 Defining the Turbulent Coefficients with the Effect of Atmospheric Stability in Wake of a Wind Turbine Wake
Authors: Mohammad A. Sazzad, Md M. Alam
Abstract:
Wind energy is one of the cleanest form of renewable energy. Despite wind industry is growing faster than ever there are some roadblocks towards the improvement. One of the difficulties the industry facing is insufficient knowledge about wake within the wind farms. As we know energy is generated in the lowest layer of the atmospheric boundary layer (ABL). This interaction between the wind turbine (WT) blades and wind introduces a low speed wind region which is defined as wake. This wake region shows different characteristics under each stability condition of the ABL. So, it is fundamental to know this wake region well which is defined mainly by turbulence transport and wake shear. Defining the wake recovery length and width are very crucial for wind farm to optimize the generation and reduce the waste of power to the grid. Therefore, in order to obtain the turbulent coefficients of velocity and length, this research focused on the large eddy simulation (LES) data for neutral ABL (NABL). According to turbulent theory, if we can present velocity defect and Reynolds stress in the form of local length and velocity scales, they become invariant. In our study velocity and length coefficients are 0.4867 and 0.4794 respectively which is close to the theoretical value of 0.5 for NABL. There are some invariant profiles because of the presence of thermal and wind shear power coefficients varied a little from the ideal condition.Keywords: atmospheric boundary layer, renewable energy, turbulent coefficient, wind turbine, wake
Procedia PDF Downloads 1373640 Effect of Elevated Temperatures on Trans Fat Content and Oxidative Parameters of Groundnut Oil
Authors: Akanksha Jain, Santosh J. Passi, William Selvamurthy, Archna Singh
Abstract:
Heating/frying at elevated temperatures cause numerous physiochemical reactions including oxidative deterioration and trans fatty acid (TFA) formation; however Indian data on these parameters are scanty. The present study was designed to assess the effect of constant heating/frying on formation of TFAs and oxidative stability in groundnut oil. 750 mL of the oil was heated in a large iron karahi (utensil similar to a wok) and freshly cut potato strips were fried constantly at varying temperatures (160ºC, 180ºC, 200ºC, 220ºC, 230ºC). In each case, the oil sample was drawn after one hour and stored at –20ºC until analysed. While TFA was estimated using gas chromatography with flame ionisation detector (AOCS official method Ce 1h–05), other chemical parameters were assessed by AOCS official methods. Oil samples subjected to heating/frying at varying temperatures demonstrated a significant increase in TFAs (p < 0.01) and saturated fatty acids (p < 0.01) while there was a corresponding decrease in cis-unsaturated fatty acids (p < 0.01). Frying process demonstrated greater TFA formation (mean TFA at 160ºC being 0.11±0.01g/100g; at 230ºC it being 2.33±0.05g/100g) as compared to heating alone (mean TFA at 160ºC being 0.07g±0.01/100g; at 230ºC it being 0.47±0.02g/100g), indicating that there was a significant difference in the generation of TFAs during the two thermal treatments (heating vs. frying; p=0.05). With increasing temperatures, acid value, p-anisidine value and total oxidation (TOTOX) value registered a significant increase (p < 0.01); however, peroxide value was found to be inconsistent. Thus, the formation of TFA and various oxidative parameters (except peroxide value) is directly influenced by the temperature of heating/frying. Since TFA formation and poor oxidative stability of oils can pose serious health concerns, food safety agencies/organizations need to devise appropriate policies, stringent food laws/standards and impose necessary safety regulations to curb oil abuse during the process of heating and frying. There is a dire need to raise consumer awareness regarding deleterious health effects of TFA and oxidative deterioration of oils at elevated temperatures employed during heating/frying procedures.Keywords: cis-unsaturated fatty acid, oxidative stability, saturated fatty acid, trans fatty acid
Procedia PDF Downloads 1863639 Development of Biodegradable Wound Healing Patch of Curcumin
Authors: Abhay Asthana, Shally Toshkhani, Gyati Shilakari
Abstract:
The objective of the present research work is to develop a topical biodegradable dermal patch based formulation to aid accelerated wound healing. It is always better for patient compliance to be able to reduce the frequency of dressings with improved drug delivery and overall therapeutic efficacy. In present study optimized formulation using biodegradable components was obtained evaluating polymers and excipients (HPMC K4M, Ethylcellulose, Povidone, Polyethylene glycol and Gelatin) to impart significant folding endurance, elasticity, and strength. Molten gelatin was used to get a mixture using ethylene glycol. Chitosan dissolved in acidic medium was mixed with stirring to Gelatin mixture. With continued stirring to the mixture Curcumin was added with the aid of DCM and Methanol in an optimized ratio of 60:40 to get homogenous dispersion. Polymers were dispersed with stirring in the final formulation. The mixture was sonicated casted to get the film form. All steps were carried out under strict aseptic conditions. The final formulation was a thin uniformly smooth textured film with dark brown-yellow color. The film was found to have folding endurance was around 20 to 21 times without a crack in an optimized formulation at RT (23°C). The drug content was in range 96 to 102% and it passed the content uniform test. The final moisture content of the optimized formulation film was NMT 9.0%. The films passed stability study conducted at refrigerated conditions (4±0.2°C) and at room temperature (23 ± 2°C) for 30 days. Further, the drug content and texture remained undisturbed with stability study conducted at RT 23±2°C for 45 and 90 days. Percentage cumulative drug release was found to be 80% in 12h and matched the biodegradation rate as tested in vivo with correlation factor R2>0.9. In in vivo study administration of one dose in equivalent quantity per 2 days was applied topically. The data demonstrated a significant improvement with percentage wound contraction in contrast to control and plain drug respectively in given period. The film based formulation developed shows promising results in terms of stability and in vivo performance.Keywords: wound healing, biodegradable, polymers, patch
