Search results for: poly (acrylic acid)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3839

Search results for: poly (acrylic acid)

2789 Effects of Gelatin on Characteristics and Dental Pathogen Inhibition by Silver Nanoparticles Synthesized from Ascorbic Acid

Authors: Siriporn Okonogi, Temsiri Suwan, Sakornrat Khongkhunthian, Jakkapan Sirithunyalug

Abstract:

In this study, silver nanoparticles (AgNPs) were prepared using ascorbic acid as a reducing agent and silver nitrate as a precursor. The effects of gelatin (G) on particle characteristics and dental pathogen inhibition were investigated. The spectra of AgNPs and G-AgNPs were compared using UV-Vis and Energy-dispersive X-ray (EDX) spectroscopy. The obtained AgNPs and G-AgNPs showed the maximum absorption at 410 and 430 nm, respectively, and EDX spectra of both systems confirmed Ag element. Scanning electron microscope showed that AgNPs and G-AgNPs were spherical in shape. Particles size, size distribution, and zeta potential were determined using dynamic light scattering approach. The size of AgNPs and G-AgNPs were 56 ± 2.4 and 67 ± 3.6 nm, respectively with a size distribution of 0.23 ± 0.03 and 0.19 ± 0.02, respectively. AgNPs and G-AgNPs exhibited negative zeta potential of 24.1 ± 2.7 mV and 32.7 ± 1.2 mV, respectively. Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of the obtained AgNPs and G-AgNPs against three strains of dental pathogenic bacteria; Streptococcus gordonii, Streptococcus mutans, and Staphylococcus aureus were determined using broth dilution method. AgNPs and G-AgNPs showed the strongest inhibition against S. gordonii with the MIC of 0.05 and 0.025 mg/mL, respectively and the MBC of 0.1 and 0.05 mg/mL, respectively. Cytotoxicity test of AgNPs and G-AgNPs on human breast cancer cells using MTT assay indicated that G-AgNPs (0.1 mg/mL) was significantly stronger toxic than AgNPs with the cell inhibition of 91.1 ± 5.4%. G-AgNPs showed significantly less aggregation after storage at room temperature for 90 days than G-AgNPs.

Keywords: antipathogenic activity, ascorbic acid, cytotoxicity, stability

Procedia PDF Downloads 150
2788 Pre-Drying Effects on the Quality of Frying Oil

Authors: Hasan Yalcin, Tugba Dursun Capar

Abstract:

Deep-fat frying causes desirable as well as undesirable changes in oil and potato, and changes the quality of the oil by hydrolysis, oxidation, and polymerization. The main objective of the present study was to investigate the pre-drying effects on the quality of both frying oil and potatoes. Prior to frying, potato slices (10 mm x10 mm x 30 mm) were air- dried at 60°C for 15, 30, 45, 60, 90, and 120 mins., respectively. Potato slices without the pre-drying treatment were considered as the control variable. Potato slices were fried in sunflower oil at 180°C for 5, 10, and 13 mins. The deep-frying experiments were repeated five times using the new potato slices in the same oil without oil replenishment. Samples of the fresh oil, together with those sampled at the end of successive frying operations (1th, 3th and 5th) were removed and analysed. Moisture content, colour and oil intake of the potato and colour, peroxide value (PV), free fatty acid (FFA), fatty acid composition and viscosity of the used oil were evaluated. The effect of frying time was also examined. Results show that pre-drying treatment had a significant effect on physicochemical properties and colour parameters of potato slices and frying oil. Pre-drying considerably decreased the oil absorption. The lowest oil absorption was found for the treatment that was pre-dried for 120, and fried for 5 min. The FFA levels decreased permanently for each pre-treatment throughout the frying period. All the pre-drying treatments had reached their maximum levels of FFA by the end of the frying procedures. The PV of the control and 60 min pre-dried sample decreased after the third frying. However, the PV of other samples increased constantly throughout the frying periods. Lastly, pre-drying did not affect the fatty acid composition of frying oil considerably when compared against previously unused oil.

