Search results for: real output
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7112

Search results for: real output

6062 Low-Cost Parking Lot Mapping and Localization for Home Zone Parking Pilot

Authors: Hongbo Zhang, Xinlu Tang, Jiangwei Li, Chi Yan

Abstract:

Home zone parking pilot (HPP) is a fast-growing segment in low-speed autonomous driving applications. It requires the car automatically cruise around a parking lot and park itself in a range of up to 100 meters inside a recurrent home/office parking lot, which requires precise parking lot mapping and localization solution. Although Lidar is ideal for SLAM, the car OEMs favor a low-cost fish-eye camera based visual SLAM approach. Recent approaches have employed segmentation models to extract semantic features and improve mapping accuracy, but these AI models are memory unfriendly and computationally expensive, making deploying on embedded ADAS systems difficult. To address this issue, we proposed a new method that utilizes object detection models to extract robust and accurate parking lot features. The proposed method could reduce computational costs while maintaining high accuracy. Once combined with vehicles’ wheel-pulse information, the system could construct maps and locate the vehicle in real-time. This article will discuss in detail (1) the fish-eye based Around View Monitoring (AVM) with transparent chassis images as the inputs, (2) an Object Detection (OD) based feature point extraction algorithm to generate point cloud, (3) a low computational parking lot mapping algorithm and (4) the real-time localization algorithm. At last, we will demonstrate the experiment results with an embedded ADAS system installed on a real car in the underground parking lot.

Keywords: ADAS, home zone parking pilot, object detection, visual SLAM

Procedia PDF Downloads 67
6061 Mobile Crowdsensing Scheme by Predicting Vehicle Mobility Using Deep Learning Algorithm

Authors: Monojit Manna, Arpan Adhikary

Abstract:

In Mobile cloud sensing across the globe, an emerging paradigm is selected by the user to compute sensing tasks. In urban cities current days, Mobile vehicles are adapted to perform the task of data sensing and data collection for universality and mobility. In this work, we focused on the optimality and mobile nodes that can be selected in order to collect the maximum amount of data from urban areas and fulfill the required data in the future period within a couple of minutes. We map out the requirement of the vehicle to configure the maximum data optimization problem and budget. The Application implementation is basically set up to generalize a realistic online platform in which real-time vehicles are moving apparently in a continuous manner. The data center has the authority to select a set of vehicles immediately. A deep learning-based scheme with the help of mobile vehicles (DLMV) will be proposed to collect sensing data from the urban environment. From the future time perspective, this work proposed a deep learning-based offline algorithm to predict mobility. Therefore, we proposed a greedy approach applying an online algorithm step into a subset of vehicles for an NP-complete problem with a limited budget. Real dataset experimental extensive evaluations are conducted for the real mobility dataset in Rome. The result of the experiment not only fulfills the efficiency of our proposed solution but also proves the validity of DLMV and improves the quantity of collecting the sensing data compared with other algorithms.

Keywords: mobile crowdsensing, deep learning, vehicle recruitment, sensing coverage, data collection

Procedia PDF Downloads 78
6060 An Approach on Robust Multi Inversion of a Nonlinear Model for an Omni-Directional Mobile

Authors: Fernando P. Silva, Valter J. S. Leite, Erivelton G. Nepomuceno

Abstract:

In this paper, a nonlinear controller design for an omnidirectional mobile is presented. The robot controller consists of an inner-loop controller and an outer-loop controller, the first is designed using state feedback (robust allocation) and the second controller is designed based on Robust Multi Inversion (RMI) approach. The objective of RMI controller is rendering the robust inversion of the dynamic, when the model is affected by uncertainties. A model nonlinear MIMO of an omni-directional robot (small-league of Robocup) is used to simulate the RMI approach. The parameters of linear and nonlinear model are varied to cause modelling uncertainties among the model and the real model (real system) generating an error in inner-loop controller signal that must be compensated by RMI controller. The simulation test results show that the RMI is capable of compensating the uncertainties and keep the system stable and controlled under uncertainties.

Keywords: robust multi inversion, omni-directional robot, robocup, nonlinear control

Procedia PDF Downloads 589
6059 Bridging the Gap between Problem and Solution Space with Domain-Driven Design

Authors: Anil Kumar, Lavisha Gupta

Abstract:

Domain-driven design (DDD) is a pivotal methodology in software development, emphasizing the understanding and modeling of core business domains to create effective solutions. This paper explores the significance of DDD in aligning software architecture with real-world domains, with a focus on its application within Siemens. We delve into the challenges faced by development teams in understanding domains and propose DDD as a solution to bridge the gap between problem and solution spaces. Key concepts of DDD, such as Ubiquitous Language, Bounded Contexts, Entities, Value Objects, and Aggregates, are discussed, along with their practical implications in software development. Through a real project example in the automatic generation of hardware and software plant engineering, we illustrate how DDD principles can transform complex domains into coherent and adaptable software solutions, echoing Siemens' commitment to excellence and innovation.

