Search results for: reliability analysis of concrete bridges
29295 Stress-Strain Relation for Hybrid Fiber Reinforced Concrete at Elevated Temperature
Authors: Josef Novák, Alena Kohoutková
Abstract:
The performance of concrete structures in fire depends on several factors which include, among others, the change in material properties due to the fire. Today, fiber reinforced concrete (FRC) belongs to materials which have been widely used for various structures and elements. While the knowledge and experience with FRC behavior under ambient temperature is well-known, the effect of elevated temperature on its behavior has to be deeply investigated. This paper deals with an experimental investigation and stress‑strain relations for hybrid fiber reinforced concrete (HFRC) which contains siliceous aggregates, polypropylene and steel fibers. The main objective of the experimental investigation is to enhance a database of mechanical properties of concrete composites with addition of fibers subject to elevated temperature as well as to validate existing stress-strain relations for HFRC. Within the investigation, a unique heat transport test, compressive test and splitting tensile test were performed on 150 mm cubes heated up to 200, 400, and 600 °C with the aim to determine a time period for uniform heat distribution in test specimens and the mechanical properties of the investigated concrete composite, respectively. Both findings obtained from the presented experimental test as well as experimental data collected from scientific papers so far served for validating the computational accuracy of investigated stress-strain relations for HFRC which have been developed during last few years. Owing to the presence of steel and polypropylene fibers, HFRC becomes a unique material whose structural performance differs from conventional plain concrete when exposed to elevated temperature. Polypropylene fibers in HFRC lower the risk of concrete spalling as the fibers burn out shortly with increasing temperature due to low ignition point and as a consequence pore pressure decreases. On the contrary, the increase in the concrete porosity might affect the mechanical properties of the material. To validate this thought requires enhancing the existing result database which is very limited and does not contain enough data. As a result of the poor database, only few stress-strain relations have been developed so far to describe the structural performance of HFRC at elevated temperature. Moreover, many of them are inconsistent and need to be refined. Most of them also do not take into account the effect of both a fiber type and fiber content. Such approach might be vague especially when high amount of polypropylene fibers are used. Therefore, the existing relations should be validated in detail based on other experimental results.Keywords: elevated temperature, fiber reinforced concrete, mechanical properties, stress strain relation
Procedia PDF Downloads 33929294 Finite Element Modeling of the Effects of Loss of Rigid Pavements Slab Support Due to Built-In Curling
Authors: Ali Ashtiani, Cesar Carrasco
Abstract:
Accurate determination of thermo-mechanical responses of jointed concrete pavement slabs is essential to implement an effective mechanistic design. Temperature-induced curling of concrete slabs can produce premature top-down cracking in rigid pavements. Curling of concrete slabs can result from daily temperature variation through the slab thickness. The slab curling can also result from temperature gradients due hot weather construction, drying shrinkage and creep that are permanently built into the slabs. The existence of permanent curling implies that concrete slabs are not flat at zero temperature gradient. In this case, slabs may not be in full contact with the underlying base layer when subjecting to traffic. Built-in curling can be a major factor producing loss of slab support. The magnitude of stresses induced in slabs is influenced by the stiffness of the underlying foundation layers and the contact condition along the slab-foundation interface. An approach for finite element modeling of the effect of loss of slab support due to built-in curling is presented in this paper. A series of parametric studies is carried out for a pavement system loaded with a combination of traffic and thermal loads, considering different built-in curling and different foundation rigidities. The results explain the effect of loss of support in the magnitude of stresses produced in concrete slabs. The results of parametric study can also be used to evaluate whether the governing equations that are used to idealize the behavior of jointed concrete pavements and the effect of loss of support have been accurately selected and implemented in the finite element model.Keywords: built-in curling, finite element modeling, loss of slab support, rigid pavement
Procedia PDF Downloads 14929293 Characterization of Calcined Clay Blended Self Compacting Concrete-Correlation between Super-Plasticizer Dosage and Self Compacting Concrete Properties
Authors: Kumator Josiphiah Taku
Abstract:
Sustainability in construction is essential to the economic construction and can be achieved by the use of locally available construction materials. This research work, thus, uses locally available materials –calcined clay and Sandcrete SPR-300 superplasticizer in the production of Self Compacting Concrete (SCC) by investigating the correlation between the superplasticizer dosage and the fresh and hardened states properties of a grade 50 SCC made by incorporating a Calcined Clay (CC) – Portland Limestone Cement (PLC) blend as the cementitious matter at 20% replacement of PLC with CC and using CC as filler. The superplasticizer dosage was varied from 0.4 to 3.0% by weight of cementitious material and the slump, v-funnel, L-box and strength parameters investigated. The result shows a positive correlation between the increased dosage of the superplasticizer and the fresh and hardened states properties of the SCC up to 2% dosage. The J¬Spread¬, t¬500J¬, Slump flow, L-box H¬2¬/H¬1 ¬ratio and strength, all increases with SP dosage while the V-funnel flow decreased with SP dosage. Overall, SP ratio of 0.5 to 2.0 can be used in improving the properties of SCC produced using calcined clay both as filler and cementitious material.Keywords: calcined clay, compressive strength, fresh-state properties of SCC, self compacting concrete, superplasticizer dosage