Procedia PDF Downloads 4863638 A New Approach for Solving Fractional Coupled Pdes
Authors: Prashant Pandey
Abstract:
In the present article, an effective Laguerre collocation method is used to obtain the approximate solution of a system of coupled fractional-order non-linear reaction-advection-diffusion equation with prescribed initial and boundary conditions. In the proposed scheme, Laguerre polynomials are used together with an operational matrix and collocation method to obtain approximate solutions of the coupled system, so that our proposed model is converted into a system of algebraic equations which can be solved employing the Newton method. The solution profiles of the coupled system are presented graphically for different particular cases. The salient feature of the present article is finding the stability analysis of the proposed method and also the demonstration of the lower variation of solute concentrations with respect to the column length in the fractional-order system compared to the integer-order system. To show the higher efficiency, reliability, and accuracy of the proposed scheme, a comparison between the numerical results of Burger’s coupled system and its existing analytical result is reported. There are high compatibility and consistency between the approximate solution and its exact solution to a higher order of accuracy. The exhibition of error analysis for each case through tables and graphs confirms the super-linearly convergence rate of the proposed method.Keywords: fractional coupled PDE, stability and convergence analysis, diffusion equation, Laguerre polynomials, spectral method
Procedia PDF Downloads 1493637 Observer-Based Leader-Following Consensus of Nonlinear Fractional-Order Multi-Agent Systems
Authors: Ali Afaghi, Sehraneh Ghaemi
Abstract:
The coordination of the multi-agent systems has been one of the interesting topic in recent years, because of its potential applications in many branches of science and engineering such as sensor networks, flocking, underwater vehicles and etc. In the most of the related studies, it is assumed that the dynamics of the multi-agent systems are integer-order and linear and the multi-agent systems with the fractional-order nonlinear dynamics are rarely considered. However many phenomena in nature cannot be described within integer-order and linear characteristics. This paper investigates the leader-following consensus problem for a class of nonlinear fractional-order multi-agent systems based on observer-based cooperative control. In the system, the dynamics of each follower and leader are nonlinear. For a multi-agent system with fixed directed topology firstly, an observer-based consensus protocol is proposed based on the relative observer states of neighboring agents. Secondly, based on the property of the stability theory of fractional-order system, some sufficient conditions are presented for the asymptotical stability of the observer-based fractional-order control systems. The proposed method is applied on a five-agent system with the fractional-order nonlinear dynamics and unavailable states. The simulation example shows that the proposed scenario results in the good performance and can be used in many practical applications.Keywords: fractional-order multi-agent systems, leader-following consensus, nonlinear dynamics, directed graphs
Procedia PDF Downloads 4013636 Extraction and Identification of Natural Antioxidants from Liquorices (Glycyrrhiza glabra) and Carob (Ceratonia siliqua) and Its Application in El-Mewled El-Nabawy Sweets (Sesames and Folia)
Authors: Mervet A. El-sherif, Ginat M El-sherif, Kadry H Tolba
Abstract:
The objective of this study was to determine, identify and investigate the effects of natural antioxidants of licorice and carob. Besides, their effects as powder and antioxidant extracts addition on refined sunflower oil stability as natural antioxidants were evaluated. Total polyphenol contents as total phenols, total carotenoids and total tannins were 353.93mg/100g (gallic acid), 10.62mg/100g (carotenoids) and 83.33mg/100g (tannic acid), respectively in licorice, while in carob, it was 186.07, 18.66 and 106.67, respectively. Polyphenol compounds of the studied licorice and carob extracts were determined and identified by HPLC. The stability of refined sunflower oil (which determined by peroxide value and Rancimat) was increased with increasing the level of polyphenols extracts addition. Also, our study shows the effect of addition of these polyphenols extracts to El-mewled El-nabawy sweets fortified by full cream milk powder (sesames and folia). We found that, licorice and carob as powder and polyphenols extracts were delayed the rancidity of sesame and peanut significantly. That encourages using licorice and carob as powder and polyphenols extracts as a good natural antioxidants source instead of synthetic antioxidants.Keywords: licorice, carob, natural antioxidants, antioxidant activity, applications
Procedia PDF Downloads 4393635 Immobilization of β-Galactosidase from Kluyveromyces Lactis on Polyethylenimine-Agarose for Production of Lactulose
Authors: Carlos A. C. G. Neto, Natan C. G. Silva, Thais O. Costa, Luciana R. B. Goncalves, Maria v. P. Rocha
Abstract:
Galactosidases are enzymes responsible for catalyzing lactose hydrolysis reactions and also favoring transgalactosylation reactions for the production of prebiotics, among which lactulose stands out. These enzymes, when immobilized, can have some enzymatic characteristics substantially improved, and the coating of supports with multifunctional polymers in immobilization processes is a promising alternative in order to extend the useful life of the biocatalysts, for example, the coating with polyethyleneimine (PEI). PEI is a flexible polymer that suits the structure of the enzyme, giving greater stability, especially for multimeric enzymes such as β-galactosidases and also protects it from environmental variations, for example, pH and temperature. In addition, it can substantially improve the immobilization parameters and also the efficiency of enzymatic reactions. In this context, the aim of the present work was first to develop biocatalysts of β-galactosidase from Kluyveromyces lactis immobilized on PEI coated agarose, determining the immobilization parameters, its operational and thermal stability, and then to apply it in the hydrolysis of lactose and synthesis of lactulose, using whey as a substrate. This immobilization strategy was chosen in order to improve the catalytic efficiency of the enzyme in the transgalactosylation reaction for the production of prebiotics, and there are few studies with β-galactosidase from this strain. The immobilization of β-galactosidase in agarose previously functionalized with 48% (w/v) glycidol and then coated with 10% (w/v) PEI solution was evaluated using an enzymatic load of 10 mg/g of protein. Subsequently, the hydrolysis and transgalactosylation reactions were conducted at 50 °C, 120 RPM for 20 minutes, using whey (66.7 g/L of lactose) supplemented with 133.3 g/L fructose at a ratio of 1:2 (lactose/fructose). Operational stability studies were performed in the same conditions for 10 cycles. Thermal stabilities of biocatalysts were conducted at 50 ºC in 50 mM phosphate buffer, pH 6.6, with 0.1 mM MnCl2. The biocatalysts whose supports were coated were named AGA_GLY_PEI_GAL, and those that were not coated were named AGA_GLY_GAL. The coating of the support with PEI considerably improved immobilization yield (2.6-fold), the biocatalyst activity (1.4-fold), and efficiency (2.2-fold). The biocatalyst AGA_GLY_PEI_GAL was better than AGA_GLY_GAL in hydrolysis and transgalactosylation reactions, converting 88.92% of lactose at 5 min of reaction and obtaining a residual concentration of 5.24 g/L. Besides that, it was produced 13.90 g/L lactulose in the same time interval. AGA_GLY_PEI_GAL biocatalyst was stable during the 10 cycles evaluated, converting approximately 80% of lactose and producing 10.95 g/L of lactulose even after the tenth cycle. However, the thermal stability of AGA_GLY_GAL biocatalyst was superior, with a half-life time 5 times higher, probably because the enzyme was immobilized by covalent bonding, which is stronger than adsorption (AGA_GLY_PEI_GAL). Therefore, the strategy of coating the supports with PEI has proven to be effective for the immobilization of β-galactosidase from K. lactis, considerably improving the immobilization parameters, as well as the enzyme, catalyzed reactions. In addition, the use of whey as a raw material for lactulose production has proved to be an industrially advantageous alternative.Keywords: β-galactosidase, immobilization, lactulose, polyethylenimine, whey
Procedia PDF Downloads 1223634 Thermo-Oxidative Degradation of Asphalt Modified with High Density Polyethylene and Engine Oil
Authors: Helder Shelton Abel Manguene, Giovanna Buonocore, Herminio Francisco Muiambo
Abstract:
Paved roads are designed for 10-15 years of life. However, many asphalted roads suffer degradation before reaching their lifetime due to aging caused by load conditions and climatic factors. Oxidation is the main asphalt aging mechanism, which leads to a reduced bond between aggregate particles, increasing the potential for stripping and moisture damage, decreasing fatigue lifetime and reducing resistance to thermal cracking. To improve the performance of asphalt and mitigate these problems, modifiers such as polymers, oils and certain residues have been used. This work aims to study the influence of the addition of high-density polyethylene (HDPE) and engine oil on the thermal stability of asphalt in an oxidizing atmosphere. For the study, compositions containing asphalt, motor oil and HDPE were prepared, varying the concentration of the motor oil by 2.5%, 5%, 7.5% and 10% and keeping the HDPE concentration fixed at 5%. The results show that the pure asphalt sample is degraded in a single step that starts at approximately 311 ºC; All samples of modified asphalt except the one that contains 5% of motor oil have three degradation steps that start below the starting temperature of degradation of pure asphalt (about 250-300 ºC); The temperature of onset of degradation of the modified asphalt is shown to decrease as the concentration of the motor oil increases, suggesting a slight loss of thermal stability of the asphalt as the quantity of the motor oil increases.Keywords: Asphalt, DTG, engine oil, HDPE, TGA
Procedia PDF Downloads 2143633 Molecular Simulation Study on the Catalytic Role of Silicon-Doped Graphene in Carbon Dioxide Hydrogenation
Authors: Wilmer Esteban Vallejo Narváez, Serguei Fomine
Abstract:
The theoretical investigation of Si-doped graphene nanoflakes (NFs) was conducted to understand their catalytic impact on CO₂ reduction using molecular hydrogen at the Density Functional Theory (DFT) level. The introduction of silicon by substituting carbon induces defects in the NF structure, resulting in a polyradical ground state. This silicon defect significantly boosts reactivity towards substrates, making Si-doped graphene NFs more catalytically active in CO₂ reduction to formic acid compared to silicene. Notably, Si-doped graphene demonstrates a preference for formic acid over carbon monoxide, mirroring the behavior of silicene. Furthermore, investigations into formic acid-to-formaldehyde and formaldehyde-to-methanol conversions reveal instances where Si-doped graphene outperforms silicene in terms of efficacy. In the final reduction step, the methanol-to-methane reaction unfolds in four stages, with the rate-determining step involving hydrogen transfer from silicon to methyl. Notably, the activation energy for this step is lower in Si-doped graphene compared to silicene. Consequently, Si-doped graphene NFs emerge as superior catalysts with lower activation energies overall. Remarkably, throughout these catalytic processes, Si-doped graphene maintains environmental stability, further highlighting its enhanced catalytic activity without compromising graphene's inherent stability.Keywords: silicon-doped graphene, CO₂ reduction, DFT, catalysis