Keywords: domain-driven design, software architecture, ubiquitous language, bounded contexts, entities, value objects, aggregates

Procedia PDF Downloads 36
6058 The Potential of 48V HEV in Real Driving Operation

Authors: Mark Schudeleit, Christian Sieg, Ferit Küçükay

Abstract:

This publication focuses on the limits and potentials of 48V hybrid systems, which are especially due to the cost advantages an attractive alternative, compared to established high volt-age HEVs and thus will gain relevant market shares in the future. Firstly, at market overview is given which shows the current known 48V hybrid concepts and demonstrators. These topologies will be analyzed and evaluated regarding the system power and the battery capacity as well as their implemented hybrid functions. The potential in fuel savings and CO2 reduction is calculated followed by the customer-relevant dimensioning of the electric motor and the battery. For both measured data of the real customer operation is used. Subsequently, the CO2 saving potentials of the customer-oriented dimensioned powertrain will be presented for the NEDC and the customer operation. With a comparison of the newly defined drivetrain with existing 48V systems the question can be answered whether current systems are dimensioned optimally for the customer operation or just for legislated driving cycles.

Keywords: 48V hybrid systems, market comparison, requirements and potentials in customer operation, customer-oriented dimensioning, CO2 savings

Procedia PDF Downloads 550
6057 An Industrial Wastewater Management Using Cloud Based IoT System

Authors: Kaarthik K., Harshini S., Karthika M., Kripanandhini T.

Abstract:

Water is an essential part of living organisms. Major water pollution is caused due to contamination of industrial wastewater in the river. The most important step in bringing wastewater contaminants down to levels that are safe for nature is wastewater treatment. The contamination of river water harms both humans who consume it and the aquatic life that lives there. We introduce a new cloud-based industrial IoT paradigm in this work for real-time control and monitoring of wastewater. The proposed system prevents prohibited entry of industrial wastewater into the plant by monitoring temperature, hydrogen power (pH), CO₂ and turbidity factors from the wastewater input that the wastewater treatment facility will process. Real-time sensor values are collected and uploaded to the cloud by the system using an IoT Wi-Fi Module. By doing so, we can prevent the contamination of industrial wastewater entering the river earlier, and the necessary actions will be taken by the users. The proposed system's results are 90% efficient, preventing water pollution due to industry and protecting human lives.

Keywords: sensors, pH, CO₂, temperature, turbidity

Procedia PDF Downloads 110
6056 The Moderation Effect of Financial Distress on the Relationship Between Market Power and Earnings Management of Firms

Authors: Shazia Ali, Yves Mard, Éric Severin

Abstract:

To the best of our knowledge, this is the first study to have analyzed the impact of a) firm-specific product-market power and b) industry competition on earnings management behavior of European firms in distress versus healthy years while controlling for firm-level characteristics. We predicted a significant relationship between firms’ product market power and earnings management tools and their trade-off under the moderation effect of financial distress. We found that the firm-level market power hereinafter referred to as MP (proxied by the industry-adjusted Lerner Index) is positively associated with both real and accrual earnings management. However, MP is associated with a higher level of real earnings management compared to accrual earnings management in distress years compared to healthy years. On the other hand, industry product market power (representing low competition and proxied by the inverse of the total number of firms in an industry hereinafter referred to as NUMB) and firms product market power (proxied by firm market share hereinafter referred to as MS) are associated with lower inflationary accruals and higher deflationary accruals respectively. On the other hand, they are found to be linked with higher real earnings management in distress versus healthy years. When we divided the sample into small and big firms based on their respective industry-year median total assets, we found that all three measures of industry competition (Industry Median Lerner Index (hereinafter referred to as IMLI), NUMB, and Herfindahl–Hirschman Index (hereinafter referred to as HHI) indicate that small firms in low-competitive industries in financial distress are more likely to inflate their earnings through discretionary accruals. While big firms in this situation are more likely to lower the use of both inflationary and deflationary discretionary accruals as indicated by IMLI and HHI and trade-off accruals earnings management for real earnings management as indicated by NUMB. Moreover, IMLI and HHI did not show any interesting results when we divided the sample based on the firm Lerner Index/Market Power. However, the distressed firms with high market power (MP>industry median) are found to engage in income-decreasing discretionary accruals in low-competitive industries (high NUMB). Whereas firms with low market power in the same industry use downward discretionary accruals but inflate income using real activities (abnCFO). Our findings are robust across alternate measures of discretionary accruals and financial distress, such as the Altman Z-Score. The finding of the study is valuable for accounting standard setters, competition authorities, policymakers, and investors alike to help in informed decision-making.

Keywords: financial distress, earnings management, market competition

Procedia PDF Downloads 121
6055 Implementing Contextual Approach to Improve EFL Learners’ English Speaking Skill

Authors: Samanik

Abstract:

This writing is correlated with English teaching material development, Contextual Teaching Learning (CTL). CTL is believed to facilitate students with real world challenge. Contextual Teaching and Learning is identified as a promising strategy that actively engages students and promotes skills development. It is based on the notion that learning can only occur when students are able to connect between content and context. It also helps teachers link between the materials taught with real-world situations and encourage students to make connection between the knowledge possessed by its application. Besides, it directs students to be critical and analytical. In accordance, this paper looks for the opportunity to improve EFL learners’ English speaking skill through tour guide presentation. A single case study will be conducted to highlight EFL learners’ experience of doing tour guide presentation in the English class room setting. The writer assumes that CLT will contribute positively to EFL learners’ English speaking skill.

