Search results for: whale optimization algorithm
5037 A Deletion-Cost Based Fast Compression Algorithm for Linear Vector Data
Authors: Qiuxiao Chen, Yan Hou, Ning Wu
Abstract:
As there are deficiencies of the classic Douglas-Peucker Algorithm (DPA), such as high risks of deleting key nodes by mistake, high complexity, time consumption and relatively slow execution speed, a new Deletion-Cost Based Compression Algorithm (DCA) for linear vector data was proposed. For each curve — the basic element of linear vector data, all the deletion costs of its middle nodes were calculated, and the minimum deletion cost was compared with the pre-defined threshold. If the former was greater than or equal to the latter, all remaining nodes were reserved and the curve’s compression process was finished. Otherwise, the node with the minimal deletion cost was deleted, its two neighbors' deletion costs were updated, and the same loop on the compressed curve was repeated till the termination. By several comparative experiments using different types of linear vector data, the comparison between DPA and DCA was performed from the aspects of compression quality and computing efficiency. Experiment results showed that DCA outperformed DPA in compression accuracy and execution efficiency as well.Keywords: Douglas-Peucker algorithm, linear vector data, compression, deletion cost
Procedia PDF Downloads 2515036 Subspace Rotation Algorithm for Implementing Restricted Hopfield Network as an Auto-Associative Memory
Authors: Ci Lin, Tet Yeap, Iluju Kiringa
Abstract:
This paper introduces the subspace rotation algorithm (SRA) to train the Restricted Hopfield Network (RHN) as an auto-associative memory. Subspace rotation algorithm is a gradient-free subspace tracking approach based on the singular value decomposition (SVD). In comparison with Backpropagation Through Time (BPTT) on training RHN, it is observed that SRA could always converge to the optimal solution and BPTT could not achieve the same performance when the model becomes complex, and the number of patterns is large. The AUTS case study showed that the RHN model trained by SRA could achieve a better structure of attraction basin with larger radius(in general) than the Hopfield Network(HNN) model trained by Hebbian learning rule. Through learning 10000 patterns from MNIST dataset with RHN models with different number of hidden nodes, it is observed that an several components could be adjusted to achieve a balance between recovery accuracy and noise resistance.Keywords: hopfield neural network, restricted hopfield network, subspace rotation algorithm, hebbian learning rule
Procedia PDF Downloads 1175035 Sequential Pattern Mining from Data of Medical Record with Sequential Pattern Discovery Using Equivalent Classes (SPADE) Algorithm (A Case Study : Bolo Primary Health Care, Bima)
Authors: Rezky Rifaini, Raden Bagus Fajriya Hakim
Abstract:
This research was conducted at the Bolo primary health Care in Bima Regency. The purpose of the research is to find out the association pattern that is formed of medical record database from Bolo Primary health care’s patient. The data used is secondary data from medical records database PHC. Sequential pattern mining technique is the method that used to analysis. Transaction data generated from Patient_ID, Check_Date and diagnosis. Sequential Pattern Discovery Algorithms Using Equivalent Classes (SPADE) is one of the algorithm in sequential pattern mining, this algorithm find frequent sequences of data transaction, using vertical database and sequence join process. Results of the SPADE algorithm is frequent sequences that then used to form a rule. It technique is used to find the association pattern between items combination. Based on association rules sequential analysis with SPADE algorithm for minimum support 0,03 and minimum confidence 0,75 is gotten 3 association sequential pattern based on the sequence of patient_ID, check_Date and diagnosis data in the Bolo PHC.Keywords: diagnosis, primary health care, medical record, data mining, sequential pattern mining, SPADE algorithm
Procedia PDF Downloads 4015034 A Comparative Study between Different Techniques of Off-Page and On-Page Search Engine Optimization
Authors: Ahmed Ishtiaq, Maeeda Khalid, Umair Sajjad
Abstract:
In the fast-moving world, information is the key to success. If information is easily available, then it makes work easy. The Internet is the biggest collection and source of information nowadays, and with every single day, the data on internet increases, and it becomes difficult to find required data. Everyone wants to make his/her website at the top of search results. This can be possible when you have applied some techniques of SEO inside your application or outside your application, which are two types of SEO, onsite and offsite SEO. SEO is an abbreviation of Search Engine Optimization, and it is a set of techniques, methods to increase users of a website on World Wide Web or to rank up your website in search engine indexing. In this paper, we have compared different techniques of Onpage and Offpage SEO, and we have suggested many things that should be changed inside webpage, outside web page and mentioned some most powerful and search engine considerable elements and techniques in both types of SEO in order to gain high ranking on Search Engine.Keywords: auto-suggestion, search engine optimization, SEO, query, web mining, web crawler