Keywords: air-drying, deep-fat frying, moisture content oil uptake, quality

Procedia PDF Downloads 308
2787 Determination of Marbofloxacin in Pig Plasma Using LC-MS/MS and Its Application to the Pharmacokinetic Studies

Authors: Jeong Woo Kang, MiYoung Baek, Ki-Suk Kim, Kwang-Jick Lee, ByungJae So

Abstract:

Introduction: A fast, easy and sensitive detection method was developed and validated by liquid chromatography tandem mass spectrometry for the determination of marbofloxacin in pig plasma which was further applied to study the pharmacokinetics of marbofloxacin. Materials and Methods: The plasma sample (500 μL) was mixed with 1.5 ml of 0.1% formic acid in MeCN to precipitate plasma proteins. After shaking for 20 min, The mixture was centrifuged at 5,000 × g for 30 min. It was dried under a nitrogen flow at 50℃. 500 μL aliquot of the sample was injected into the LC-MS/MS system. Chromatographic analysis was carried out mobile phase gradient consisting 0.1% formic acid in D.W. (A) and 0.1% formic acid in MeCN (B) with C18 reverse phase column. Mass spectrometry was performed using the positive ion mode and the selected ion monitoring (MRM). Results and Conclusions: The method validation was performed in the sample matrix. Good linearities (R2>0.999) were observed and the quantified average recoveries of marbofloxacin were 87 - 92% at level of 10 ng g-1 -100 ng g-1. The percent of coefficient of variation (CV) for the described method was less than 10 % over the range of concentrations studied. The limits of detection (LOD) and quantification (LOQ) were 2 and 5 ng g-1, respectively. This method has also been applied successfully to pharmacokinetic analysis of marbofloxacin after intravenous (IV), intramuscular (IM) and oral administration (PO). The mean peak plasma concentration (Cmax) was 2,597 ng g-1at 0.25 h, 2,587 ng g-1at 0.44 h and 2,355 ng g-1at 1.58 h for IV, IM and PO, respectively. The area under the plasma concentration-time curve (AUC0–t) was 24.8, 29.0 and 25.2 h μg/mL for IV, IM and PO, respectively. The elimination half-life (T1/2) was 8.6, 13.1 and 9.5 for IV, IM and PO, respectively. Bioavailability (F) of the marbofloxacin in pig was 117 and 101 % for IM and PO, respectively. Based on these result, marbofloxacin does not have any obstacles as therapeutics to develop the oral formulations such as tablets and capsules.

Keywords: marbofloxacin, LC-MS/MS, pharmacokinetics, chromatographic

Procedia PDF Downloads 548
2786 Mimosa Tannin – Starch - Sugar Based Wood Adhesive

Authors: Salise Oktay, Nilgün Kizilcan, Başak Bengü

Abstract:

At present, formaldehyde based adhesives such as urea formaldehyde (UF), melamine formaldehyde (MF), melamine – urea formaldehyde (MUF), etc. are mostly used in wood based panel industry because of their high reactivity, chemical versatility, and economic competitiveness. However, formaldehyde based wood adhesives are produced from non- renewable resources. Hence, there has been a growing interest in the development of environment friendly, economically competitive, bio-based wood adhesives in order to meet wood based panel industry requirements. In this study, as formaldehyde free adhesive, Mimosa tannin, starch, sugar based wood adhesivewas synthesized. Citric acid and tartaric acid were used as hardener for the resin system. Solid content, viscosity, and gel time analyzes of the prepared adhesive were performed in order to evaluate the adhesive processability. FTIR characterization technique was used to elucidate the chemical structures of the cured adhesivesamples. In order to evaluate the performance of the prepared bio-based resin formulation, particleboards were produced in a laboratory scale, and mechanical, physical properties of the boards were investigated. Besides, the formaldehyde contents of the boards were determined by using the perforator method. The obtained results revealed that the developed bio-based wood adhesive formulation can be a good potential candidate to use wood based panel industry with some developments.