Procedia PDF Downloads 593632 Hydraulic Performance of Curtain Wall Breakwaters Based on Improved Moving Particle Semi-Implicit Method
Authors: Iddy Iddy, Qin Jiang, Changkuan Zhang
Abstract:
This paper addresses the hydraulic performance of curtain wall breakwaters as a coastal structure protection based on the particles method modelling. The hydraulic functions of curtain wall as wave barriers by reflecting large parts of incident waves through the vertical wall, a part transmitted and a particular part was dissipating the wave energies through the eddy flows formed beneath the lower end of the plate. As a Lagrangian particle, the Moving Particle Semi-implicit (MPS) method which has a robust capability for numerical representation has proven useful for design of structures application that concern free-surface hydrodynamic flow, such as wave breaking and overtopping. In this study, a vertical two-dimensional numerical model for the simulation of violent flow associated with the interaction between the curtain-wall breakwaters and progressive water waves is developed by MPS method in which a higher precision pressure gradient model and free surface particle recognition model were proposed. The wave transmission, reflection, and energy dissipation of the vertical wall were experimentally and theoretically examined. With the numerical wave flume by particle method, very detailed velocity and pressure fields around the curtain-walls under the action of waves can be computed in each calculation steps, and the effect of different wave and structural parameters on the hydrodynamic characteristics was investigated. Also, the simulated results of temporal profiles and distributions of velocity and pressure in the vicinity of curtain-wall breakwaters are compared with the experimental data. Herein, the numerical investigation of hydraulic performance of curtain wall breakwaters indicated that the incident wave is largely reflected from the structure, while the large eddies or turbulent flows occur beneath the curtain-wall resulting in big energy losses. The improved MPS method shows a good agreement between numerical results and analytical/experimental data which are compared to related researches. It is thus verified that the improved pressure gradient model and free surface particle recognition methods are useful for enhancement of stability and accuracy of MPS model for water waves and marine structures. Therefore, it is possible for particle method (MPS method) to achieve an appropriate level of correctness to be applied in engineering fields through further study.Keywords: curtain wall breakwaters, free surface flow, hydraulic performance, improved MPS method
Procedia PDF Downloads 1513631 Enhancing Oral Pre-Exposure Prophylaxis Uptake and Continuation among Adolescent Girls and Young Women in Busia District East Central Uganda
Authors: Jameson Mirimu, Edward Mawejje, Ibra Twinomujuni
Abstract:
Introduction: Adolescent girls and young women (AGYW) are a vulnerable category whose risk of acquiring HIV is 20 times compared to the general population accounting for 25% of the new infections. Despite proven scientific evidence of preventing HIV acquisition, Oral Pre-Exposure Prophylaxis (PreP) is less used as one of the biomedical interventions among the AGYW. By 2020, only 31000-32000 of the targeted 90,000 persons in Uganda enrolled on Oral PreP LPHS-EC project employed a combination of Expanded Peer Outreach Approach (EPOA) and Effective client follow-up to increase PreP initiation (PrEP_NEW) and continuation for more than three months (PrEP_CT). Method: Quantitatively, data from National Key population Combination tracker retrospectively analyzed by M&E, focused group discussion with AGYWs and Health care workers to identify barriers. Barriers found; hesitancy of AGYW, misconceptions about Oral PrEP, inadequate knowledge and skills in handling adolescent and Data quality issues. To address the mentioned barriers, youth friendly corners initiated in study sites, identified PrEP Champions among the AGYW, oral PrEP dialogues, group Antenatal counselling, CQI Projects initiated, weekly perfomance meetings to track performance. Results: Routine program data review PrEP_NEW and PrEP_CT increased from 5% (4/80) and 4% (2/54), respectively, in July 2022 to 90% (72/80) and 79% (43/54) respectively for PrEP_NEW and PrEP_CT at the end of March 2023. Lessons Learnt: Demystifying misconception about oral Prep through provision of adequate information by involving health care workers through skills enhancement, CQI projects are critical intervention. Conclusion: With improved safe spaces, skills enhancement of health workers, stakeholders’ engagement through Oral Prep dialogues is critical in improving PreP uptake and continuity among the AGYWS.Keywords: prep, uptake, continuation, AGYW
Procedia PDF Downloads 763630 Nanoemulsion Formulation of Ethanolic Extracts of Propolis and Its Antioxidant Activity
Authors: Rachmat Mauludin, Dita Sasri Primaviri, Irda Fidrianny
Abstract:
Propolis contains several antioxidant compounds which can be used in topical application to protect skin against free radical, prevent skin cancer and skin aging. Previous study showed that 70% ethanolic extract of propolis (EEP) provided the greatest antioxidant activity. Since EEP has very small solubility in water, the extract was prepared in nanoemulsion (NE). Nanoemulsion is chosen as cosmetic dosage forms according to its properties namely to decrease the risk of skin’s irritation, increase penetration, prolong its time to remain in our skin, and improve stability. Propolis was extracted using reflux methods and concentrated using rotavapor. EEP was characterized with several tests such as phytochemical screening, density, and antioxidant activity using DPPH method. Optimation of total surfactant, co-surfactant, oil, and amount of EEP that can be included in NE were required to get the best NE formulation. The evaluations included to organoleptic observation, globul size, polydispersity index, morphology using TEM, viscosity, pH, centrifuge, stability, Freeze and Thaw test, radical scavenging activity using DPPH method, and primary irritation test. The yield extracts was 11.12% from raw propolis contained of steroid/triterpenoid, flavonoid, and saponin based on phytochemical screening. EEP had the value of DPPH scavenging activity 61.14% and IC50 0.41629 ppm. The best NE formulation consisted of 26.25% Kolliphor RH40; 8.75% glycerine; 5% rice bran oil; and 3% EEP. NE was transparant, had globul size of 21.9 nm; polydispersity index of 0.338; and pH of 5.67. Based on TEM morphology, NE was almost spherical and has particle size below 50 nm. NE propolis revealed to be physically stable after stability test within 63 days at 25oC, centrifuged for 30 mins at 13.000 rpm, and passed 6 cycles of Freeze and Thaw test without separated. NE propolis reduced 58% of free radical DPPH similar to antioxidant activity of the original extracts. Antioxidant activity of NE propolis is relatively stable after stored for 6 weeks. NE Propolis was proven to be safe by primary irritation test with the value of primary irritation index (OECD) was 0. The best formulation for NE propolis contained of 26.25% Kolliphor RH40; 8.75% glycerine; 5% rice bran oil; and 3% EEP with globul size of 21.9 nm and polydispersity index of 0.338. NE propolis was stable and had antioxidant activity similar to EEP.Keywords: propolis, antioxidant, nanoemulsion, irritation test
Procedia PDF Downloads 3093629 Preparation and Evaluation of Citrus hystrix Nanoemulsion Formulation against Rice Weevil, Sitophilus oryzae
Authors: Elsayed Elmiligy, Dzolkhifili Omar, Norhayu Asib
Abstract:
Sitophilus oryzae is a primary destructive insect pest. A study on nanoemulsion formulation of C. hystrix peel oil and evaluation of its insecticidal effect on the adults of S. oryzae was held in toxicology laboratory at Faculty of Agriculture, Universiti Putra Malaysia (UPM). Three nanoemulsion formulations (F1, F2, and F3) were prepared using C. hystrix peel oil (a.i), Tween 80 (surfactant), AMD 810 (carrier) and deionized water. The selected formulations have undergone stability tests, surface tension, zeta potential and particle size measurements. The formulations were tested for their contact and fumigant activity against the adults of S. oryzae. LC₅₀ values were obtained from Probit regressions using the Polo-PC program. All the formulations showed stability under storage temperature and centrifugation. They were characterized as nanoemulsions as they remained in the range of nanoscale 200 nm. The formulations revealed lower surface tension in the range of 29.5 to 30.4 mN/m. They showed stable of zeta potential values. The formulations showed the highest toxicity against the adults of S. oryzae. The order of decreasing toxicity was F1 > F2 > F3 with LC₅₀ values of 52.1, 58.5, and 61.7 µl/l for contact toxicity, and 71, 75.5, and 76.7 µl/l air for fumigant bioassay after 72 hours. Formulation of C. hystrix peel oil in a nanoemulsion enhance its effectiveness and reduce the amount of applied essential oil.Keywords: Citrus hystrix peel oil, Sitophilus oryzae, nanoemulsion, contact toxicity, Fumigant bioassay
Procedia PDF Downloads 1433628 Fault Tolerant Control System Using a Multiple Time Scale SMC Technique and a Geometric Approach
Authors: Ghodbane Azeddine, Saad Maarouf, Boland Jean-Francois, Thibeault Claude
Abstract:
This paper proposes a new design of an active fault-tolerant flight control system against abrupt actuator faults. This overall system combines a multiple time scale sliding mode controller for fault compensation and a geometric approach for fault detection and diagnosis. The proposed control system is able to accommodate several kinds of partial and total actuator failures, by using available healthy redundancy actuators. The overall system first estimates the correct fault information using the geometric approach. Then, and based on that, a new reconfigurable control law is designed based on the multiple time scale sliding mode technique for on-line compensating the effect of such faults. This approach takes advantages of the fact that there are significant difference between the time scales of aircraft states that have a slow dynamics and those that have a fast dynamics. The closed-loop stability of the overall system is proved using Lyapunov technique. A case study of the non-linear model of the F16 fighter, subject to the rudder total loss of control confirms the effectiveness of the proposed approach.Keywords: actuator faults, fault detection and diagnosis, fault tolerant flight control, sliding mode control, multiple time scale approximation, geometric approach for fault reconstruction, lyapunov stability
Procedia PDF Downloads 3753627 High Photosensitivity and Broad Spectral Response of Multi-Layered Germanium Sulfide Transistors
Authors: Rajesh Kumar Ulaganathan, Yi-Ying Lu, Chia-Jung Kuo, Srinivasa Reddy Tamalampudi, Raman Sankar, Fang Cheng Chou, Yit-Tsong Chen
Abstract:
In this paper, we report the optoelectronic properties of multi-layered GeS nanosheets (~28 nm thick)-based field-effect transistors (called GeS-FETs). The multi-layered GeS-FETs exhibit remarkably high photoresponsivity of Rλ ~ 206 AW-1 under illumination of 1.5 µW/cm2 at = 633 nm, Vg = 0 V, and Vds = 10 V. The obtained Rλ ~ 206 AW-1 is excellent as compared with a GeS nanoribbon-based and the other family members of group IV-VI-based photodetectors in the two-dimensional (2D) realm, such as GeSe and SnS2. The gate-dependent photoresponsivity of GeS-FETs was further measured to be able to reach Rλ ~ 655 AW-1 operated at Vg = -80 V. Moreover, the multi-layered GeS photodetector holds high external quantum efficiency (EQE ~ 4.0 × 104 %) and specific detectivity (D* ~ 2.35 × 1013 Jones). The measured D* is comparable to those of the advanced commercial Si- and InGaAs-based photodiodes. The GeS photodetector also shows an excellent long-term photoswitching stability with a response time of ~7 ms over a long period of operation (>1 h). These extraordinary properties of high photocurrent generation, broad spectral range, fast response, and long-term stability make the GeS-FET photodetector a highly qualified candidate for future optoelectronic applications.Keywords: germanium sulfide, photodetector, photoresponsivity, external quantum efficiency, specific detectivity