Procedia PDF Downloads 1505033 RFID Based Indoor Navigation with Obstacle Detection Based on A* Algorithm for the Visually Impaired
Authors: Jayron Sanchez, Analyn Yumang, Felicito Caluyo
Abstract:
The visually impaired individual may use a cane, guide dog or ask for assistance from a person. This study implemented the RFID technology which consists of a low-cost RFID reader and passive RFID tag cards. The passive RFID tag cards served as checkpoints for the visually impaired. The visually impaired was guided through audio output from the system while traversing the path. The study implemented an ultrasonic sensor in detecting static obstacles. The system generated an alternate path based on A* algorithm to avoid the obstacles. Alternate paths were also generated in case the visually impaired traversed outside the intended path to the destination. A* algorithm generated the shortest path to the destination by calculating the total cost of movement. The algorithm then selected the smallest movement cost as a successor to the current tag card. Several trials were conducted to determine the effect of obstacles in the time traversal of the visually impaired. A dependent sample t-test was applied for the statistical analysis of the study. Based on the analysis, the obstacles along the path generated delays while requesting for the alternate path because of the delay in transmission from the laptop to the device via ZigBee modules.Keywords: A* algorithm, RFID technology, ultrasonic sensor, ZigBee module
Procedia PDF Downloads 4095032 Multi Objective Near-Optimal Trajectory Planning of Mobile Robot
Authors: Amar Khoukhi, Mohamed Shahab
Abstract:
This paper presents the optimal control problem of mobile robot motion as a nonlinear programming problem (NLP) and solved using a direct method of numerical optimal control. The NLP is initialized with a B-Spline for which node locations are optimized using a genetic search. The system acceleration inputs and sampling periods are considered as optimization variables. Different scenarios with different objectives weights are implemented and investigated. Interesting results are found in terms of complying with the expected behavior of a mobile robot system and time-energy minimization.Keywords: multi-objective control, non-holonomic systems, mobile robots, nonlinear programming, motion planning, B-spline, genetic algorithm
Procedia PDF Downloads 3695031 A Novel Gateway Location Algorithm for Wireless Mesh Networks
Authors: G. M. Komba
Abstract:
The Internet Gateway (IGW) has extra ability than a simple Mesh Router (MR) and the responsibility to route mostly the all traffic from Mesh Clients (MCs) to the Internet backbone however, IGWs are more expensive. Choosing strategic locations for the Internet Gateways (IGWs) best location in Backbone Wireless Mesh (BWM) precarious to the Wireless Mesh Network (WMN) and the location of IGW can improve a quantity of performance related problem. In this paper, we propose a novel algorithm, namely New Gateway Location Algorithm (NGLA), which aims to achieve four objectives, decreasing the network cost effective, minimizing delay, optimizing the throughput capacity, Different from existing algorithms, the NGLA increasingly recognizes IGWs, allocates mesh routers (MRs) to identify IGWs and promises to find a feasible IGW location and install minimum as possible number of IGWs while regularly conserving the all Quality of Service (QoS) requests. Simulation results showing that the NGLA outperforms other different algorithms by comparing the number of IGWs with a large margin and it placed 40% less IGWs and 80% gain of throughput. Furthermore the NGLA is easy to implement and could be employed for BWM.Keywords: Wireless Mesh Network, Gateway Location Algorithm, Quality of Service, BWM
Procedia PDF Downloads 3715030 Clutter Suppression Based on Singular Value Decomposition and Fast Wavelet Algorithm
Authors: Ruomeng Xiao, Zhulin Zong, Longfa Yang
Abstract:
Aiming at the problem that the target signal is difficult to detect under the strong ground clutter environment, this paper proposes a clutter suppression algorithm based on the combination of singular value decomposition and the Mallat fast wavelet algorithm. The method first carries out singular value decomposition on the radar echo data matrix, realizes the initial separation of target and clutter through the threshold processing of singular value, and then carries out wavelet decomposition on the echo data to find out the target location, and adopts the discard method to select the appropriate decomposition layer to reconstruct the target signal, which ensures the minimum loss of target information while suppressing the clutter. After the verification of the measured data, the method has a significant effect on the target extraction under low SCR, and the target reconstruction can be realized without the prior position information of the target and the method also has a certain enhancement on the output SCR compared with the traditional single wavelet processing method.Keywords: clutter suppression, singular value decomposition, wavelet transform, Mallat algorithm, low SCR
Procedia PDF Downloads 1185029 Research on Control Strategy of Differential Drive Assisted Steering of Distributed Drive Electric Vehicle
Authors: J. Liu, Z. P. Yu, L. Xiong, Y. Feng, J. He
Abstract:
According to the independence, accuracy and controllability of the driving/braking torque of the distributed drive electric vehicle, a control strategy of differential drive assisted steering was designed. Firstly, the assisted curve under different speed and steering wheel torque was developed and the differential torques were distributed to the right and left front wheels. Then the steering return ability assisted control algorithm was designed. At last, the joint simulation was conducted by CarSim/Simulink. The result indicated: the differential drive assisted steering algorithm could provide enough steering drive-assisted under low speed and improve the steering portability. Along with the increase of the speed, the provided steering drive-assisted decreased. With the control algorithm, the steering stiffness of the steering system increased along with the increase of the speed, which ensures the driver’s road feeling. The control algorithm of differential drive assisted steering could avoid the understeer under low speed effectively.Keywords: differential assisted steering, control strategy, distributed drive electric vehicle, driving/braking torque
Procedia PDF Downloads 4785028 Loss Minimization by Distributed Generation Allocation in Radial Distribution System Using Crow Search Algorithm
Authors: M. Nageswara Rao, V. S. N. K. Chaitanya, K. Amarendranath
Abstract:
This paper presents an optimal allocation and sizing of Distributed Generation (DG) in Radial Distribution Network (RDN) for total power loss minimization and enhances the voltage profile of the system. The two main important part of this study first is to find optimal allocation and second is optimum size of DG. The locations of DGs are identified by Analytical expressions and crow search algorithm has been employed to determine the optimum size of DG. In this study, the DG has been placed on single and multiple allocations.CSA is a meta-heuristic algorithm inspired by the intelligent behavior of the crows. Crows stores their excess food in different locations and memorizes those locations to retrieve it when it is needed. They follow each other to do thievery to obtain better food source. This analysis is tested on IEEE 33 bus and IEEE 69 bus under MATLAB environment and the results are compared with existing methods.Keywords: analytical expression, distributed generation, crow search algorithm, power loss, voltage profile
Procedia PDF Downloads 2355027 Design and Performance Analysis of Resource Management Algorithms in Response to Emergency and Disaster Situations
Authors: Volkan Uygun, H. Birkan Yilmaz, Tuna Tugcu
Abstract:
This study focuses on the development and use of algorithms that address the issue of resource management in response to emergency and disaster situations. The presented system, named Disaster Management Platform (DMP), takes the data from the data sources of service providers and distributes the incoming requests accordingly both to manage load balancing and minimize service time, which results in improved user satisfaction. Three different resource management algorithms, which give different levels of importance to load balancing and service time, are proposed for the study. The first one is the Minimum Distance algorithm, which assigns the request to the closest resource. The second one is the Minimum Load algorithm, which assigns the request to the resource with the minimum load. Finally, the last one is the Hybrid algorithm, which combines the previous two approaches. The performance of the proposed algorithms is evaluated with respect to waiting time, success ratio, and maximum load ratio. The metrics are monitored from simulations, to find the optimal scheme for different loads. Two different simulations are performed in the study, one is time-based and the other is lambda-based. The results indicate that, the Minimum Load algorithm is generally the best in all metrics whereas the Minimum Distance algorithm is the worst in all cases and in all metrics. The leading position in performance is switched between the Minimum Distance and the Hybrid algorithms, as lambda values change.Keywords: emergency and disaster response, resource management algorithm, disaster situations, disaster management platform