Procedia PDF Downloads 16629292 Effect of Different FRP Wrapping and Thickness of Concrete Cover on Fatigue Bond Strength of Spliced Concrete Beam
Authors: Rayed Alyousef, Tim Topper, Adil Al-Mayah
Abstract:
This paper presents results of an ongoing research program at University of Waterloo to study the effect of external FRP sheet wrap confinement along a lap splice of reinforced concrete (RC) beams on their fatigue bond strength. Fatigue loading of RC beams containing a lap splice resulted in an increase in the number and width of cracks, an increase in deflection and a decrease of the bond strength between the steel rebar and the surrounding concrete. The phase of the research described here consists of monotonic and fatigue tests of thirty two reinforced concrete beam with dimensions 2200⨉350⨉250 mm. Each beam was reinforced with two 20M bars lap spliced in the constant moment region of the tension zone and two 10M bars in the compression zone outside the constant moment region. The test variables were the presence or absence of a FRP wrapping, the type of the FRP wrapping (GFRP or CFRP), the type of loading and the fatigue load range. The test results for monotonic loading showed that the stiffness of all beams was almost same, but that the FRP sheet wrapping increased the bond strength and the deflection at ultimate load. All beams tested under fatigue loading failed by a bond failure except one CFRP wrapped beam that failed by fatigue of the main reinforcement. The FRP sheet increased the bond strength for all specimens under fatigue loading.Keywords: lap splice, bond strength, fatigue loading, FRP
Procedia PDF Downloads 29329291 An Experimental Study on the Influence of Mineral Admixtures on the Fire Resistance of High-Strength Concrete
Authors: Ki-seok Kwon, Dong-woo Ryu, Heung-Youl Kim
Abstract:
Although high-strength concrete has many advantages over generic concrete at normal temperatures (around 20℃), it undergoes spalling at high temperatures, which constitutes its structurally fatal drawback. In this study, fire resistance tests were conducted for 3 hours in accordance with ASTM E119 on bearing wall specimens which were 3,000mm x 3,000mm x 300mm in dimensions to investigate the influence the type of admixtures would exert on the fire resistance performance of high-strength concrete. Portland cement, blast furnace slag, fly ash and silica fume were used as admixtures, among which 2 or 3 components were combined to make 7 types of mixtures. In 56MPa specimens, the severity of spalling was in order of SF5 > F25 > S65SF5 > S50. Specimen S50 where an admixture consisting of 2 components was added did not undergo spalling. In 70MPa specimens, the severity of spalling was in order of SF5 > F25SF5 > S45SF5 and the result was similar to that observed in 56MPa specimens. Acknowledgements— This study was conducted by the support of the project, “Development of performance-based fire safety design of the building and improvement of fire safety” (18AUDP-B100356-04) which is under the management of Korea Agency for Infrastructure Technology Advancement as part of the urban architecture research project for the Ministry of Land, Infrastructure and Transport, for which we extend our deep thanks.Keywords: high strength concrete, mineral admixture, fire resistance, social disaster
Procedia PDF Downloads 14429290 System Survivability in Networks
Authors: Asma Ben Yaghlane, Mohamed Naceur Azaiez
Abstract:
We consider the problem of attacks on networks. We define the concept of system survivability in networks in the presence of intelligent threats. Our setting of the problem assumes a flow to be sent from one source node to a destination node. The attacker attempts to disable the network by preventing the flow to reach its destination while the defender attempts to identify the best path-set to use to maximize the chance of arrival of the flow to the destination node. Our concept is shown to be different from the classical concept of network reliability. We distinguish two types of network survivability related to the defender and to the attacker of the network, respectively. We prove that the defender-based-network survivability plays the role of a lower bound while the attacker-based-network survivability plays the role of an upper bound of network reliability. We also prove that both concepts almost never agree nor coincide with network reliability. Moreover, we use the shortest-path problem to determine the defender-based-network survivability and the min-cut problem to determine the attacker-based-network survivability. We extend the problem to a variety of models including the minimum-spanning-tree problem and the multiple source-/destination-network problems.Keywords: defense/attack strategies, information, networks, reliability, survivability
Procedia PDF Downloads 39229289 Enhancement of Mechanical Properties and Thermal Conductivity of Oil Palm Shell Lightweight Concrete Reinforced with High Performance Polypropylene Fibres
Authors: Leong Tatt Loh, Ming Kun Yew, Ming Chian Yew, Lip Huat Saw, Jing Han Beh, Siong Kang Lim, Foo Wei Lee
Abstract:
Oil palm shell (OPS) is the solid waste product from the palm oil sector of the agricultural industry and can be used as alternative coarse aggregates to substitute depleting conventional raw materials. This research aims to investigate the incorporation of various high-performance polypropylene (HPP) fibres with different geometry to enhance the mechanical properties and thermal conductivity of OPS lightweight concrete. The effect of different volume fractions (Vf) (0.05%, 0.10% and 0.15%) were studied for each fibre. The results reveal that the effectiveness of HPP fibres to increase the compressive strength at later ages was more pronounced than at early age. It is found that the use of HPP fibres reinforced OPS lightweight concrete (LWC) induced the advantageous of improving mechanical properties (compressive strength, flexural strength and splitting tensile strength) and thermal conductivity. Hence, this HPP fibres is a promising alternative solution to compensate lower mechanical properties as well as contribute to energy efficiency building material in the construction industry.Keywords: oil palm shell, high performance polypropylene fibre, lightweight concrete, mechanical properties, thermal conductivity
Procedia PDF Downloads 20729288 Flexural Behavior of Voided Slabs Reinforced With Basalt Bars
Authors: Jazlah Majeed Sulaiman, Lakshmi P.