Procedia PDF Downloads 5443626 Use of Apple Pomace as a Source of Dietary Fibre in Mutton Nuggets
Authors: Aamina B. Hudaa, Rehana Akhtera, Massarat Hassana, Mir Monisab
Abstract:
Mutton nuggets produced with the addition of apple pomace at the levels of 0% (Control), 5% (Treatment 1), 10% (Treatment 2), and 15% (Treatment 3) were evaluated for emulsion stability, cooking yield, pH, proximate composition, texture analysis and sensory properties. Apple pomace addition resulted in significantly higher (p ≤ 0.05) emulsion stability and cooking yield of treatments in comparison to control and pH values were significantly higher (p ≤ 0.05) for the control as compared to treatments. Among the treatments, the product with 15% apple pomace had significantly (p ≤ 0.05) highest moisture content, and protein, ash and fat contents were significantly (p ≤ 0.05) higher in control than treatment groups. Crude fiber content of control was found significantly (p ≤ 0.05) lower in comparison to nuggets formulated with 5%, 10% and 15% apple pomace and was found to increase significantly (p ≤ 0.05) with the increasing levels of apple pomace. Hardness of the products significantly (p ≤ 0.05) decreased with addition of apple pomace, whereas springiness, cohesiveness, chewiness and gumminess showed a non-significant (p ≥ 0.05) decrease with the levels of apple pomace. Sensory evaluation showed significant (p ≤ 0.05) reduction in texture, flavour and overall acceptability scores of treatment products; however the scores were in the range of acceptability and T-1 showed better acceptability among apple pomace incorporated treatments.Keywords: Mutton nuggets, apple pomace, textural properties, sensory evaluation
Procedia PDF Downloads 3333625 Quantification of Peptides (linusorbs) in Gluten-free Flaxseed Fortified Bakery Products
Authors: Youn Young Shim, Ji Hye Kim, Jae Youl Cho, Martin JT Reaney
Abstract:
Flaxseed (Linumusitatissimum L.) is gaining popularity in the food industry as a superfood due to its health-promoting properties. Linusorbs (LOs, a.k.a. Cyclolinopeptide) are bioactive compounds present in flaxseed exhibiting potential health effects. The study focused on the effects of processing and storage on the stability of flaxseed-derived LOs added to various bakery products. The flaxseed meal fortified gluten-free (GF) bakery bread was prepared, and the changes of LOs during the bread-making process (meal, fortified flour, dough, and bread) and storage (0, 1, 2, and 4 weeks) at different temperatures (−18 °C, 4 °C, and 22−23 °C) were analyzed by high-performance liquid chromatography-diode array detection. The total oxidative LOs and LO1OB2 were almost kept stable in flaxseed meals at storage temperatures of 22−23 °C, −18 °C, and 4 °C for up to four weeks. Processing steps during GF-bread production resulted in the oxidation of LOs. Interestingly, no LOs were detected in the dough sample; however, LOs appeared when the dough was stored at −18 °C for one week, suggesting that freezing destroyed the sticky structure of the dough and resulted in the release of LOs. The final product, flaxseed meal fortified bread, could be stored for up to four weeks at −18 °C and 4 °C, and for one week at 22−23 °C. All these results suggested that LOs may change during processing and storage and that flaxseed flour-fortified bread should be stored at low temperatures to preserve effective LOs components.Keywords: linum usitatissimum L., flaxseed, linusorb, stability, gluten-free, peptides, cyclolinopeptide
Procedia PDF Downloads 1843624 Applied Actuator Fault Accommodation in Flight Control Systems Using Fault Reconstruction Based FDD and SMC Reconfiguration
Authors: A. Ghodbane, M. Saad, J. F. Boland, C. Thibeault
Abstract:
Historically, actuators’ redundancy was used to deal with faults occurring suddenly in flight systems. This technique was generally expensive, time consuming and involves increased weight and space in the system. Therefore, nowadays, the on-line fault diagnosis of actuators and accommodation plays a major role in the design of avionic systems. These approaches, known as Fault Tolerant Flight Control systems (FTFCs) are able to adapt to such sudden faults while keeping avionics systems lighter and less expensive. In this paper, a (FTFC) system based on the Geometric Approach and a Reconfigurable Flight Control (RFC) are presented. The Geometric approach is used for cosmic ray fault reconstruction, while Sliding Mode Control (SMC) based on Lyapunov stability theory is designed for the reconfiguration of the controller in order to compensate the fault effect. Matlab®/Simulink® simulations are performed to illustrate the effectiveness and robustness of the proposed flight control system against actuators’ faulty signal caused by cosmic rays. The results demonstrate the successful real-time implementation of the proposed FTFC system on a non-linear 6 DOF aircraft model.Keywords: actuators’ faults, fault detection and diagnosis, fault tolerant flight control, sliding mode control, geometric approach for fault reconstruction, Lyapunov stability
Procedia PDF Downloads 4233623 Inclined Convective Instability in a Porous Layer Saturated with Non-Newtonian Fluid
Authors: Rashmi Dubey
Abstract:
The study aims at investigating the onset of thermal convection in an inclined porous layer saturated with a non-Newtonian fluid. The layer is infinitely extended and has a finite width confined between two boundaries with constant pressure conditions, where the lower one is maintained at a higher temperature. Over the years, this area of research has attracted many scientists and researchers, for it has a plethora of applications in the fields of sciences and engineering, such as in civil engineering, geothermal sites, petroleum industries, etc.Considering the possibilities in a practical scenario, an inclined porous layer is considered, which can be used to develop a generalized model applicable to any inclination. Using the isobaric boundaries, the hydrodynamic boundary conditions are derived for the power-law model and are used to obtain the basic state flow. The convection in the basic state flow is driven by the thermal buoyancy in the flow system and is carried away further due to hydrodynamic boundaries. A linear stability analysis followed by a normal-mode analysis is done to investigate the onset of convection in the buoyancy-driven flow. The analysis shows that the convective instability is always initiated by the non-traveling modes for the Newtonian fluid, but prevails in the form of oscillatory modes, for up to a certain inclination of the porous layer. However, different behavior is observed for the dilatant and pseudoplastic fluids.Keywords: thermal convection, linear stability, porous media flow, Inclined porous layer
Procedia PDF Downloads 1253622 Propolis as Antioxidant Formulated in Nanoemulsion
Authors: Rachmat Mauludin, Irda Fidrianny, Dita Sasri Primaviri, Okti Alifiana
Abstract:
Natural products such as propolis, green tea and corncob are containing several compounds called antioxidant. Antioxidant can be used in topical application to protect skin against free radical, prevent skin cancer and skin aging. Previous study showed that the extract of propolis that has the highest antioxidant activity was ethanolic extract of propolis (EEP). It is important to make a dosage form that could keep the stability and could protect the effectiveness of antioxidant activity of the extracts. In this research, nanoemulsion (NE) was chosen to formulate those natural products. NE is a dispersion system between oil phase and water phase that formed by mechanical force with a lot amount of surfactants and has globule size below 100 nm. In pharmaceutical industries, NE was preferable for its stability, biodegradability, biocompatibility, its ease to be absorbed and eliminated, and for its use as carrier for lipophilic drugs. First, all of the natural products were extracted using reflux methods. Green tea and corncob were extracted using 96% ethanol while propolis using 70% ethanol. Then, the extracts were concentrated using rotavapor to obtain viscous extracts. The yield of EEP was 11.12%; green tea extract (GTE) was 23.37%; and corncob extract (CCE) was 17.23%. EEP contained steroid/triterpenoid, flavonoid and saponin. GTE contained flavonoid, tannin, and quinone while CCE contained flavonoid, phenol and tannin. The antioxidant activities of the extracts were then measured using DPPH scavenging capacity methods. The values of DPPH scavenging capacity were 61.14% for EEP; 97.16% for GTE; and 78.28% for CCE. The value of IC50 for EEP was 0.41629 ppm. After the extracts were evaluated, NE was prepared. Several surfactants and co-surfactants were used in many combinations and ratios in order to form a NE. Tween 80 and Kolliphor RH40 were used as surfactants while glycerin and propylene glycol were used as co-surfactants. The best NE consists of 26.25% of Kolliphor RH40; 8.75% of glycerin; 5% of rice bran oil; 3% of extracts; and 57% of water. EEP NE had globule size around 23.72 nm; polydispersity index below 0.5; and did not cause any irritation on rabbits. EEP NE was proven to be stable after passing stability test within 63 days at room temperature and 6 cycles of Freeze and Thaw test without separated. Based on TEM (Transmission Electron Microscopy) test, EEP NE had spherical structure with most of its size below 50 nm. The antioxidant activity of EEP NE was monitored for 6 weeks and showed no significant difference. The value of DPPH scavenging capacity for EEP NE was around 58%; for GTE NE was 96.75%; and for CCE NE was 55.69%.Keywords: propolis, green tea, corncob, antioxidant, nanoemulsion
Procedia PDF Downloads 3233621 A Differential Detection Method for Chip-Scale Spin-Exchange Relaxation Free Atomic Magnetometer
Authors: Yi Zhang, Yuan Tian, Jiehua Chen, Sihong Gu
Abstract:
Chip-scale spin-exchange relaxation free (SERF) atomic magnetometer makes use of millimeter-scale vapor cells micro-fabricated by Micro-electromechanical Systems (MEMS) technique and SERF mechanism, resulting in the characteristics of high spatial resolution and high sensitivity. It is useful for biomagnetic imaging including magnetoencephalography and magnetocardiography. In a prevailing scheme, circularly polarized on-resonance laser beam is adapted for both pumping and probing the atomic polarization. And the magnetic-field-sensitive signal is extracted by transmission laser intensity enhancement as a result of atomic polarization increase on zero field level crossing resonance. The scheme is very suitable for integration, however, the laser amplitude modulation (AM) noise and laser frequency modulation to amplitude modulation (FM-AM) noise is superimposed on the photon shot noise reducing the signal to noise ratio (SNR). To suppress AM and FM-AM noise the paper puts forward a novel scheme which adopts circularly polarized on-resonance light pumping and linearly polarized frequency-detuning laser probing. The transmission beam is divided into transmission and reflection beams by a polarization analyzer, the angle between the analyzer's transmission polarization axis and frequency-detuning laser polarization direction is set to 45°. The magnetic-field-sensitive signal is extracted by polarization rotation enhancement of frequency-detuning laser which induces two beams intensity difference increase as the atomic polarization increases. Therefore, AM and FM-AM noise in two beams are common-mode and can be almost entirely canceled by differential detection. We have carried out an experiment to study our scheme. The experiment reveals that the noise in the differential signal is obviously smaller than that in each beam. The scheme is promising to be applied for developing more sensitive chip-scale magnetometer.Keywords: atomic magnetometer, chip scale, differential detection, spin-exchange relaxation free