Procedia PDF Downloads 3385026 Modified CUSUM Algorithm for Gradual Change Detection in a Time Series Data
Authors: Victoria Siriaki Jorry, I. S. Mbalawata, Hayong Shin
Abstract:
The main objective in a change detection problem is to develop algorithms for efficient detection of gradual and/or abrupt changes in the parameter distribution of a process or time series data. In this paper, we present a modified cumulative (MCUSUM) algorithm to detect the start and end of a time-varying linear drift in mean value of a time series data based on likelihood ratio test procedure. The design, implementation and performance of the proposed algorithm for a linear drift detection is evaluated and compared to the existing CUSUM algorithm using different performance measures. An approach to accurately approximate the threshold of the MCUSUM is also provided. Performance of the MCUSUM for gradual change-point detection is compared to that of standard cumulative sum (CUSUM) control chart designed for abrupt shift detection using Monte Carlo Simulations. In terms of the expected time for detection, the MCUSUM procedure is found to have a better performance than a standard CUSUM chart for detection of the gradual change in mean. The algorithm is then applied and tested to a randomly generated time series data with a gradual linear trend in mean to demonstrate its usefulness.Keywords: average run length, CUSUM control chart, gradual change detection, likelihood ratio test
Procedia PDF Downloads 2995025 Enhanced Imperialist Competitive Algorithm for the Cell Formation Problem Using Sequence Data
Authors: S. H. Borghei, E. Teymourian, M. Mobin, G. M. Komaki, S. Sheikh
Abstract:
Imperialist competitive algorithm (ICA) is a recent meta-heuristic method that is inspired by the social evolutions for solving NP-Hard problems. The ICA is a population based algorithm which has achieved a great performance in comparison to other meta-heuristics. This study is about developing enhanced ICA approach to solve the cell formation problem (CFP) using sequence data. In addition to the conventional ICA, an enhanced version of ICA, namely EICA, applies local search techniques to add more intensification aptitude and embed the features of exploration and intensification more successfully. Suitable performance measures are used to compare the proposed algorithms with some other powerful solution approaches in the literature. In the same way, for checking the proficiency of algorithms, forty test problems are presented. Five benchmark problems have sequence data, and other ones are based on 0-1 matrices modified to sequence based problems. Computational results elucidate the efficiency of the EICA in solving CFP problems.Keywords: cell formation problem, group technology, imperialist competitive algorithm, sequence data
Procedia PDF Downloads 4555024 An Experimental Study on Some Conventional and Hybrid Models of Fuzzy Clustering
Authors: Jeugert Kujtila, Kristi Hoxhalli, Ramazan Dalipi, Erjon Cota, Ardit Murati, Erind Bedalli
Abstract:
Clustering is a versatile instrument in the analysis of collections of data providing insights of the underlying structures of the dataset and enhancing the modeling capabilities. The fuzzy approach to the clustering problem increases the flexibility involving the concept of partial memberships (some value in the continuous interval [0, 1]) of the instances in the clusters. Several fuzzy clustering algorithms have been devised like FCM, Gustafson-Kessel, Gath-Geva, kernel-based FCM, PCM etc. Each of these algorithms has its own advantages and drawbacks, so none of these algorithms would be able to perform superiorly in all datasets. In this paper we will experimentally compare FCM, GK, GG algorithm and a hybrid two-stage fuzzy clustering model combining the FCM and Gath-Geva algorithms. Firstly we will theoretically dis-cuss the advantages and drawbacks for each of these algorithms and we will describe the hybrid clustering model exploiting the advantages and diminishing the drawbacks of each algorithm. Secondly we will experimentally compare the accuracy of the hybrid model by applying it on several benchmark and synthetic datasets.Keywords: fuzzy clustering, fuzzy c-means algorithm (FCM), Gustafson-Kessel algorithm, hybrid clustering model
Procedia PDF Downloads 5145023 High Aspect Ratio Micropillar Array Based Microfluidic Viscometer
Authors: Ahmet Erten, Adil Mustafa, Ayşenur Eser, Özlem Yalçın
Abstract:
We present a new viscometer based on a microfluidic chip with elastic high aspect ratio micropillar arrays. The displacement of pillar tips in flow direction can be used to analyze viscosity of liquid. In our work, Computational Fluid Dynamics (CFD) is used to analyze pillar displacement of various micropillar array configurations in flow direction at different viscosities. Following CFD optimization, micro-CNC based rapid prototyping is used to fabricate molds for microfluidic chips. Microfluidic chips are fabricated out of polydimethylsiloxane (PDMS) using soft lithography methods with molds machined out of aluminum. Tip displacements of micropillar array (300 µm in diameter and 1400 µm in height) in flow direction are recorded using a microscope mounted camera, and the displacements are analyzed using image processing with an algorithm written in MATLAB. Experiments are performed with water-glycerol solutions mixed at 4 different ratios to attain 1 cP, 5 cP, 10 cP and 15 cP viscosities at room temperature. The prepared solutions are injected into the microfluidic chips using a syringe pump at flow rates from 10-100 mL / hr and the displacement versus flow rate is plotted for different viscosities. A displacement of around 1.5 µm was observed for 15 cP solution at 60 mL / hr while only a 1 µm displacement was observed for 10 cP solution. The presented viscometer design optimization is still in progress for better sensitivity and accuracy. Our microfluidic viscometer platform has potential for tailor made microfluidic chips to enable real time observation and control of viscosity changes in biological or chemical reactions.Keywords: Computational Fluid Dynamics (CFD), high aspect ratio, micropillar array, viscometer
Procedia PDF Downloads 2475022 New Segmentation of Piecewise Moving-Average Model by Using Reversible Jump MCMC Algorithm
Authors: Suparman
Abstract:
This paper addresses the problem of the signal segmentation within a Bayesian framework by using reversible jump MCMC algorithm. The signal is modelled by piecewise constant Moving-Average (MA) model where the numbers of segments, the position of change-point, the order and the coefficient of the MA model for each segment are unknown. The reversible jump MCMC algorithm is then used to generate samples distributed according to the joint posterior distribution of the unknown parameters. These samples allow calculating some interesting features of the posterior distribution. The performance of the methodology is illustrated via several simulation results.Keywords: piecewise, moving-average model, reversible jump MCMC, signal segmentation
Procedia PDF Downloads 2275021 Algorithmic Approach to Management of Complications of Permanent Facial Filler: A Saudi Experience
Authors: Luay Alsalmi
Abstract:
Background: Facial filler is the most common type of cosmetic surgery next to botox. Permanent filler is preferred nowadays due to the low cost brought about by non-recurring injection appointments. However, such fillers pose a higher risk for complications, with even greater adverse effects when the procedure is done using unknown dermal filler injections. AIM: This study aimed to establish an algorithm to categorize and manage patients that receive permanent fillers. Materials and Methods: Twelve participants were presented to the service through emergency or as outpatient from November 2015 to May 2021. Demographics such as age, sex, date of injection, time of onset, and types of complications were collected. After examination, all cases were managed based on an algorithm established. FACE-Q was used to measure overall satisfaction and psychological well-being. Results: The algorithm to diagnose and manage these patients effectively with a high satisfaction rate was established in this study. All participants were non-smoker females with no known medical comorbidities. The algorithm presented determined the treatment plan when faced with complications. Results revealed high appearance-related psychosocial distress was observed prior to surgery, while it significantly dropped after surgery. FACE-Q was able to establish evidence of satisfactory ratings among patients prior to and after surgery. Conclusion: This treatment algorithm can guide the surgeon in formulating a suitable plan with fewer complications and a high satisfaction rate.Keywords: facial filler, FACE-Q, psycho-social stress, botox, treatment algorithm
Procedia PDF Downloads 845020 Cognitive SATP for Airborne Radar Based on Slow-Time Coding
Authors: Fanqiang Kong, Jindong Zhang, Daiyin Zhu
Abstract:
Space-time adaptive processing (STAP) techniques have been motivated as a key enabling technology for advanced airborne radar applications. In this paper, the notion of cognitive radar is extended to STAP technique, and cognitive STAP is discussed. The principle for improving signal-to-clutter ratio (SCNR) based on slow-time coding is given, and the corresponding optimization algorithm based on cyclic and power-like algorithms is presented. Numerical examples show the effectiveness of the proposed method.Keywords: space-time adaptive processing (STAP), airborne radar, signal-to-clutter ratio, slow-time coding