Keywords: English speaking skill, contextual teaching learning, tour guide presentation

Procedia PDF Downloads 263
6054 A Study on the Establishment of Performance Evaluation Criteria for MR-Based Simulation Device to Train K-9 Self-Propelled Artillery Operators

Authors: Yonggyu Lee, Byungkyu Jung, Bom Yoon, Jongil Yoon

Abstract:

MR-based simulation devices have been recently used in various fields such as entertainment, medicine, manufacturing, and education. Different simulation devices are also being developed for military equipment training. This is to address the concerns regarding safety accidents as well as cost issues associated with training with expensive equipment. An important aspect of developing simulation devices to replicate military training is that trainees experience the same effect as training with real devices. In this study, the criteria for performance evaluation are established to compare the training effect of an MR-based simulation device to that of an actual device. K-9 Self-propelled artillery (SPA) operators are selected as training subjects. First, MR-based software is developed to simulate the training ground and training scenarios currently used for training SPA operators in South Korea. Hardware that replicates the interior of SPA is designed, and a simulation device that is linked to the software is developed. Second, criteria are established to evaluate the simulation device based on real-life training scenarios. A total of nine performance evaluation criteria were selected based on the actual SPA operation training scenarios. Evaluation items were selected to evaluate whether the simulation device was designed such that trainees would experience the same effect as training in the field with a real SPA. To eval-uate the level of replication by the simulation device of the actual training environments (driving and passing through trenches, pools, protrusions, vertical obstacles, and slopes) and driving conditions (rapid steering, rapid accelerating, and rapid braking) as per the training scenarios, tests were performed under the actual training conditions and in the simulation device, followed by the comparison of the results. In addition, the level of noise felt by operators during training was also selected as an evaluation criterion. Due to the nature of the simulation device, there may be data latency between HW and SW. If the la-tency in data transmission is significant, the VR image information delivered to trainees as they maneuver HW might not be consistent. This latency in data transmission was also selected as an evaluation criterion to improve the effectiveness of the training. Through this study, the key evaluation metrics were selected to achieve the same training effect as training with real equipment in a training ground during the develop-ment of the simulation device for military equipment training.

Keywords: K-9 self-propelled artillery, mixed reality, simulation device, synchronization

Procedia PDF Downloads 66
6053 Optimisation of Energy Harvesting for a Composite Aircraft Wing Structure Bonded with Discrete Macro Fibre Composite Sensors

Authors: Ali H. Daraji, Ye Jianqiao

Abstract:

The micro electrical devices of the wireless sensor network are continuously developed and become very small and compact with low electric power requirements using limited period life conventional batteries. The low power requirement for these devices, cost of conventional batteries and its replacement have encouraged researcher to find alternative power supply represented by energy harvesting system to provide an electric power supply with infinite period life. In the last few years, the investigation of energy harvesting for structure health monitoring has increased to powering wireless sensor network by converting waste mechanical vibration into electricity using piezoelectric sensors. Optimisation of energy harvesting is an important research topic to ensure a flowing of efficient electric power from structural vibration. The harvesting power is mainly based on the properties of piezoelectric material, dimensions of piezoelectric sensor, its position on a structure and value of an external electric load connected between sensor electrodes. Larger surface area of sensor is not granted larger power harvesting when the sensor area is covered positive and negative mechanical strain at the same time. Thus lead to reduction or cancellation of piezoelectric output power. Optimisation of energy harvesting is achieved by locating these sensors precisely and efficiently on the structure. Limited published work has investigated the energy harvesting for aircraft wing. However, most of the published studies have simplified the aircraft wing structure by a cantilever flat plate or beam. In these studies, the optimisation of energy harvesting was investigated by determination optimal value of an external electric load connected between sensor electrode terminals or by an external electric circuit or by randomly splitting piezoelectric sensor to two segments. However, the aircraft wing structures are complex than beam or flat plate and mostly constructed from flat and curved skins stiffened by stringers and ribs with more complex mechanical strain induced on the wing surfaces. This aircraft wing structure bonded with discrete macro fibre composite sensors was modelled using multiphysics finite element to optimise the energy harvesting by determination of the optimal number of sensors, location and the output resistance load. The optimal number and location of macro fibre sensors were determined based on the maximization of the open and close loop sensor output voltage using frequency response analysis. It was found different optimal distribution, locations and number of sensors bounded on the top and the bottom surfaces of the aircraft wing.

Keywords: energy harvesting, optimisation, sensor, wing

Procedia PDF Downloads 302
6052 Identification of How Pre-Service Physics Teachers Understand Image Formations through Virtual Objects in the Field of Geometric Optics and Development of a New Material to Exploit Virtual Objects

Authors: Ersin Bozkurt

Abstract:

The aim of the study is to develop materials for understanding image formations through virtual objects in geometric optics. The images in physics course books are formed by using real objects. This results in mistakes in the features of images because of generalizations which leads to conceptual misunderstandings in learning. In this study it was intended to identify pre-service physics teachers misunderstandings arising from false generalizations. Focused group interview was used as a qualitative method. The findings of the study show that students have several misconceptions such as "the image in a plain mirror is always virtual". However a real image can be formed in a plain mirror. To explain a virtual object's image formation in a more understandable way an overhead projector and episcope and their design was illustrated. The illustrations are original and several computer simulations will be suggested.