Keywords: bio-based wood adhesives, mimosa tannin, corn starch, sugar, polycarboxyclic acid

Procedia PDF Downloads 233
2785 Developing a Self-Healing Concrete Filler Using Poly(Methyl Methacrylate) Based Two-Part Adhesive

Authors: Shima Taheri, Simon Clark

Abstract:

Concrete is an essential building material used in the majority of structures. Degradation of concrete over time increases the life-cycle cost of an asset with an estimated annual cost of billions of dollars to national economies. Most of the concrete failure occurs due to cracks, which propagate through a structure and cause weakening leading to failure. Stopping crack propagation is thus the key to protecting concrete structures from failure and is the best way to prevent inconveniences and catastrophes. Furthermore, the majority of cracks occur deep within the concrete in inaccessible areas and are invisible to normal inspection. Few materials intrinsically possess self-healing ability, but one that does is concrete. However, self-healing in concrete is limited to small dormant cracks in a moist environment and is difficult to control. In this project, we developed a method for self-healing of nascent fractures in concrete components through the automatic release of self-curing healing agents encapsulated in breakable nano- and micro-structures. The Poly(methyl methacrylate) (PMMA) based two-part adhesive is encapsulated in core-shell structures with brittle/weak inert shell, synthesized via miniemulsion/solvent evaporation polymerization. Stress fields associated with propagating cracks can break these capsules releasing the healing agents at the point where they are needed. The shell thickness is playing an important role in preserving the content until the final setting of concrete. The capsules can also be surface functionalized with carboxyl groups to overcome the homogenous mixing issues. Currently, this formulated self-healing system can replace up to 1% of cement in a concrete formulation. Increasing this amount to 5-7% in the concrete formulation without compromising compression strength and shrinkage properties, is still under investigation. This self-healing system will not only increase the durability of structures by stopping crack propagation but also allow the use of less cement in concrete construction, thereby adding to the global effort for CO2 emission reduction.

Keywords: self-healing concrete, concrete crack, concrete deterioration, durability

Procedia PDF Downloads 119
2784 MOF [(4,4-Bipyridine)₂(O₂CCH₃)₂Zn]N as Heterogeneous Acid Catalysts for the Transesterification of Canola Oil

Authors: H. Arceo, S. Rincon, C. Ben-Youssef, J. Rivera, A. Zepeda

Abstract:

Biodiesel has emerged as a material with great potential as a renewable energy replacement to current petroleum-based diesel. Recently, biodiesel production is focused on the development of more efficient, sustainable process with lower costs of production. In this sense, a “green” approach to biodiesel production has stimulated the use of sustainable heterogeneous acid catalysts, that are better alternatives to conventional processes because of their simplicity and the simultaneous promotion of esterification and transesterification reactions from low-grade, highly-acidic and water containing oils without the formation of soap. The focus of this methodology is the development of new heterogeneous catalysts that under ordinary reaction conditions could reach yields similar to homogeneous catalysis. In recent years, metal organic frameworks (MOF) have attracted much interest for their potential as heterogeneous acid catalysts. They are crystalline porous solids formed by association of transition metal ions or metal–oxo clusters and polydentate organic ligands. This hybridization confers MOFs unique features such as high thermal stability, larger pore size, high specific area, high selectivity and recycling potential. Thus, MOF application could be a way to improve the biodiesel production processes. In this work, we evaluated the catalytic activity of MOF [(4,4-bipyridine)2(O₂CCH₃)2Zn]n (MOF Zn-I) for the synthesis of biodiesel from canola oil. The reaction conditions were optimized using the response surface methodology with a compound design central with 24. The variables studied were: Reaction temperature, amount of catalyst, molar ratio oil: MetOH and reaction time. The preparation MOF Zn-I was performed by mixing 5 mmol 4´4 dipyridine dissolved in 25 mL methanol with 10 mmol Zn(O₂CCH₃)₂ ∙ 2H₂O in 25 mL water. The crystals were obtained by slow evaporation of the solvents at 60°C for 18 h. The prepared catalyst was characterized using X-ray diffraction (XRD) and Fourier transform infrared spectrometer (FT-IR). The prepared catalyst was characterized using X-ray diffraction (XRD) and Fourier transform infrared spectrometer (FT-IR). Experiments were performed using commercially available canola oil in ace pressure tube under continuous stirring. The reaction was filtered and vacuum distilled to remove the catalyst and excess alcohol, after which it was centrifuged to separate the obtained biodiesel and glycerol. 1H NMR was used to calculate the process yield. GC-MS was used to quantify the fatty acid methyl ester (FAME). The results of this study show that the acid catalyst MOF Zn-I could be used as catalyst for biodiesel production through heterogeneous transesterification of canola oil with FAME yield 82 %. The optimum operating condition for the catalytic reaction were of 142°C, 0.5% catalyst/oil weight ratio, 1:30 oil:MeOH molar ratio and 5 h reaction time.