Abstract:
Concrete slabs are considered to be very ductile structural members. Openings in reinforced slabs are necessary so as to install the mechanical, electrical and pumping (MEP) conduits and ducts. However, these openings reduce the load-carrying capacity, stiffness, energy, and ductility of the slabs. To resolve the undesirable effects of openings in the slab behavior, it is significant to achieve the desired strength against the loads acting on it. The use of Basalt Fiber Reinforcement Polymers (BFRP) as reinforcement has become a valid sustainable option as they produce less greenhouse gases, resist corrosion and have higher tensile strength. In this paper, five slab models are analyzed using non-linear static analysis in ANSYS Workbench to study the effect of openings on slabs reinforced with basalt bars. A parametric numerical study on the loading condition and the shape and size of the opening is conducted, and their load and displacement values are compared. One of the models is validated experimentally.Keywords: concrete slabs, openings, BFRP, sustainable, corrosion resistant, non-linear static analysis, ANSYS
Procedia PDF Downloads 11129287 Effect of Bentonite on the Rheological Behavior of Cement Grout in Presence of Superplasticizer
Authors: K. Benyounes, A. Benmounah
Abstract:
Cement-based grouts has been used successfully to repair cracks in many concrete structures such as bridges, tunnels, buildings and to consolidate soils or rock foundations. In the present study, the rheological characterization of cement grout with water/binder ratio (W/B) is fixed at 0.5. The effect of the replacement of cement by bentonite (2 to 10 % wt) in presence of superplasticizer (0.5 % wt) was investigated. Several rheological tests were carried out by using controlled-stress rheometer equipped with vane geometry in temperature of 20°C. To highlight the influence of bentonite and superplasticizer on the rheological behavior of grout cement, various flow tests in a range of shear rate from 0 to 200 s-1 were observed. Cement grout showed a non-Newtonian viscosity behavior at all concentrations of bentonite. Three parameter model Herschel-Bulkley was chosen for fitting of experimental data. Based on the values of correlation coefficients of the estimated parameters, The Herschel-Bulkley law model well described the rheological behavior of the grouts. Test results showed that the dosage of bentonite increases the viscosity and yield stress of the system and introduces more thixotropy. While the addition of both bentonite and superplasticizer with cement grout improve significantly the fluidity and reduced the yield stress due to the action of dispersion of SP.Keywords: rheology, cement grout, bentonite, superplasticizer, viscosity, yield stress
Procedia PDF Downloads 36229286 Mechanical Properties and Microstructure of Ultra-High Performance Concrete Containing Fly Ash and Silica Fume
Authors: Jisong Zhang, Yinghua Zhao
Abstract:
The present study investigated the mechanical properties and microstructure of Ultra-High Performance Concrete (UHPC) containing supplementary cementitious materials (SCMs), such as fly ash (FA) and silica fume (SF), and to verify the synergistic effect in the ternary system. On the basis of 30% fly ash replacement, the incorporation of either 10% SF or 20% SF show a better performance compared to the reference sample. The efficiency factor (k-value) was calculated as a synergistic effect to predict the compressive strength of UHPC with these SCMs. The SEM of micrographs and pore volume from BJH method indicate a high correlation with compressive strength. Further, an artificial neural networks model was constructed for prediction of the compressive strength of UHPC containing these SCMs.Keywords: artificial neural network, fly ash, mechanical properties, ultra-high performance concrete
Procedia PDF Downloads 41429285 Structural Characteristics of HPDSP Concrete on Beam Column Joints
Authors: Hari Krishan Sharma, Sanjay Kumar Sharma, Sushil Kumar Swar
Abstract:
Inadequate transverse reinforcement is considered as the main reason for the beam column joint shear failure observed during recent earthquakes. DSP matrix consists of cement and high content of micro-silica with low water to cement ratio while the aggregates are graded quartz sand. The use of reinforcing fibres leads not only to the increase of tensile/bending strength and specific fracture energy, but also to reduction of brittleness and, consequently, to production of non-explosive ruptures. Besides, fibre-reinforced materials are more homogeneous and less sensitive to small defects and flaws. Recent works on the freeze-thaw durability (also in the presence of de-icing salts) of fibre-reinforced DSP confirm the excellent behaviour in the expected long term service life.DSP materials, including fibre-reinforced DSP and CRC (Compact Reinforced Composites) are obtained by using high quantities of super plasticizers and high volumes of micro-silica. Steel fibres with high tensile yield strength of smaller diameter and short length in different fibre volume percentage and aspect ratio tilized to improve the performance by reducing the brittleness of matrix material. In the case of High Performance Densified Small Particle Concrete (HPDSPC), concrete is dense at the micro-structure level, tensile strain would be much higher than that of the conventional SFRC, SIFCON & SIMCON. Beam-column sub-assemblages used as moment resisting constructed using HPDSPC in the joint region with varying quantities of steel fibres, fibre aspect ratio and fibre orientation in the critical section. These HPDSPC in the joint region sub-assemblages tested under cyclic/earthquake loading. Besides loading measurements, frame displacements, diagonal joint strain and rebar strain adjacent to the joint will also be measured to investigate stress-strain behaviour, load deformation characteristics, joint shear strength, failure mechanism, ductility associated parameters, stiffness and energy dissipated parameters of the beam column sub-assemblages also evaluated. Finally a design procedure for the optimum design of HPDSPC corresponding to moment, shear forces and axial forces for the reinforced concrete beam-column joint sub-assemblage proposed. The fact that the implementation of material brittleness measure in the design of RC structures can improve structural reliability by providing uniform safety margins over a wide range of structural sizes and material compositions well recognized in the structural design and research. This lead to the development of high performance concrete for the optimized combination of various structural ratios in concrete for the optimized combination of various structural properties. The structural applications of HPDSPC, because of extremely high strength, will reduce dead load significantly as compared to normal weight concrete thereby offering substantial cost saving and by providing improved seismic response, longer spans, and thinner sections, less reinforcing steel and lower foundation cost. These cost effective parameters will make this material more versatile for use in various structural applications like beam-column joints in industries, airports, parking areas, docks, harbours, and also containers for hazardous material, safety boxes and mould & tools for polymer composites and metals.Keywords: high performance densified small particle concrete (HPDSPC), steel fibre reinforced concrete (SFRC), slurry infiltrated concrete (SIFCON), Slurry infiltrated mat concrete (SIMCON)