Keywords: computer simulations, geometric optics, physics education, students' misconceptions in physics

Procedia PDF Downloads 404
6051 Housing Prices and Travel Costs: Insights from Origin-Destination Demand Estimation in Taiwan’s Science Parks

Authors: Kai-Wei Ji, Dung-Ying Lin

Abstract:

This study investigates the impact of transportation on housing prices in regions surrounding Taiwan's science parks. As these parks evolve into crucial economic and population growth centers, they attract an increasing number of residents and workers, significantly influencing local housing markets. This demographic shift raises important questions about the role of transportation in shaping real estate values. Our research examines four major science parks in Taiwan, providing a comparative analysis of how transportation conditions and population dynamics interact to affect housing price premiums. We employ an origin-destination (OD) matrix derived from pervasive traffic data to model travel patterns and their effects on real estate values. The methodology utilizes a bi-level framework: a genetic algorithm optimizes OD demand estimation at the upper level, while a user equilibrium (UE) model simulates traffic flow at the lower level. This approach enables a nuanced exploration of how population growth impacts transportation conditions and housing price premiums. By analyzing the interplay between travel costs based on OD demand estimation and housing prices, we offer valuable insights for urban planners and policymakers. These findings are crucial for informed decision-making in rapidly developing areas, where understanding the relationship between mobility and real estate values is essential for sustainable urban development.

Keywords: demand estimation, genetic algorithm, housing price, transportation

Procedia PDF Downloads 20
6050 VISMA: A Method for System Analysis in Early Lifecycle Phases

Authors: Walter Sebron, Hans Tschürtz, Peter Krebs

Abstract:

The choice of applicable analysis methods in safety or systems engineering depends on the depth of knowledge about a system, and on the respective lifecycle phase. However, the analysis method chain still shows gaps as it should support system analysis during the lifecycle of a system from a rough concept in pre-project phase until end-of-life. This paper’s goal is to discuss an analysis method, the VISSE Shell Model Analysis (VISMA) method, which aims at closing the gap in the early system lifecycle phases, like the conceptual or pre-project phase, or the project start phase. It was originally developed to aid in the definition of the system boundary of electronic system parts, like e.g. a control unit for a pump motor. Furthermore, it can be also applied to non-electronic system parts. The VISMA method is a graphical sketch-like method that stratifies a system and its parts in inner and outer shells, like the layers of an onion. It analyses a system in a two-step approach, from the innermost to the outermost components followed by the reverse direction. To ensure a complete view of a system and its environment, the VISMA should be performed by (multifunctional) development teams. To introduce the method, a set of rules and guidelines has been defined in order to enable a proper shell build-up. In the first step, the innermost system, named system under consideration (SUC), is selected, which is the focus of the subsequent analysis. Then, its directly adjacent components, responsible for providing input to and receiving output from the SUC, are identified. These components are the content of the first shell around the SUC. Next, the input and output components to the components in the first shell are identified and form the second shell around the first one. Continuing this way, shell by shell is added with its respective parts until the border of the complete system (external border) is reached. Last, two external shells are added to complete the system view, the environment and the use case shell. This system view is also stored for future use. In the second step, the shells are examined in the reverse direction (outside to inside) in order to remove superfluous components or subsystems. Input chains to the SUC, as well as output chains from the SUC are described graphically via arrows, to highlight functional chains through the system. As a result, this method offers a clear and graphical description and overview of a system, its main parts and environment; however, the focus still remains on a specific SUC. It helps to identify the interfaces and interfacing components of the SUC, as well as important external interfaces of the overall system. It supports the identification of the first internal and external hazard causes and causal chains. Additionally, the method promotes a holistic picture and cross-functional understanding of a system, its contributing parts, internal relationships and possible dangers within a multidisciplinary development team.

Keywords: analysis methods, functional safety, hazard identification, system and safety engineering, system boundary definition, system safety

Procedia PDF Downloads 225
6049 Optimizing Data Integration and Management Strategies for Upstream Oil and Gas Operations

Authors: Deepak Singh, Rail Kuliev

Abstract:

The abstract highlights the critical importance of optimizing data integration and management strategies in the upstream oil and gas industry. With its complex and dynamic nature generating vast volumes of data, efficient data integration and management are essential for informed decision-making, cost reduction, and maximizing operational performance. Challenges such as data silos, heterogeneity, real-time data management, and data quality issues are addressed, prompting the proposal of several strategies. These strategies include implementing a centralized data repository, adopting industry-wide data standards, employing master data management (MDM), utilizing real-time data integration technologies, and ensuring data quality assurance. Training and developing the workforce, “reskilling and upskilling” the employees and establishing robust Data Management training programs play an essential role and integral part in this strategy. The article also emphasizes the significance of data governance and best practices, as well as the role of technological advancements such as big data analytics, cloud computing, Internet of Things (IoT), and artificial intelligence (AI) and machine learning (ML). To illustrate the practicality of these strategies, real-world case studies are presented, showcasing successful implementations that improve operational efficiency and decision-making. In present study, by embracing the proposed optimization strategies, leveraging technological advancements, and adhering to best practices, upstream oil and gas companies can harness the full potential of data-driven decision-making, ultimately achieving increased profitability and a competitive edge in the ever-evolving industry.