Keywords: fatty acid methyl ester, heterogeneous acid catalyst, metal organic framework, transesterification

Procedia PDF Downloads 279
2783 Response Surface Methodology to Supercritical Carbon Dioxide Extraction of Microalgal Lipids

Authors: Yen-Hui Chen, Terry Walker

Abstract:

As the world experiences an energy crisis, investing in sustainable energy resources is a pressing mission for many countries. Microalgae-derived biodiesel has attracted intensive attention as an important biofuel, and microalgae Chlorella protothecoides lipid is recognized as a renewable source for microalgae-derived biodiesel production. Supercritical carbon dioxide (SC-CO₂) is a promising green solvent that may potentially substitute the use of organic solvents for lipid extraction; however, the efficiency of SC-CO₂ extraction may be affected by many variables, including temperature, pressure and extraction time individually or in combination. In this study, response surface methodology (RSM) was used to optimize the process parameters, including temperature, pressure and extraction time, on C. protothecoides lipid yield by SC-CO₂ extraction. A second order polynomial model provided a good fit (R-square value of 0.94) for the C. protothecoides lipid yield. The linear and quadratic terms of temperature, pressure and extraction time—as well as the interaction between temperature and pressure—showed significant effects on lipid yield during extraction. The optimal lipid yield from the model was predicted as the temperature of 59 °C, the pressure of 350.7 bar and the extraction time 2.8 hours. Under these conditions, the experimental lipid yield (25%) was close to the predicted value. The principal fatty acid methyl esters (FAME) of C. protothecoides lipid-derived biodiesel were oleic acid methyl ester (60.1%), linoleic acid methyl ester (18.6%) and palmitic acid methyl ester (11.4%), which made up more than 90% of the total FAMEs. In summary, this study indicated that RSM was useful to characterize the optimization the SC-CO₂ extraction process of C. protothecoides lipid yield, and the second-order polynomial model could be used for predicting and describing the lipid yield very well. In addition, C. protothecoides lipid, extracted by SC-CO₂, was suggested as a potential candidate for microalgae-derived biodiesel production.

Keywords: Chlorella protothecoides, microalgal lipids, response surface methodology, supercritical carbon dioxide extraction

Procedia PDF Downloads 446
2782 A Hybrid Film: NiFe₂O₄ Nanoparticles in Poly-3-Hydroxybutyrate as an Antibacterial Agent

Authors: Karen L. Rincon-Granados, América R. Vázquez-Olmos, Adriana-Patricia Rodríguez-Hernández, Gina Prado-Prone, Margarita Rivera, Roberto Y. Sato-Berrú

Abstract:

In this work, a hybrid film based on poly-3-hydroxybutyrate (P3HB) and nickel ferrite (NiFe₂O₄) nanoparticles (NPs) was obtained by a simple and reproducible methodology in order to study its antibacterial and cytotoxic properties. The motivation for this research is the current antimicrobial resistance (RAM). This is a threat to human health and development worldwide. RAM is caused by the emergence of bacterial strains resistant to traditional antibiotics that were used as treatment. Due to this, the need to investigate new alternatives for preventing and treating bacterial infections emerges. In this sense, metal oxide NPs have aroused great interest due to their unique physicochemical properties. However, their use is limited by the nanostructured nature, commonly obtained by chemical and physical synthesis methods, as powders or colloidal dispersions. Therefore, the incorporation of nanostructured materials in polymer matrices to obtain hybrid materials that allow disinfecting and preventing the spread of bacteria on various surfaces. Accordingly, this work presents the synthesis and study of the antibacterial properties of the P3HB@NiFe₂O₄ hybrid film as a potential material to inhibit bacterial growth. The NiFe₂O₄ NPs were previously synthesized by a mechanochemical method. The P3HB and P3HB@NiFe₂O₄ films were obtained by the solvent casting method. The films were characterized by X-ray diffraction (XRD), Raman scattering, and scanning electron microscopy (SEM). The XRD pattern showed that the NiFe₂O₄ NPs were incorporated into the P3HB polymer matrix and retained their nanometric sizes. By energy dispersive X-ray spectroscopy (EDS), it was observed that the NPs are homogeneously distributed in the film. The bactericidal effect of the films obtained was evaluated in vitro using the broth surface method against two opportunistic and nosocomial pathogens, Staphylococcus aureus and Pseudomonas aeruginosa. The bacterial growth results showed that the P3HB@NiFe₂O₄ hybrid film was inhibited by 97% and 96% for S. aureus and P. aeruginosa, respectively. Surprisingly, the P3HB film inhibited both bacterial strains by around 90%. The cytotoxicity of the NiFe₂O₄ NPs, P3HB@NiFe₂O₄ hybrid film, and the P3HB film was evaluated using human skin cells, keratinocytes, and fibroblasts, finding that the NPs are biocompatible. The P3HB film and hybrids are cytotoxic, which demonstrated that although P3HB is known and reported as a biocompatible polymer, under our work conditions, P3HB was cytotoxic. Its bactericidal effect could be related to this activity. Its films are bactericidal and cytotoxic to keratinocytes and fibroblasts, the first barrier of human skin. Despite this, the hybrid film of P3HB@NiFe₂O₄ presents synergy with the bactericidal effect between P3HB and NPs, increasing bacterial inhibition. In addition, NPs decrease the cytotoxicity of P3HB to keratinocytes. The methodology used in this work was successful in producing hybrid films with antibacterial activity. However, future challenges are generated to find relationships between NPs and P3HB that allow taking advantage of their bactericidal properties and do not compromise biocompatibility.

Keywords: poly-3-hydroxybutyrate, nanoparticles, hybrid film, antibacterial

Procedia PDF Downloads 83
2781 The Dynamics of Microorganisms in Dried Yogurt Storages at Different Temperatures

Authors: Jaruwan Chutrtong

Abstract:

Yoghurt is a fermented milk product. The process of making yogurt involves fermenting milk with live and active bacterial cultures by adding bacteria directly to the dairy product. It is usually made with a culture of Lactobacillus sp. (L. acidophilus or L. bulgaricus) and Streptococcus thermophilus. Many people like to eat it plain or flavored and it's also use as ingredient in many dishes. Yogurt is rich in nutrients including the microorganism which have important role in balancing the digestion and absorption of the boy.Consumers will benefit from lactic acid bacteria more or less depending on the amount of bacteria that lives in yogurt while eating. When purchasing yogurt, consumers should always check the label for live cultures. Yoghurt must keep in refrigerator at 4°C for up to ten days. After this amount of time, the cultures often become weak. This research studied freezing dry yogurt storage by monitoring on the survival of microorganisms when stored at different temperatures. At 300°C, representative room temperature of country in equator zone, number of lactic acid bacteria reduced 4 log cycles in 10 week. At 400°C, representative temperature in summer of country in equator zone, number of lactic acid bacteria also dropped 4 log cycle in 10 week, similar as storage at 300°C. But drying yogurt storage at 400°C couldn’t reformed to be good character yogurt as good as storage at 400°C only 4 week storage too. After 1 month, it couldn’t bring back the yogurt form. So if it is inevitable to keep yogurt powder at a temperature of 40°C, yoghurt is maintained only up to 4 weeks.

Keywords: dynamic, dry yoghurt, storage, temperature

Procedia PDF Downloads 325
2780 Separation, Identification, and Measuring Gossypol in the Cottonseed Oil and Investigating the Performance of Drugs Prepared from the Combination of Plant Extract and Oil in the Treatment of Cutaneous Leishmaniasis Resistant to Drugs

Authors: Sara Taghdisi, M. Mirmohammadi, M. Mokhtarian

Abstract:

In 2013, the World Health Organization announced the cases of Cutaneous leishmaniasis infection in Iran between 69,000 to 113,000. The most common chemical drugs for Cutaneous leishmaniasis treatment are sodium stibogluconate, and meglumine antimonate, which not only have relatively many side effects, but also some species of the Leishmania genus have become resistant to them .The most prominent compound existing in different parts of the cotton plant is a yellow polyphenol called Gossypol. Gossypol is an extremely valuable compound and has anti-cancer properties. In the current project, Gossypol was extracted with a liquid-liquid extraction method in 120 minutes in the presence of Phosphoric acid from the cotton seed oil of Golestan beach varieties, then got crystallized in darkness using Acetic acid and isolated as Gossypol Acetic acid. The efficiency of the extracted crystal was obtained at 0.12+- 1.28. the cotton plant could be efficient in the treatment of Cutaneous leishmaniasis. The extract of the green-leaf cotton boll of Jargoyeh varieties was tested as an ointment on the target group of patients suffering from Cutaneous leishmaniasis resistant to drugs esistant to drugs by our colleagues in the research team. The results showed the Pearson's correlation coefficient of 0.72 between the two variables of wound diameter and the extract use over time which indicated the positive effect of this extract on the treatment of Cutaneous leishmaniasis was resistant to drugs.

Keywords: cottonseed oil, crystallization, gossypol, green-leaf

Procedia PDF Downloads 111
2779 Charge Transport of Individual Thermoelectric Bi₂Te₃ Core-Poly(3,4-Ethylenedioxythiophene):Polystyrenesulfonate Shell Nanowires Determined Using Conductive Atomic Force Microscopy and Spectroscopy

Authors: W. Thongkham, K. Sinthiptharakoon, K. Tantisantisom, A. Klamchuen, P. Khanchaitit, K. Jiramitmongkon, C. Lertsatitthanakorn, M. Liangruksa

Abstract:

Due to demands of sustainable energy, thermoelectricity converting waste heat into electrical energy has become one of the intensive fields of worldwide research. However, such harvesting technology has shown low device performance in the temperature range below 150℃. In this work, a hybrid nanowire of inorganic bismuth telluride (Bi₂Te₃) and organic poly(3,4-ethylenedioxythiophene):polystyrenesulfonate (PEDOT:PSS) synthesized using a simple in-situ one-pot synthesis, enhancing efficiency of the nanowire-incorporated PEDOT:PSS-based thermoelectric converter is highlighted. Since the improvement is ascribed to the increased electrical conductivity of the thermoelectric host material, the individual hybrid nanowires are investigated using voltage-dependent conductive atomic force microscopy (CAFM) and spectroscopy (CAFS) considering that the electrical transport measurement can be performed either on insulating or conducting areas of the sample. Correlated with detailed chemical information on the crystalline structure and compositional profile of the nanowire core-shell structure, an electrical transporting pathway through the nanowire and the corresponding electronic-band structure have been determined, in which the native oxide layer on the Bi₂Te₃ surface is not considered, and charge conduction on the topological surface states of Bi₂Te₃ is suggested. Analyzing the core-shell nanowire synthesized using the conventional mixing of as-prepared Bi₂Te₃ nanowire with PEDOT:PSS for comparison, the oxide-removal effect of the in-situ encapsulating polymeric layer is further supported. The finding not only provides a structural information for mechanistic determination of the thermoelectricity, but it also encourages new approach toward more appropriate encapsulation and consequently higher efficiency of the nanowire-based thermoelectric generation.