Procedia PDF Downloads 30329284 Effects of Moisture on Fatigue Behavior of Asphalt Concrete Mixtures Using Four-Point Bending Test
Authors: Mohit Chauhan, Atul Narayan
Abstract:
Moisture damage is the continuous deterioration of asphalt concrete mixtures by the loss of adhesive bond between the asphalt binder and aggregates, or loss of cohesive bonds within the asphalt binder in the presence of moisture. Moisture has been known to either cause or exacerbates distresses in asphalt concrete pavements. Since moisture would often retain for a relatively long duration at the bottom of asphalt concrete layer, the movement of traffic loading in this saturated condition would cause excess stresses or strains within the mixture. This would accelerate the degradation of the adhesion and cohesion within the mixture and likely to contribute the development of fatigue cracking in asphalt concrete pavements. In view of this, it is important to investigate the effect of moisture on the fatigue behavior of asphalt concrete mixtures. In this study, changes in fatigue characteristics after moisture conditioning were evaluated by conducting four-point beam fatigue tests on dry and moisture conditioned specimens. For this purpose, mixtures with two different types of binders were prepared and saturated with moisture using 700 mm Hg vacuum. Beam specimens, in this way, were taken to a saturation level of 65-75 percent. After preconditioning specimens in this degree of saturation and 60°C for a period of 24 hours, they were subjected to four point beam fatigue tests in strain-controlled mode with a strain amplitude of 400 microstrain. The results were then compared with the fatigue test results obtained with beam specimens that were not subjected to moisture conditioning. Test results show that the conditioning reduces both fatigue life and initial flexural stiffness of specimen significantly. The moisture conditioning was also found to increase the rate of reduction of flexural stiffness. Moreover, it was observed that the fatigue life ratio (FLR), the ratio of the fatigue life of the moisture conditioned sample to that of the dry sample, is significantly lower than the flexural stiffness ratio (FSR). The study indicates that four-point bending test is an appropriate tool with FLR and FSR as the potential parameters for moisture-sensitivity evaluation.Keywords: asphalt concrete, fatigue cracking, moisture damage, preconditioning
Procedia PDF Downloads 13929283 Analytical Model for Columns in Existing Reinforced Concrete Buildings
Authors: Chang Seok Lee, Sang Whan Han, Girbo Ko, Debbie Kim
Abstract:
Existing reinforced concrete structures are designed and built without considering seismic loads. The columns in such buildings generally exhibit widely spaced transverse reinforcements without using seismic hooks. Due to the insufficient reinforcement details in columns, brittle shear failure is expected in columns that may cause pre-mature building collapse mechanism during earthquakes. In order to retrofit those columns, the accurate seismic behavior of the columns needs to be predicted with proper analytical models. In this study, an analytical model is proposed for accurately simulating the cyclic behavior of shear critical columns. The parameters for pinching and cyclic deterioration in strength and stiffness are calibrated using test data of column specimens failed by shear.Keywords: analytical model, cyclic deterioration, existing reinforced concrete columns, shear failure
Procedia PDF Downloads 26529282 On the Seismic Response of Collided Structures
Authors: George D. Hatzigeorgiou, Nikos G. Pnevmatikos
Abstract:
This study examines the inelastic behavior of adjacent planar reinforced concrete (R.C.) frames subjected to strong ground motions. The investigation focuses on the effects of vertical ground motion on the seismic pounding. The examined structures are modeled and analyzed by RUAUMOKO dynamic nonlinear analysis program using reliable hysteretic models for both structural members and contact elements. It is found that the vertical ground motion mildly affects the seismic response of adjacent buildings subjected to structural pounding and, for this reason, it can be ignored from the displacement and interstorey drifts assessment. However, the structural damage is moderately affected by the vertical component of earthquakes.Keywords: nonlinear seismic behavior, reinforced concrete structures, structural pounding, vertical ground motions
Procedia PDF Downloads 59329281 Efficacy of Crystalline Admixtures in Self-Healing Capacity of Fibre Reinforced Concrete
Authors: Evangelia Tsampali, Evangelos Yfantidis, Andreas Ioakim, Maria Stefanidou
Abstract:
The purpose of this paper is the characterization of the effects of crystalline admixtures on concrete. Crystallites, aided by the presence of humidity, form idiomorphic crystals that block cracks and pores resulting in reduced porosity. In this project, two types of crystallines have been employed. The hydrophilic nature of crystalline admixtures helps the components to react with water and cement particles in the concrete to form calcium silicate hydrates and pore-blocking precipitates in the existing micro-cracks and capillaries. The underlying mechanism relies on the formation of calcium silicate hydrates and the resulting deposits of these crystals become integrally bound with the hydrated cement paste. The crystalline admixtures continue to activate throughout the life of the composite material when in the presence of moisture entering the concrete through hairline cracks, sealing additional gaps. The resulting concrete exhibits significantly increased resistance to water penetration under stress. Admixtures of calcium aluminates can also contribute to this healing mechanism in the same manner. However, this contribution is negligible compared to the calcium silicate hydrates due to the abundance of the latter. These crystalline deposits occur throughout the concrete volume and are a permanent part of the concrete mass. High-performance fibre reinforced cementitious composite (HPFRCC) were produced in the laboratory. The specimens were exposed in three healing conditions: water immersion until testing at 15 °C, sea water immersion until testing at 15 °C, and wet/dry cycles (immersion in tap water for 3 days and drying for 4 days). Specimens were pre-cracked at 28 days, and the achieved cracks width were in the range of 0.10–0.50 mm. Furthermore, microstructure observations and Ultrasonic Pulse Velocity tests have been conducted. Based on the outcomes, self-healing related indicators have also been defined. The results show almost perfect healing capability for specimens healed under seawater, better than for specimens healed in water while inadequate for the wet/dry exposure in both of the crystalline types.Keywords: autogenous self-healing, concrete, crystalline admixtures, ultrasonic pulse velocity test
Procedia PDF Downloads 12729280 Design and Analysis of Adaptive Type-I Progressive Hybrid Censoring Plan under Step Stress Partially Accelerated Life Testing Using Competing Risk