Keywords: master data management, IoT, AI&ML, cloud Computing, data optimization

Procedia PDF Downloads 70
6048 Real-Time Neuroimaging for Rehabilitation of Stroke Patients

Authors: Gerhard Gritsch, Ana Skupch, Manfred Hartmann, Wolfgang Frühwirt, Hannes Perko, Dieter Grossegger, Tilmann Kluge

Abstract:

Rehabilitation of stroke patients is dominated by classical physiotherapy. Nowadays, a field of research is the application of neurofeedback techniques in order to help stroke patients to get rid of their motor impairments. Especially, if a certain limb is completely paralyzed, neurofeedback is often the last option to cure the patient. Certain exercises, like the imagination of the impaired motor function, have to be performed to stimulate the neuroplasticity of the brain, such that in the neighboring parts of the injured cortex the corresponding activity takes place. During the exercises, it is very important to keep the motivation of the patient at a high level. For this reason, the missing natural feedback due to a movement of the effected limb may be replaced by a synthetic feedback based on the motor-related brain function. To generate such a synthetic feedback a system is needed which measures, detects, localizes and visualizes the motor related µ-rhythm. Fast therapeutic success can only be achieved if the feedback features high specificity, comes in real-time and without large delay. We describe such an approach that offers a 3D visualization of µ-rhythms in real time with a delay of 500ms. This is accomplished by combining smart EEG preprocessing in the frequency domain with source localization techniques. The algorithm first selects the EEG channel featuring the most prominent rhythm in the alpha frequency band from a so-called motor channel set (C4, CZ, C3; CP6, CP4, CP2, CP1, CP3, CP5). If the amplitude in the alpha frequency band of this certain electrode exceeds a threshold, a µ-rhythm is detected. To prevent detection of a mixture of posterior alpha activity and µ-activity, the amplitudes in the alpha band outside the motor channel set are not allowed to be in the same range as the main channel. The EEG signal of the main channel is used as template for calculating the spatial distribution of the µ - rhythm over all electrodes. This spatial distribution is the input for a inverse method which provides the 3D distribution of the µ - activity within the brain which is visualized in 3D as color coded activity map. This approach mitigates the influence of lid artifacts on the localization performance. The first results of several healthy subjects show that the system is capable of detecting and localizing the rarely appearing µ-rhythm. In most cases the results match with findings from visual EEG analysis. Frequent eye-lid artifacts have no influence on the system performance. Furthermore, the system will be able to run in real-time. Due to the design of the frequency transformation the processing delay is 500ms. First results are promising and we plan to extend the test data set to further evaluate the performance of the system. The relevance of the system with respect to the therapy of stroke patients has to be shown in studies with real patients after CE certification of the system. This work was performed within the project ‘LiveSolo’ funded by the Austrian Research Promotion Agency (FFG) (project number: 853263).

Keywords: real-time EEG neuroimaging, neurofeedback, stroke, EEG–signal processing, rehabilitation

Procedia PDF Downloads 388
6047 IOT Based Automated Production and Control System for Clean Water Filtration Through Solar Energy Operated by Submersible Water Pump

Authors: Musse Mohamud Ahmed, Tina Linda Achilles, Mohammad Kamrul Hasan

Abstract:

Deterioration of the mother nature is evident these day with clear danger of human catastrophe emanating from greenhouses (GHG) with increasing CO2 emissions to the environment. PV technology can help to reduce the dependency on fossil fuel, decreasing air pollution and slowing down the rate of global warming. The objective of this paper is to propose, develop and design the production of clean water supply to rural communities using an appropriate technology such as Internet of Things (IOT) that does not create any CO2 emissions. Additionally, maximization of solar energy power output and reciprocally minimizing the natural characteristics of solar sources intermittences during less presence of the sun itself is another goal to achieve in this work. The paper presents the development of critical automated control system for solar energy power output optimization using several new techniques. water pumping system is developed to supply clean water with the application of IOT-renewable energy. This system is effective to provide clean water supply to remote and off-grid areas using Photovoltaics (PV) technology that collects energy generated from the sunlight. The focus of this work is to design and develop a submersible solar water pumping system that applies an IOT implementation. Thus, this system has been executed and programmed using Arduino Software (IDE), proteus, Maltab and C++ programming language. The mechanism of this system is that it pumps water from water reservoir that is powered up by solar energy and clean water production was also incorporated using filtration system through the submersible solar water pumping system. The filtering system is an additional application platform which is intended to provide a clean water supply to any households in Sarawak State, Malaysia.

Keywords: IOT, automated production and control system, water filtration, automated submersible water pump, solar energy

Procedia PDF Downloads 90
6046 Active Learning in Engineering Courses Using Excel Spreadsheet

Authors: Promothes Saha

Abstract:

Recently, transportation engineering industry members at the study university showed concern that students lacked the skills needed to solve real-world engineering problems using spreadsheet data analysis. In response to the concerns shown by industry members, this study investigated how to engage students in a better way by incorporating spreadsheet analysis during class - also, help them learn the course topics. Helping students link theoretical knowledge to real-world problems can be a challenge. In this effort, in-class activities and worksheets were redesigned to integrate with Excel to solve example problems using built-in tools including cell referencing, equations, data analysis tool pack, solver tool, conditional formatting, charts, etc. The effectiveness of this technique was investigated using students’ evaluations of the course, enrollment data, and students’ comments. Based on the data of those criteria, it is evident that the spreadsheet activities may increase student learning.