Procedia PDF Downloads 1733620 Exploration of Copper Fabric in Non-Asbestos Organic Brake-Pads for Thermal Conductivity Enhancement
Authors: Vishal Mahale, Jayashree Bijwe, Sujeet K. Sinha
Abstract:
Range of thermal conductivity (TC) of Friction Materials (FMs) is a critical issue since lower TC leads to accumulation of frictional heat on the working surface, which results in excessive fade while higher TC leads to excessive heat flow towards back-plate resulting in boiling of brake-fluid leading to ‘spongy brakes’. This phenomenon prohibits braking action, which is most undesirable. Therefore, TC of the FMs across the brake pads should not be high while along the brake pad, it should be high. To enhance TC, metals in the forms of powder and fibers are used in the FMs. Apart from TC improvement, metals provide strength and structural integrity to the composites. Due to higher TC Copper (Cu) powder/fiber is a most preferred metallic ingredient in FM industry. However, Cu powders/fibers are responsible for metallic wear debris generation, which has harmful effects on aquatic organisms. Hence to get rid of a problem of metallic wear debris generation and to keep the positive effect of TC improvement, incorporation of Cu fabric in NAO brake-pads can be an innovative solution. Keeping this in view, two realistic multi-ingredient FM composites with identical formulations were developed in the form of brake-pads. Out of which one composite series consisted of a single layer of Cu fabric in the body of brake-pad and designated as C1 while double layer of Cu fabric was incorporated in another brake-pad series with designation of C2. Distance of Cu fabric layer from the back-plate was kept constant for C1 and C2. One more composite (C0) was developed without Cu fabric for the sake of comparison. Developed composites were characterized for physical properties. Tribological performance was evaluated on full scale inertia dynamometer by following JASO C 406 testing standard. It was concluded that Cu fabric successfully improved fade resistance by increasing conductivity of the composite and also showed slight improvement in wear resistance. Worn surfaces of pads and disc were analyzed by SEM and EDAX to study wear mechanism.Keywords: brake inertia dynamometer, copper fabric, non-asbestos organic (NAO) friction materials, thermal conductivity enhancement
Procedia PDF Downloads 1333619 High-Performance Supercapacitors with Activated Carbon and Nickel Sulfide Composite
Authors: Sarita Sindhu, Vinay Kumar
Abstract:
The growing demand for efficient energy storage in applications such as portable electronics, electric vehicles, and renewable energy systems has emphasized the need for advanced energy storage materials. This study addresses the pressing need for efficient energy storage materials by exploring the synthesis and application of a composite of activated carbon (AC) and nickel sulfide (NiS) for supercapacitors. Activated carbon, possessing high surface area and excellent electrochemical stability, was combined with nickel sulfide, a transition metal sulfide with high theoretical capacitance, to enhance the electrochemical performance of the composite material. Characterization techniques, including scanning electron microscopy (SEM), X-ray diffraction (XRD), and Fourier-transform infrared spectroscopy (FTIR), were employed to analyze the morphology, crystalline structure, and bonding characteristics, confirming the successful formation of a uniformly distributed AC/NiS composite. Electrochemical evaluations revealed that the AC/NiS composite exhibited superior capacitance, excellent rate capability, and enhanced cycling stability compared to pure AC and NiS. The synergistic effect of the large surface area from activated carbon and redox-active sites of nickel sulfide provided an improved energy storage capacity, making this composite a promising electrode material for high-performance supercapacitors.Keywords: activated carbon, energy storage, sulfide, surface area
Procedia PDF Downloads 193618 Sun Protection Factor (SPF) Determination of Sericin Cream and Niosomal Gel
Authors: Farzad Doostishoar, Abbas Pardakhty, Abdolreza Hassanzadeh, Sudeh salarpour, Elham Sharif
Abstract:
Background: Sericin is a protein extracted from silk and has antioxidant, antimicrobial, antineoplastic, wound healing and moisturizing properties. Different cosmetic formulation of sericin is available in different countries such as Japan and the other south-eastern Asian countries. We formulated and evaluated the sunscreen properties of topical formulations of sericin by an in vitro method. Method: Niosomes composed of sorbitan palmitate (Span 40), polysorbate 40 (Tween 40) and cholesterol (300 µmol, 3.5:3.5:3 molar ratio) were prepared by film hydration technique. Sericin was dissolved in normal saline and the lipid hydration was carried out at 60°C and the niosomes were incorporated in a Carbomer gel base. A W/O cream was also prepared and the release of sericin was evaluated by using Franz diffusion cell. Particle size analysis, sericin encapsulation efficiency measurement, morphological studies and stability evaluation were done in niosomal formulations. SPF was calculated by using Transpore tape in vitro method for both formulations. Results: Niosomes had high stability during 6 months storage at 4-8°C. The mean volume diameter of niosomes was less than 7 µm which is ideal for sustained release of drugs in topical formulations. The SPF of niosomal gel was 25 and higher than sericin cream with a diffusion based release pattern of active material. Conclusion: Sericin can be successfully entrapped in niosomes with sustained release pattern and relatively high SPF.Keywords: sericin, niosomes, sun protection factor, cream, gel
Procedia PDF Downloads 505