Authors: Ariful Islam, Showkat Ahmad Lone
Abstract:
Statistical distributions have long been employed in the assessment of semiconductor devices and product reliability. The power function-distribution is one of the most important distributions in the modern reliability practice and can be frequently preferred over mathematically more complex distributions, such as the Weibull and the lognormal, because of its simplicity. Moreover, it may exhibit a better fit for failure data and provide more appropriate information about reliability and hazard rates in some circumstances. This study deals with estimating information about failure times of items under step-stress partially accelerated life tests for competing risk based on adoptive type-I progressive hybrid censoring criteria. The life data of the units under test is assumed to follow Mukherjee-Islam distribution. The point and interval maximum-likelihood estimations are obtained for distribution parameters and tampering coefficient. The performances of the resulting estimators of the developed model parameters are evaluated and investigated by using a simulation algorithm.Keywords: adoptive progressive hybrid censoring, competing risk, mukherjee-islam distribution, partially accelerated life testing, simulation study
Procedia PDF Downloads 34729279 Thermal Behavior of the Extensive Green Roofs in Riyadh City
Authors: Ashraf Muharam, Nasser Al-Hemiddi, El Sayed Amer
Abstract:
Green roof is one of sustainable practice for reducing the environmental impact of a building. Green roofs are vegetation roofs that are partially or completely covered building's roof. It can provide multiple environmental benefits such as mitigation of urban heat island effect and protecting buildings against solar radiation. In Riyadh city buildings consume about 70 % of the total energy used in the building for cooling and heating because of the Riyadh's harsh and tropical climate. So, the study aim was identifying the thermal performance of extensive green roof and comparing its performance with concrete roof performance during summer season. The experimental validations results indicated that the extensive green roofs system was better than concrete roof system for lowering the indoor air temperature. It could reduce the indoor air temperature from 2°C to 5.5°C compared to the concrete roof system. Also, the finding of this study demonstrated that extensive green roof system could reduce 12% to 33% of energy consumption of air conditioning in Riyadh city during summer seasons by using environmentally friendly insulation.Keywords: thermal performance, green roof system, concrete roof system, tropical climatic, internal temperatures
Procedia PDF Downloads 40829278 Reliability Qualification Test Plan Derivation Method for Weibull Distributed Products
Authors: Ping Jiang, Yunyan Xing, Dian Zhang, Bo Guo
Abstract:
The reliability qualification test (RQT) is widely used in product development to qualify whether the product meets predetermined reliability requirements, which are mainly described in terms of reliability indices, for example, MTBF (Mean Time Between Failures). It is widely exercised in product development. In engineering practices, RQT plans are mandatorily referred to standards, such as MIL-STD-781 or GJB899A-2009. But these conventional RQT plans in standards are not preferred, as the test plans often require long test times or have high risks for both producer and consumer due to the fact that the methods in the standards only use the test data of the product itself. And the standards usually assume that the product is exponentially distributed, which is not suitable for a complex product other than electronics. So it is desirable to develop an RQT plan derivation method that safely shortens test time while keeping the two risks under control. To meet this end, for the product whose lifetime follows Weibull distribution, an RQT plan derivation method is developed. The merit of the method is that expert judgment is taken into account. This is implemented by applying the Bayesian method, which translates the expert judgment into prior information on product reliability. Then producer’s risk and the consumer’s risk are calculated accordingly. The procedures to derive RQT plans are also proposed in this paper. As extra information and expert judgment are added to the derivation, the derived test plans have the potential to shorten the required test time and have satisfactory low risks for both producer and consumer, compared with conventional test plans. A case study is provided to prove that when using expert judgment in deriving product test plans, the proposed method is capable of finding ideal test plans that not only reduce the two risks but also shorten the required test time as well.Keywords: expert judgment, reliability qualification test, test plan derivation, producer’s risk, consumer’s risk
Procedia PDF Downloads 13729277 Analysis of Steel Beam-Column Joints Under Seismic Loads
Authors: Mizam Doğan
Abstract:
Adapazarı railway car factory, the only railway car factory of Turkey, was constructed in 1950. It was a steel design and it had filled beam sections and truss beam systems. Columns were steel profiles and box sections. The factory was damaged heavily on Izmit Earthquake and closed. In this earthquake 90% of damaged structures are reinforced concrete, the others are %7 prefabricated and 3% steel construction. As can be seen in statistical data, damaged industrial buildings in this earthquake were generally reinforced concrete and prefabricated structures. Adapazari railway car factory is the greatest steel structure damaged in the earthquake. This factory has 95% of the total damaged steel structure area. In this paper; earthquake damages on beams and columns of the factory are studied by considering TS648 'Turkish Standard Building Code for Steel Structures' and also damaged connection elements as welds, rivets and bolts are examined. A model similar to the damaged system is made and high-stress zones are searched. These examinations, conclusions, suggestions are explained by damage photos and details.Keywords: column-beam connection, seismic analysis, seismic load, steel structure
Procedia PDF Downloads 27729276 Fractal Nature of Granular Mixtures of Different Concretes Formulated with Different Methods of Formulation
Authors: Fatima Achouri, Kaddour Chouicha, Abdelwahab Khatir
Abstract:
It is clear that concrete of quality must be made with selected materials chosen in optimum proportions that remain after implementation, a minimum of voids in the material produced. The different methods of formulations what we use, are based for the most part on a granular curve which describes an ‘optimal granularity’. Many authors have engaged in fundamental research on granular arrangements. A comparison of mathematical models reproducing these granular arrangements with experimental measurements of compactness have to verify that the minimum porosity P according to the following extent granular exactly a power law. So the best compactness in the finite medium are obtained with power laws, such as Furnas, Fuller or Talbot, each preferring a particular setting between 0.20 and 0.50. These considerations converge on the assumption that the optimal granularity Caquot approximates by a power law. By analogy, it can then be analyzed as a granular structure of fractal-type since the properties that characterize the internal similarity fractal objects are reflected also by a power law. Optimized mixtures may be described as a series of installments falling granular stuff to better the tank on a regular hierarchical distribution which would give at different scales, by cascading effects, the same structure to the mix. Likely this model may be appropriate for the entire extent of the size distribution of the components, since the cement particles (and silica fume) correctly deflocculated, micrometric dimensions, to chippings sometimes several tens of millimeters. As part of this research, the aim is to give an illustration of the application of fractal analysis to characterize the granular concrete mixtures optimized for a so-called fractal dimension where different concretes were studying that we proved a fractal structure of their granular mixtures regardless of the method of formulation or the type of concrete.Keywords: concrete formulation, fractal character, granular packing, method of formulation
Procedia PDF Downloads 25929275 The Appropriate Number of Test Items That a Classroom-Based Reading Assessment Should Include: A Generalizability Analysis
Authors: Jui-Teng Liao
Abstract:
The selected-response (SR) format has been commonly adopted to assess academic reading in both formal and informal testing (i.e., standardized assessment and classroom assessment) because of its strengths in content validity, construct validity, as well as scoring objectivity and efficiency. When developing a second language (L2) reading test, researchers indicate that the longer the test (e.g., more test items) is, the higher reliability and validity the test is likely to produce. However, previous studies have not provided specific guidelines regarding the optimal length of a test or the most suitable number of test items or reading passages. Additionally, reading tests often include different question types (e.g., factual, vocabulary, inferential) that require varying degrees of reading comprehension and cognitive processes. Therefore, it is important to investigate the impact of question types on the number of items in relation to the score reliability of L2 reading tests. Given the popularity of the SR question format and its impact on assessment results on teaching and learning, it is necessary to investigate the degree to which such a question format can reliably measure learners’ L2 reading comprehension. The present study, therefore, adopted the generalizability (G) theory to investigate the score reliability of the SR format in L2 reading tests focusing on how many test items a reading test should include. Specifically, this study aimed to investigate the interaction between question types and the number of items, providing insights into the appropriate item count for different types of questions. G theory is a comprehensive statistical framework used for estimating the score reliability of tests and validating their results. Data were collected from 108 English as a second language student who completed an English reading test comprising factual, vocabulary, and inferential questions in the SR format. The computer program mGENOVA was utilized to analyze the data using multivariate designs (i.e., scenarios). Based on the results of G theory analyses, the findings indicated that the number of test items had a critical impact on the score reliability of an L2 reading test. Furthermore, the findings revealed that different types of reading questions required varying numbers of test items for reliable assessment of learners’ L2 reading proficiency. Further implications for teaching practice and classroom-based assessments are discussed.Keywords: second language reading assessment, validity and reliability, Generalizability theory, Academic reading, Question format
Procedia PDF Downloads 8729274 Relocation of Plastic Hinge of Interior Beam Column Connections with Intermediate Bars in Reinforced Concrete and T-Section Steel Inserts in Precast Concrete Frames
Authors: P. Wongmatar, C. Hansapinyo, C. Buachart
Abstract:
Failure of typical seismic frames has been found by plastic hinge occurring on beams section near column faces. Past researches shown that the seismic capacity of the frames can be enhanced if the plastic hinges of the beams are shifted away from the column faces. This paper presents detailing of reinforcements in the interior beam–column connections aiming to relocate the plastic hinge of reinforced concrete and precast concrete frames. Four specimens were tested under quasi-static cyclic load including two monolithic specimens and two precast specimens. For one monolithic specimen, typical seismic reinforcement was provided and considered as a reference specimen named M1. The other reinforced concrete frame M2 contained additional intermediate steel in the connection area compared with the specimen M1. For the precast specimens, embedded T-section steels in joint were provided, with and without diagonal bars in the connection area for specimen P1 and P2, respectively. The test results indicated the ductile failure with beam flexural failure in monolithic specimen M1 and the intermediate steel increased strength and improved joint performance of specimen M2. For the precast specimens, cracks generated at the end of the steel inserts. However, slipping of reinforcing steel lapped in top of the beams was seen before yielding of the main bars leading to the brittle failure. The diagonal bars in precast specimens P2 improved the connection stiffness and the energy dissipation capacity.Keywords: relocation, plastic hinge, intermediate bar, T-section steel, precast concrete frame
Procedia PDF Downloads 27329273 Investigation of Crack Formation in Ordinary Reinforced Concrete Beams and in Beams Strengthened with Carbon Fiber Sheet: Theory and Experiment
Authors: Anton A. Bykov, Irina O. Glot, Igor N. Shardakov, Alexey P. Shestakov
Abstract:
This paper presents the results of experimental and theoretical investigations of the mechanisms of crack formation in reinforced concrete beams subjected to quasi-static bending. The boundary-value problem has been formulated in the framework of brittle fracture mechanics and has been solved by using the finite-element method. Numerical simulation of the vibrations of an uncracked beam and a beam with cracks of different size serves to determine the pattern of changes in the spectrum of eigenfrequencies observed during crack evolution. Experiments were performed on the sequential quasistatic four-point bending of the beam leading to the formation of cracks in concrete. At each loading stage, the beam was subjected to an impulse load to induce vibrations. Two stages of cracking were detected. At the first stage the conservative process of deformation is realized. The second stage is an active cracking, which is marked by a sharp change in eingenfrequencies. The boundary of a transition from one stage to another is well registered. The vibration behavior was examined for the beams strengthened by carbon-fiber sheet before loading and at the intermediate stage of loading after the grouting of initial cracks. The obtained results show that the vibrodiagnostic approach is an effective tool for monitoring of cracking and for assessing the quality of measures aimed at strengthening concrete structures.Keywords: crack formation, experiment, mathematical modeling, reinforced concrete, vibrodiagnostics