Keywords: civil, engineering, active learning, transportation

Procedia PDF Downloads 138
6045 Low-Noise Amplifier Design for Improvement of Communication Range for Wake-Up Receiver Based Wireless Sensor Network Application

Authors: Ilef Ketata, Mohamed Khalil Baazaoui, Robert Fromm, Ahmad Fakhfakh, Faouzi Derbel

Abstract:

The integration of wireless communication, e. g. in real-or quasi-real-time applications, is related to many challenges such as energy consumption, communication range, latency, quality of service, and reliability. To minimize the latency without increasing energy consumption, wake-up receiver (WuRx) nodes have been introduced in recent works. Low-noise amplifiers (LNAs) are introduced to improve the WuRx sensitivity but increase the supply current severely. Different WuRx approaches exist with always-on, power-gated, or duty-cycled receiver designs. This paper presents a comparative study for improving communication range and decreasing the energy consumption of wireless sensor nodes.

Keywords: wireless sensor network, wake-up receiver, duty-cycled, low-noise amplifier, envelope detector, range study

Procedia PDF Downloads 113
6044 A Hybrid Derivative-Free Optimization Method for Pass Schedule Calculation in Cold Rolling Mill

Authors: Mohammadhadi Mirmohammadi, Reza Safian, Hossein Haddad

Abstract:

This paper presents an innovative solution for complex multi-objective optimization problem which is a part of efforts toward maximizing rolling mill throughput and minimizing processing costs in tandem cold rolling. This computational intelligence based optimization has been applied to the rolling schedules of tandem cold rolling mill. This method involves the combination of two derivative-free optimization procedures in the form of nested loops. The first optimization loop is based on Improving Hit and Run method which focus on balance of power, force and reduction distribution in rolling schedules. The second loop is a real-coded genetic algorithm based optimization procedure which optimizes energy consumption and productivity. An experimental result of application to five stand tandem cold rolling mill is presented.

Keywords: derivative-free optimization, Improving Hit and Run method, real-coded genetic algorithm, rolling schedules of tandem cold rolling mill

Procedia PDF Downloads 696
6043 Efficacy of the Use of Different Teaching Approaches of Math Teachers

Authors: Nilda San Miguel, Elymar Pascual

Abstract:

The main focus of this study is exploring the effective approaches in teaching Mathematics that is being applied in public schools, s.y. 2018-2019. This research was written as connected output to the district-wide School Learning Action Cell (DISLAC) on Math teaching approaches which was recently conducted in Victoria, Laguna. Fifty-four math teachers coming from 17 schools in Victoria became the respondents of this study. Qualitative method of doing research was applied. Teachers’ responses to the following concerns were gathered, analyzed and interpreted: (1) evaluation of the recently conducted DISLAC, (2) status of the use of different approaches, (3) perception on the effective use of approaches, (4) preference of approach to explore in classroom sessions, (5) factors affecting the choice of approach, (6) difficulties encountered, (7) and perceived benefit to learners. Results showed that the conduct of DISLAC was very highly satisfactory (mean 4.41). Teachers looked at collaborative approach as very highly effective (mean 4.74). Fifty-two percent of the teachers is using collaborative approach, 17% constructivist, 11% integrative, 11% inquiry-based, and 9% reflective. Reflective approach was chosen to be explored by most of the respondents (29%) in future sessions. The difficulties encountered by teachers in using the different approaches are: (1) learners’ difficulty in following instructions, (2) lack of focus, (3) lack of willingness and cooperation, (4) teachers’ lack of mastery in using different approaches, and (5) lack of time of doing visual aids because of time mismanagement. Teachers deemed the use of various teaching approaches can help the learners to have (1) mastery of competency, (2) increased communication, (3) improved confidence, (4) facility in comprehension, and (5) better academic output. The result obtained from this study can be used as an input for SLACs. Recommendations at the end of the study were given to school/district heads and future researchers.

Keywords: approaches, collaborative, constructivism, inquiry-based, integrative, reflective

Procedia PDF Downloads 278
6042 Engineering the Human Mind: Social Engineering Attack Using Kali Linux

Authors: Joy Winston James, Abdul Kadher Jilani

Abstract:

This review article provides a comprehensive overview of social engineering attacks, specifically those executed through the Kali Linux operating system. It aims to present an in-depth analysis of the background and importance of social engineering in cybersecurity, the tools, and techniques used in these attacks, real-world case studies that demonstrate their effectiveness, and ethical considerations that need to be taken into account while using them. The article highlights the Kali Linux tools that are commonly used in social engineering attacks, including SET, Metasploit, and BeEF, and discusses techniques such as phishing, pretexting, and baiting that are crucial in conducting successful social engineering attacks. It further explores real-world case studies that demonstrate the effectiveness of these techniques, emphasizing the importance of implementing effective countermeasures to reduce the risk of successful social engineering attacks. Moreover, the article sheds light on ethical considerations that need to be taken into account while using social engineering tools, emphasizing the importance of using them ethically and legally. Finally, the article provides potential countermeasures such as two-factor authentication, strong password policies, and regular security audits to help individuals and organizations better protect themselves against this growing threat. By understanding the tools and techniques used in social engineering attacks and implementing appropriate countermeasures, individuals and organizations can minimize the risk of successful social engineering attacks and improve their cybersecurity posture. To illustrate the effectiveness of social engineering attacks, we present real-world case studies that demonstrate how easily individuals and organizations can fall prey to these attacks. We also discuss ethical considerations that must be taken into account while using social engineering tools, emphasizing the need for responsible and legal use of these tools.