Procedia PDF Downloads 2735019 Commissioning of a Flattening Filter Free (FFF) using an Anisotropic Analytical Algorithm (AAA)
Authors: Safiqul Islam, Anamul Haque, Mohammad Amran Hossain
Abstract:
Aim: To compare the dosimetric parameters of the flattened and flattening filter free (FFF) beam and to validate the beam data using anisotropic analytical algorithm (AAA). Materials and Methods: All the dosimetric data’s (i.e. depth dose profiles, profile curves, output factors, penumbra etc.) required for the beam modeling of AAA were acquired using the Blue Phantom RFA for 6 MV, 6 FFF, 10MV & 10FFF. Progressive resolution Optimizer and Dose Volume Optimizer algorithm for VMAT and IMRT were are also configured in the beam model. Beam modeling of the AAA were compared with the measured data sets. Results: Due to the higher and lover energy component in 6FFF and 10 FFF the surface doses are 10 to 15% higher compared to flattened 6 MV and 10 MV beams. FFF beam has a lower mean energy compared to the flattened beam and the beam quality index were 6 MV 0.667, 6FFF 0.629, 10 MV 0.74 and 10 FFF 0.695 respectively. Gamma evaluation with 2% dose and 2 mm distance criteria for the Open Beam, IMRT and VMAT plans were also performed and found a good agreement between the modeled and measured data. Conclusion: We have successfully modeled the AAA algorithm for the flattened and FFF beams and achieved a good agreement with the calculated and measured value.Keywords: commissioning of a Flattening Filter Free (FFF) , using an Anisotropic Analytical Algorithm (AAA), flattened beam, parameters
Procedia PDF Downloads 3015018 Diesel Fault Prediction Based on Optimized Gray Neural Network
Authors: Han Bing, Yin Zhenjie
Abstract:
In order to analyze the status of a diesel engine, as well as conduct fault prediction, a new prediction model based on a gray system is proposed in this paper, which takes advantage of the neural network and the genetic algorithm. The proposed GBPGA prediction model builds on the GM (1.5) model and uses a neural network, which is optimized by a genetic algorithm to construct the error compensator. We verify our proposed model on the diesel faulty simulation data and the experimental results show that GBPGA has the potential to employ fault prediction on diesel.Keywords: fault prediction, neural network, GM(1, 5) genetic algorithm, GBPGA
Procedia PDF Downloads 3045017 Optimal Capacitor Placement in Distribution Systems
Authors: Sana Ansari, Sirus Mohammadi
Abstract:
In distribution systems, shunt capacitors are used to reduce power losses, to improve voltage profile, and to increase the maximum flow through cables and transformers. This paper presents a new method to determine the optimal locations and economical sizing of fixed and/or switched shunt capacitors with a view to power losses reduction and voltage stability enhancement. General Algebraic Modeling System (GAMS) has been used to solve the maximization modules using the MINOS optimization software with Linear Programming (LP). The proposed method is tested on 33 node distribution system and the results show that the algorithm suitable for practical implementation on real systems with any size.Keywords: power losses, voltage stability, radial distribution systems, capacitor
Procedia PDF Downloads 6475016 Statistical Optimization and Production of Rhamnolipid by P. aeruginosa PAO1 Using Prickly Pear Peel as a Carbon Source
Authors: Mostafa M. Abo Elsoud, Heba I. Elkhouly, Nagwa M. Sidkey
Abstract:
Production of rhamnolipids by Pseudomonas aeruginosa has attracted a growing interest during the last few decades due to its high productivity compared with other microorganisms. In the current work, rhamnolipids production by P. aeruginosa PAO1 was statistically modeled using Taguchi orthogonal array, numerically optimized and validated. Prickly Pear Peel (Opuntia ficus-indica) has been used as a carbon source for production of rhamnolipid. Finally, the optimum conditions for rhamnolipid production were applied in 5L working volume bioreactors at different aerations, agitation and controlled pH for maximum rhamnolipid production. In addition, kinetic studies of rhamnolipids production have been reported. At the end of the batch bioreactor optimization process, rhamnolipids production by P. aeruginosa PAO1 has reached the worldwide levels and can be applied for its industrial production.Keywords: rhamnolipids, pseudomonas aeruginosa, statistical optimization, tagushi, opuntia ficus-indica
Procedia PDF Downloads 1795015 Video Stabilization Using Feature Point Matching
Authors: Shamsundar Kulkarni
Abstract:
Video capturing by non-professionals will lead to unanticipated effects. Such as image distortion, image blurring etc. Hence, many researchers study such drawbacks to enhance the quality of videos. In this paper, an algorithm is proposed to stabilize jittery videos .A stable output video will be attained without the effect of jitter which is caused due to shaking of handheld camera during video recording. Firstly, salient points from each frame from the input video are identified and processed followed by optimizing and stabilize the video. Optimization includes the quality of the video stabilization. This method has shown good result in terms of stabilization and it discarded distortion from the output videos recorded in different circumstances.Keywords: video stabilization, point feature matching, salient points, image quality measurement
Procedia PDF Downloads 3135014 Design and Implementation of a Counting and Differentiation System for Vehicles through Video Processing
Authors: Derlis Gregor, Kevin Cikel, Mario Arzamendia, Raúl Gregor
Abstract:
This paper presents a self-sustaining mobile system for counting and classification of vehicles through processing video. It proposes a counting and classification algorithm divided in four steps that can be executed multiple times in parallel in a SBC (Single Board Computer), like the Raspberry Pi 2, in such a way that it can be implemented in real time. The first step of the proposed algorithm limits the zone of the image that it will be processed. The second step performs the detection of the mobile objects using a BGS (Background Subtraction) algorithm based on the GMM (Gaussian Mixture Model), as well as a shadow removal algorithm using physical-based features, followed by morphological operations. In the first step the vehicle detection will be performed by using edge detection algorithms and the vehicle following through Kalman filters. The last step of the proposed algorithm registers the vehicle passing and performs their classification according to their areas. An auto-sustainable system is proposed, powered by batteries and photovoltaic solar panels, and the data transmission is done through GPRS (General Packet Radio Service)eliminating the need of using external cable, which will facilitate it deployment and translation to any location where it could operate. The self-sustaining trailer will allow the counting and classification of vehicles in specific zones with difficult access.Keywords: intelligent transportation system, object detection, vehicle couting, vehicle classification, video processing
Procedia PDF Downloads 3225013 An Expert System Designed to Be Used with MOEAs for Efficient Portfolio Selection
Authors: Kostas Metaxiotis, Kostas Liagkouras
Abstract:
This study presents an Expert System specially designed to be used with Multiobjective Evolutionary Algorithms (MOEAs) for the solution of the portfolio selection problem. The validation of the proposed hybrid System is done by using data sets from Hang Seng 31 in Hong Kong, DAX 100 in Germany and FTSE 100 in UK. The performance of the proposed system is assessed in comparison with the Non-dominated Sorting Genetic Algorithm II (NSGAII). The evaluation of the performance is based on different performance metrics that evaluate both the proximity of the solutions to the Pareto front and their dispersion on it. The results show that the proposed hybrid system is efficient for the solution of this kind of problems.Keywords: expert systems, multi-objective optimization, evolutionary algorithms, portfolio selection
Procedia PDF Downloads 4395012 Efficient Motion Estimation by Fast Three Step Search Algorithm
Authors: S. M. Kulkarni, D. S. Bormane, S. L. Nalbalwar
Abstract:
The rapid development in the technology have dramatic impact on the medical health care field. Medical data base obtained with latest machines like CT Machine, MRI scanner requires large amount of memory storage and also it requires large bandwidth for transmission of data in telemedicine applications. Thus, there is need for video compression. As the database of medical images contain number of frames (slices), hence while coding of these images there is need of motion estimation. Motion estimation finds out movement of objects in an image sequence and gets motion vectors which represents estimated motion of object in the frame. In order to reduce temporal redundancy between successive frames of video sequence, motion compensation is preformed. In this paper three step search (TSS) block matching algorithm is implemented on different types of video sequences. It is shown that three step search algorithm produces better quality performance and less computational time compared with exhaustive full search algorithm.Keywords: block matching, exhaustive search motion estimation, three step search, video compression
Procedia PDF Downloads 4915011 Optimization of Roster Construction In Sports
Authors: Elijah Cavan
Abstract:
In Major League Sports (MLB, NBA, NHL, NFL), it is the Front Office Staff (FOS) who make decisions about who plays for their respective team. The FOS bear the brunt of the responsibility for acquiring players through drafting, trading and signing players in free agency while typically contesting with maximum roster salary constraints. The players themselves are volatile assets of these teams- their value fluctuates with age and performance. A simple comparison can be made when viewing players as assets. The problem here is similar to that of optimizing your investment portfolio. The The goal is ultimately to maximize your periodic returns while tolerating a fixed risk (degree of uncertainty/ potential loss). Each franchise may value assets differently, and some may only tolerate lower risk levels- these are examples of factors that introduce additional constraints into the model. In this talk, we will detail the mathematical formulation of this problem as a constrained optimization problem- which can be solved with classical machine learning methods but is also well posed as a problem to be solved on quantum computersKeywords: optimization, financial mathematics, sports analytics, simulated annealing
Procedia PDF Downloads 1225010 Optimal Trailing Edge Flap Positions of Helicopter Rotor for Various Thrust Coefficient to Solidity (Ct/σ) Ratios
Authors: K. K. Saijaand, K. Prabhakaran Nair
Abstract:
This study aims to determine change in optimal lo-cations of dual trailing-edge flaps for various thrust coefficient to solidity (Ct /σ) ratios of helicopter to achieve minimum hub vibration levels, with low penalty in terms of required trailing-edge flap control power. Polynomial response functions are used to approximate hub vibration and flap power objective functions. Single objective and multi-objective optimization is carried with the objective of minimizing hub vibration and flap power. The optimization results shows that the inboard flap location at low Ct/σ ratio move farther from the baseline value and at high Ct/σ ratio move towards the root of the blade for minimizing hub vibration.Keywords: helicopter rotor, trailing-edge flap, thrust coefficient to solidity (Ct /σ) ratio, optimization
Procedia PDF Downloads 4765009 The Parallelization of Algorithm Based on Partition Principle for Association Rules Discovery
Authors: Khadidja Belbachir, Hafida Belbachir
Abstract:
subsequently the expansion of the physical supports storage and the needs ceaseless to accumulate several data, the sequential algorithms of associations’ rules research proved to be ineffective. Thus the introduction of the new parallel versions is imperative. We propose in this paper, a parallel version of a sequential algorithm “Partition”. This last is fundamentally different from the other sequential algorithms, because it scans the data base only twice to generate the significant association rules. By consequence, the parallel approach does not require much communication between the sites. The proposed approach was implemented for an experimental study. The obtained results, shows a great reduction in execution time compared to the sequential version and Count Distributed algorithm.Keywords: association rules, distributed data mining, partition, parallel algorithms
Procedia PDF Downloads 4165008 Quantum Statistical Machine Learning and Quantum Time Series
Authors: Omar Alzeley, Sergey Utev
Abstract:
Minimizing a constrained multivariate function is the fundamental of Machine learning, and these algorithms are at the core of data mining and data visualization techniques. The decision function that maps input points to output points is based on the result of optimization. This optimization is the central of learning theory. One approach to complex systems where the dynamics of the system is inferred by a statistical analysis of the fluctuations in time of some associated observable is time series analysis. The purpose of this paper is a mathematical transition from the autoregressive model of classical time series to the matrix formalization of quantum theory. Firstly, we have proposed a quantum time series model (QTS). Although Hamiltonian technique becomes an established tool to detect a deterministic chaos, other approaches emerge. The quantum probabilistic technique is used to motivate the construction of our QTS model. The QTS model resembles the quantum dynamic model which was applied to financial data. Secondly, various statistical methods, including machine learning algorithms such as the Kalman filter algorithm, are applied to estimate and analyses the unknown parameters of the model. Finally, simulation techniques such as Markov chain Monte Carlo have been used to support our investigations. The proposed model has been examined by using real and simulated data. We establish the relation between quantum statistical machine and quantum time series via random matrix theory. It is interesting to note that the primary focus of the application of QTS in the field of quantum chaos was to find a model that explain chaotic behaviour. Maybe this model will reveal another insight into quantum chaos.Keywords: machine learning, simulation techniques, quantum probability, tensor product, time series
Procedia PDF Downloads 469