Procedia PDF Downloads 30529272 Distribution of Micro Silica Powder at a Ready Mixed Concrete
Authors: Kyong-Ku Yun, Dae-Ae Kim, Kyeo-Re Lee, Kyong Namkung, Seung-Yeon Han
Abstract:
Micro silica is collected as a by-product of the silicon and ferrosilicon alloy production in electric arc furnace using highly pure quartz, wood chips, coke and the like. It consists of about 85% of silicon which has spherical particles with an average particle size of 150 μm. The bulk density of micro silica varies from 150 to 700kg/m^3 and the fineness ranges from 150,000 to 300,000cm^2/g. An amorphous structure with a high silicon oxide content of micro silica induces an active reaction with calcium hydroxide (Ca(OH)₂) generated by the cement hydrate of a large surface area (about 20 m^² / g), and they are also known to form calcium, silicate, hydrate conjugate (C-S-H). Micro silica tends to act as a filler because of the fine particles and the spherical shape. These particles do not get covered by water and they fit well in the space between the relatively rough cement grains which does not freely fluidize concrete. On the contrary, water demand increases since micro silica particles have a tendency to absorb water because of the large surface area. The overall effect of micro silica depends on the amount of micro silica added with other parameters in the water-(cement + micro silica) ratio, and the availability of superplasticizer. In this research, it was studied on cellular sprayed concrete. This method involves a direct re-production of ready mixed concrete into a high performance at a job site. It could reduce the cost of construction by an adding a cellular and a micro silica into a ready mixed concrete truck in a field. Also, micro silica which is difficult with mixing due to high fineness in the field can be added and dispersed in concrete by increasing the fluidity of ready mixed concrete through the surface activity of cellular. Increased air content is converged to a certain level of air content by spraying and it also produces high-performance concrete by remixing of powders in the process of spraying. As it does not use a field mixing equipment the cost of construction decrease and it can be constructed after installing special spray machine in a commercial pump car. Therefore, use of special equipment is minimized, providing economic feasibility through the utilization of existing equipment. This study was carried out to evaluate a highly reliable method of confirming dispersion through a high performance cellular sprayed concrete. A mixture of 25mm coarse aggregate and river sand was applied to the concrete. In addition, by applying silica fume and foam, silica fume dispersion is confirmed in accordance with foam mixing, and the mean and standard deviation is obtained. Then variation coefficient is calculated to finally evaluate the dispersion. Comparison and analysis of before and after spraying were conducted on the experiment variables of 21L, 35L foam for each 7%, 14% silica fume respectively. Taking foam and silica fume as variables, the experiment proceed. Casting a specimen for each variable, a five-day sample is taken from each specimen for EDS test. In this study, it was examined by an experiment materials, plan and mix design, test methods, and equipment, for the evaluation of dispersion in accordance with micro silica and foam.Keywords: micro silica, distribution, ready mixed concrete, foam
Procedia PDF Downloads 21829271 Estimating the Life-Distribution Parameters of Weibull-Life PV Systems Utilizing Non-Parametric Analysis
Authors: Saleem Z. Ramadan
Abstract:
In this paper, a model is proposed to determine the life distribution parameters of the useful life region for the PV system utilizing a combination of non-parametric and linear regression analysis for the failure data of these systems. Results showed that this method is dependable for analyzing failure time data for such reliable systems when the data is scarce.Keywords: masking, bathtub model, reliability, non-parametric analysis, useful life
Procedia PDF Downloads 56229270 Response Reduction Factor for Earthquake Resistant Design of Special Moment Resisting Frames
Authors: Rohan V. Ambekar, Shrirang N. Tande
Abstract:
The present study estimates the seismic response reduction factor (R) of reinforced concrete special moment resisting frame (SMRF) with and without shear wall using static nonlinear (pushover) analysis. Calculation of response reduction factor (R) is done as per the new formulation of response reduction factor (R) given by Applied Technology Council (ATC)-19 which is the product of strength factor (Rs), ductility factor (Rµ) and redundancy factor (RR). The analysis revealed that these three factors affect the actual value of response reduction factor (R) and therefore they must be taken into consideration while determining the appropriate response reduction factor to be used during the seismic design process. The actual values required for determination of response reduction factor (R) is worked out on the basis of pushover curve which is a plot of base shear verses roof displacement. Finally, the calculated values of response reduction factor (R) of reinforced concrete special moment resisting frame (SMRF) with and without shear wall are compared with the codal values.Keywords: response reduction factor, ductility ratio, base shear, special moment resisting frames
Procedia PDF Downloads 48729269 Behavior of Composite Construction Precast Reactive Powder RC Girder and Ordinary RC Deck Slab
Authors: Nameer A. Alwash, Dunia A. Abd AlRadha, Arshed M. Aljanaby
Abstract:
This study present an experimental investigation of composite behavior for hybrid reinforced concrete slab on girder from locale material in Iraq, ordinary concrete, NC, in slab and reactive powder concrete in girder ,RPC, with steel fibers of different types(straight, hook, and mix between its), tested as simply supported span subjected under two point loading, also study effects on overall behavior such as the ultimate load, crack width and deflection. The result shows that the most suitable for production girder from RPC by using 2% micro straight steel fiber, in terms of ultimate strength and min crack width. Also the results shows that using RPC in girder of composite section increased ultimate load by 79% when compared with same section made of NC, and increased the shear strength which erased the effect of changing reinforcement in shear, and using RPC in girder and epoxy (in shear transfer between composite section) (meaning no stirrups) equivalent presence of shear reinforcement by 90% when compared with same section using Φ8@100 as shear reinforcement. And the result shows that changing the cross section girder shape of the composite section to inverted T, with same section area, increased the ultimate load by 5% when compared with same section of rectangular shape girder.Keywords: reactive powder concrete, RPC, hybrid concrete, composite section, RC girder, RC slab, shear connecters, inverted T section, shear reinforcment, shear span over effective depth