Keywords: pen testing, hacking, Kali Linux, social engineering

Procedia PDF Downloads 100
6041 A Single Loop Repetitive Controller for a Four Legs Matrix Converter Unit

Authors: Wesam Rohouma

Abstract:

The aim of this paper is to investigate the use of repetitive controller to regulate the output voltage of three phase four leg matric converter for an Aircraft Ground Power Supply Unit. The proposed controller improve the steady state error and provide good regulation during different loading. Simulation results of 7.5 KW converter are presented to verify the operation of the proposed controller.

Keywords: matrix converter, Power electronics, controller, regulation

Procedia PDF Downloads 1506
6040 Time-Series Load Data Analysis for User Power Profiling

Authors: Mahdi Daghmhehci Firoozjaei, Minchang Kim, Dima Alhadidi

Abstract:

In this paper, we present a power profiling model for smart grid consumers based on real time load data acquired smart meters. It profiles consumers’ power consumption behaviour using the dynamic time warping (DTW) clustering algorithm. Due to the invariability of signal warping of this algorithm, time-disordered load data can be profiled and consumption features be extracted. Two load types are defined and the related load patterns are extracted for classifying consumption behaviour by DTW. The classification methodology is discussed in detail. To evaluate the performance of the method, we analyze the time-series load data measured by a smart meter in a real case. The results verify the effectiveness of the proposed profiling method with 90.91% true positive rate for load type clustering in the best case.

Keywords: power profiling, user privacy, dynamic time warping, smart grid

Procedia PDF Downloads 151
6039 Online Monitoring of Airborne Bioaerosols Released from a Composting, Green Waste Site

Authors: John Sodeau, David O'Connor, Shane Daly, Stig Hellebust

Abstract:

This study is the first to employ the online WIBS (Waveband Integrated Biosensor Sensor) technique for the monitoring of bioaerosol emissions and non-fluorescing “dust” released from a composting/green waste site. The purpose of the research was to provide a “proof of principle” for using WIBS to monitor such a location continually over days and nights in order to construct comparative “bioaerosol site profiles”. Current impaction/culturing methods take many days to achieve results available by the WIBS technique in seconds.The real-time data obtained was then used to assess variations of the bioaerosol counts as a function of size, “shape”, site location, working activity levels, time of day, relative humidity, wind speeds and wind directions. Three short campaigns were undertaken, one classified as a “light” workload period, another as a “heavy” workload period and finally a weekend when the site was closed. One main bioaerosol size regime was found to predominate: 0.5 micron to 3 micron with morphologies ranging from elongated to elipsoidal/spherical. The real-time number-concentration data were consistent with an Andersen sampling protocol that was employed at the site. The number-concentrations of fluorescent particles as a proportion of total particles counted amounted, on average, to ~1% for the “light” workday period, ~7% for the “heavy” workday period and ~18% for the weekend. The bioaerosol release profiles at the weekend were considerably different from those monitored during the working weekdays.

Keywords: bioaerosols, composting, fluorescence, particle counting in real-time

Procedia PDF Downloads 355
6038 Low-Cost IoT System for Monitoring Ground Propagation Waves due to Construction and Traffic Activities to Nearby Construction

Authors: Lan Nguyen, Kien Le Tan, Bao Nguyen Pham Gia

Abstract:

Due to the high cost, specialized dynamic measurement devices for industrial lands are difficult for many colleges to equip for hands-on teaching. This study connects a dynamic measurement sensor and receiver utilizing an inexpensive Raspberry Pi 4 board, some 24-bit ADC circuits, a geophone vibration sensor, and embedded Python open-source programming. Gather and analyze signals for dynamic measuring, ground vibration monitoring, and structure vibration monitoring. The system may wirelessly communicate data to the computer and is set up as a communication node network, enabling real-time monitoring of background vibrations at various locations. The device can be utilized for a variety of dynamic measurement and monitoring tasks, including monitoring earthquake vibrations, ground vibrations from construction operations, traffic, and vibrations of building structures.

Keywords: sensors, FFT, signal processing, real-time data monitoring, ground propagation wave, python, raspberry Pi 4

Procedia PDF Downloads 103
6037 Mobile Application Testing Matrix and Challenges

Authors: Bakhtiar Amen, Sardasht Mahmood, Joan Lu

Abstract:

The adoption of smartphones and the usages of mobile applications are increasing rapidly. Consequently, within limited time-range, mobile Internet usages have managed to take over the desktop usages particularly since the first smartphone-touched application released by iPhone in 2007. This paper is proposed to provide solution and answer the most demandable questions related to mobile application automated and manual testing limitations. Moreover, Mobile application testing requires agility and physically testing. Agile testing is to detect bugs through automated tools, whereas the compatibility testing is more to ensure that the apps operates on mobile OS (Operation Systems) as well as on the different real devices. Moreover, we have managed to answer automated or manual questions through two mobile application case studies MES (Mobile Exam System) and MLM (Mobile Lab Mate) by creating test scripts for both case studies and our experiment results have been discussed and evaluated on whether to adopt test on real devices or on emulators? In addition to this, we have introduced new mobile application testing matrix for the testers and some enterprises to obtain knowledge from.