Procedia PDF Downloads 36229268 An Overview of Electronic Waste as Aggregate in Concrete
Authors: S. R. Shamili, C. Natarajan, J. Karthikeyan
Abstract:
Rapid growth of world population and widespread urbanization has remarkably increased the development of the construction industry which caused a huge demand for sand and gravels. Environmental problems occur when the rate of extraction of sand, gravels, and other materials exceeds the rate of generation of natural resources; therefore, an alternative source is essential to replace the materials used in concrete. Now-a-days, electronic products have become an integral part of daily life which provides more comfort, security, and ease of exchange of information. These electronic waste (E-Waste) materials have serious human health concerns and require extreme care in its disposal to avoid any adverse impacts. Disposal or dumping of these E-Wastes also causes major issues because it is highly complex to handle and often contains highly toxic chemicals such as lead, cadmium, mercury, beryllium, brominates flame retardants (BFRs), polyvinyl chloride (PVC), and phosphorus compounds. Hence, E-Waste can be incorporated in concrete to make a sustainable environment. This paper deals with the composition, preparation, properties, classification of E-Waste. All these processes avoid dumping to landfills whilst conserving natural aggregate resources, and providing a better environmental option. This paper also provides a detailed literature review on the behaviour of concrete with incorporation of E-Wastes. Many research shows the strong possibility of using E-Waste as a substitute of aggregates eventually it reduces the use of natural aggregates in concrete.Keywords: dumping, electronic waste, landfill, toxic chemicals
Procedia PDF Downloads 16929267 Effect of Size, Geometry and Tensile Strength of Fibers on the Flexure of Hooked Steel Fiber Reinforced Concrete
Authors: Chuchai Sujivorakul
Abstract:
This research focused on the study of various parameters of fiber itself affecting on the flexure of hooked steel fiber reinforced concrete (HSFRC). The size of HSFRC beams was 150x150 mm in cross section and 550 mm in length, and the flexural test was carried out in accordance with EN-14651 standard. The test result was the relationship between centre-point load and crack-mount opening displacement (CMOD) at the centre notch. Controlled concrete had a compressive strength of 42 MPa. The investigated variables related to the hooked fiber itself were: (a) 3 levels of aspect ratio of fibers (65, 80 and 100); (b) 2 different fiber lengths (35 mm and 60 mm); (c) 2 different tensile strength of fibers (1100 MPa and 1500 MPa); and (d) 3 different fiber-end geometries (3D 4D and 5D fibers). The 3D hooked fibers have two plastic hinges at both ends, while the 4D and 5D hooked fibers are the newly developed steel fibers by Bekaert, and they have three and four plastic hinges at both ends, respectively. The hooked steel fibers were used in concrete with three different fiber contents, i.e., 20 30 and 40 kg/m³. From the study, it was found that all variables did not seem to affect the flexural strength at limit of proportionality (LOP) of HSFRC. However, they affected the residual flexural tensile strength (fR,j). It was observed that an increase in fiber lengths and the tensile strength the fibers would significantly increase in the fR,j of HSFRC, while the aspect ratio of the fiber would slightly effect the fR,j of HSFRC. Moreover, it was found that using 5D fibers would better enhance the fR,j and flexural behavior of HSFRC than 3D and 4D fibers, because they gave highest mechanical anchorage effect created by their hooked-end geometry.Keywords: hooked steel fibers, fiber reinforced concrete, EN-14651, flexural test
Procedia PDF Downloads 17029266 Reliability of 2D Motion Analysis System for Sagittal Plane Lower Limb Kinematics during Running
Authors: Seyed Hamed Mousavi, Juha M. Hijmans, Reza Rajabi, Ron Diercks, Johannes Zwerver, Henk van der Worp
Abstract:
Introduction: Running is one of the most popular sports activity among people. Improper sagittal plane ankle, knee and hip kinematics are considered to be associated with the increase of injury risk in runners. Motion assessing smart-phone applications are increasingly used to measure kinematics both in the field and laboratory setting, as they are cheaper, more portable, accessible, and easier to use relative to 3D motion analysis system. The aims of this study are 1) to compare the results of 3D gait analysis system and CE; 2) to evaluate the test-retest and intra-rater reliability of coach’s eye (CE) app for the sagittal plane hip, knee, and ankle angles in the touchdown and toe-off while running. Method: Twenty subjects participated in this study. Sixteen reflective markers and cluster markers were attached to the subject’s body. Subjects were asked to run at a self-selected speed on a treadmill. Twenty-five seconds of running were collected for analyzing kinematics of interest. To measure sagittal plane hip, knee and ankle joint angles at touchdown (TD) and toe off (TO), the mean of first ten acceptable consecutive strides was calculated for each angle. A smartphone (Samsung Note5, android) was placed on the right side of the subject so that whole body was simultaneously filmed with 3D gait system during running. All subjects repeated the task with the same running speed after a short interval of 5 minutes in between. The CE app, installed on the smartphone, was used to measure the sagittal plane hip, knee and ankle joint angles at touchdown and toe off the stance phase. Results: Intraclass correlation coefficient (ICC) was used to assess test-retest and intra-rater reliability. To analyze the agreement between 3D and 2D outcomes, the Bland and Altman plot was used. The values of ICC were for Ankle at TD (TRR=0.8,IRR=0.94), ankle at TO (TRR=0.9,IRR=0.97), knee at TD (TRR=0.78,IRR=0.98), knee at TO (TRR=0.9,IRR=0.96), hip at TD (TRR=0.75,IRR=0.97), hip at TO (TRR=0.87,IRR=0.98). The Bland and Altman plots displaying a mean difference (MD) and ±2 standard deviation of MD (2SDMD) of 3D and 2D outcomes were for Ankle at TD (MD=3.71,+2SDMD=8.19, -2SDMD=-0.77), ankle at TO (MD=-1.27, +2SDMD=6.22, -2SDMD=-8.76), knee at TD (MD=1.48, +2SDMD=8.21, -2SDMD=-5.25), knee at TO (MD=-6.63, +2SDMD=3.94, -2SDMD=-17.19), hip at TD (MD=1.51, +2SDMD=9.05, -2SDMD=-6.03), hip at TO (MD=-0.18, +2SDMD=12.22, -2SDMD=-12.59). Discussion: The ability that the measurements are accurately reproduced is valuable in the performance and clinical assessment of outcomes of joint angles. The results of this study showed that the intra-rater and test-retest reliability of CE app for all kinematics measured are excellent (ICC ≥ 0.75). The Bland and Altman plots display that there are high differences of values for ankle at TD and knee at TO. Measuring ankle at TD by 2D gait analysis depends on the plane of movement. Since ankle at TD mostly occurs in the none-sagittal plane, the measurements can be different as foot progression angle at TD increases during running. The difference in values of the knee at TD can depend on how 3D and the rater detect the TO during the stance phase of running.Keywords: reliability, running, sagittal plane, two dimensional
Procedia PDF Downloads 201