Keywords: mobile app testing, testing matrix, automated, manual testing

Procedia PDF Downloads 478
6036 A Tagging Algorithm in Augmented Reality for Mobile Device Screens

Authors: Doga Erisik, Ahmet Karaman, Gulfem Alptekin, Ozlem Durmaz Incel

Abstract:

Augmented reality (AR) is a type of virtual reality aiming to duplicate real world’s environment on a computer’s video feed. The mobile application, which is built for this project (called SARAS), enables annotating real world point of interests (POIs) that are located near mobile user. In this paper, we aim at introducing a robust and simple algorithm for placing labels in an augmented reality system. The system places labels of the POIs on the mobile device screen whose GPS coordinates are given. The proposed algorithm is compared to an existing one in terms of energy consumption and accuracy. The results show that the proposed algorithm gives better results in energy consumption and accuracy while standing still, and acceptably accurate results when driving. The technique provides benefits to AR browsers with its open access algorithm. Going forward, the algorithm will be improved to more rapidly react to position changes while driving.

Keywords: accurate tagging algorithm, augmented reality, localization, location-based AR

Procedia PDF Downloads 374
6035 Faster Pedestrian Recognition Using Deformable Part Models

Authors: Alessandro Preziosi, Antonio Prioletti, Luca Castangia

Abstract:

Deformable part models achieve high precision in pedestrian recognition, but all publicly available implementations are too slow for real-time applications. We implemented a deformable part model algorithm fast enough for real-time use by exploiting information about the camera position and orientation. This implementation is both faster and more precise than alternative DPM implementations. These results are obtained by computing convolutions in the frequency domain and using lookup tables to speed up feature computation. This approach is almost an order of magnitude faster than the reference DPM implementation, with no loss in precision. Knowing the position of the camera with respect to horizon it is also possible prune many hypotheses based on their size and location. The range of acceptable sizes and positions is set by looking at the statistical distribution of bounding boxes in labelled images. With this approach it is not needed to compute the entire feature pyramid: for example higher resolution features are only needed near the horizon. This results in an increase in mean average precision of 5% and an increase in speed by a factor of two. Furthermore, to reduce misdetections involving small pedestrians near the horizon, input images are supersampled near the horizon. Supersampling the image at 1.5 times the original scale, results in an increase in precision of about 4%. The implementation was tested against the public KITTI dataset, obtaining an 8% improvement in mean average precision over the best performing DPM-based method. By allowing for a small loss in precision computational time can be easily brought down to our target of 100ms per image, reaching a solution that is faster and still more precise than all publicly available DPM implementations.

Keywords: autonomous vehicles, deformable part model, dpm, pedestrian detection, real time

Procedia PDF Downloads 281
6034 Spectral Anomaly Detection and Clustering in Radiological Search

Authors: Thomas L. McCullough, John D. Hague, Marylesa M. Howard, Matthew K. Kiser, Michael A. Mazur, Lance K. McLean, Johanna L. Turk

Abstract:

Radiological search and mapping depends on the successful recognition of anomalies in large data sets which contain varied and dynamic backgrounds. We present a new algorithmic approach for real-time anomaly detection which is resistant to common detector imperfections, avoids the limitations of a source template library and provides immediate, and easily interpretable, user feedback. This algorithm is based on a continuous wavelet transform for variance reduction and evaluates the deviation between a foreground measurement and a local background expectation using methods from linear algebra. We also present a technique for recognizing and visualizing spectrally similar clusters of data. This technique uses Laplacian Eigenmap Manifold Learning to perform dimensional reduction which preserves the geometric "closeness" of the data while maintaining sensitivity to outlying data. We illustrate the utility of both techniques on real-world data sets.

Keywords: radiological search, radiological mapping, radioactivity, radiation protection

Procedia PDF Downloads 696
6033 Real Fictions: Converging Landscapes and Imagination in an English Village

Authors: Edoardo Lomi

Abstract:

A problem of central interest in anthropology concerns the ethnographic displacement of modernity’s conceptual sovereignty over that of native collectives worldwide. Part of this critical project has been the association of Western modernity with a dualist, naturalist ontology. Despite its demonstrated value for comparative work, this association often comes at the cost of reproducing ideas that lack an empirical ethnographic basis. This paper proposes a way forward by bringing to bear some of the results produced by an ethnographic study of a village in Wiltshire, South England. Due to its picturesque qualities, this village has served for decades as a ready-made set for fantasy movies and a backdrop to fictional stories. These forms of mediation have in turn generated some apparent paradoxes, such as fictitious characters that affect actual material changes, films that become more real than history, and animated stories that, while requiring material grounds to unfold, inhabit a time and space in other respects distinct from that of material processes. Drawing on ongoing fieldwork and interviews with locals and tourists, this paper considers the ways villagers engage with fiction as part of their everyday lives. The resulting image is one of convergence, in the same landscape, of people and things having different ontological status. This study invites reflection on the implications of this image for diversifying our imagery of Western lifeworlds. To this end, the notion of ‘real fictions’ is put forth, connecting the ethnographic blurring of modernist distinctions–such as sign and signified, mind and matter, materiality and immateriality–with discussions on anthropology’s own reliance on fictions for critical comparative work.

Keywords: England, ethnography, landscape, modernity, mediation, ontology, post-structural theory

Procedia PDF Downloads 121