Keywords: electrical transport measurement, hybrid Bi₂Te₃-PEDOT:PSS nanowire, nanoencapsulation, thermoelectricity, topological insulator

Procedia PDF Downloads 205
2778 Use of AI for the Evaluation of the Effects of Steel Corrosion in Mining Environments

Authors: Maria Luisa de la Torre, Javier Aroba, Jose Miguel Davila, Aguasanta M. Sarmiento

Abstract:

Steel is one of the most widely used materials in polymetallic sulfide mining installations. One of the main problems suffered by these facilities is the economic losses due to the corrosion of this material, which is accelerated and aggravated by the contact with acid waters generated in these mines when sulfides come into contact with oxygen and water. This generation of acidic water, in turn, is accelerated by the presence of acidophilic bacteria. In order to gain a more detailed understanding of this corrosion process and the interaction between steel and acidic water, a laboratory experiment was carried out in which carbon steel plates were introduced into four different solutions for 27 days: distilled water (BK), which tried to assimilate the effect produced by rain on this material, an acid solution from a mine with a high Fe2+/Fe3+ (PO) content, another acid solution of water from another mine with a high Fe3+/Fe2+ (PH) content and, finally, one that reproduced the acid mine water with a high Fe2+/Fe3+ content but in which there were no bacteria (ST). Every 24 hours, physicochemical parameters were measured and water samples were taken to carry out an analysis of the dissolved elements. The results of these measurements were processed using an explainable AI model based on fuzzy logic. It could be seen that, in all cases, there was an increase in pH, as well as in the concentrations of Fe and, in particular, Fe(II), as a consequence of the oxidation of the steel plates. Proportionally, the increase in Fe concentration was higher in PO and ST than in PH because Fe precipitates were produced in the latter. The rise of Fe(II) was proportionally much higher in PH and, especially in the first hours of exposure, because it started from a lower initial concentration of this ion. Although to a lesser extent than in PH, the greater increase in Fe(II) also occurred faster in PO than in ST, a consequence of the action of the catalytic bacteria. On the other hand, Cu concentrations decreased throughout the experiment (with the exception of distilled water, which initially had no Cu, as a result of an electrochemical process that generates a precipitation of Cu together with Fe hydroxides. This decrease is lower in PH because the high total acidity keeps it in solution for a longer time. With the application of an artificial intelligence tool, it has been possible to evaluate the effects of steel corrosion in mining environments, corroborating and extending what was obtained by means of classical statistics. Acknowledgments: This work has been supported by MCIU/AEI/10.13039/501100011033/FEDER, UE, throughout the project PID2021-123130OB-I00.

Keywords: carbon steel, corrosion, acid mine drainage, artificial intelligence, fuzzy logic

Procedia PDF Downloads 23
2777 Impregnation Reduction Method for the Preparation of Platinum-Nickel/Carbon Black Alloy Nanoparticles as Faor Electrocatalyst

Authors: Maryam Kiani

Abstract:

In order to enhance the efficiency and stability of an electrocatalyst for formic acid electro-oxidation reaction (FAOR), we developed a method to create Pt/Ni nanoparticles with carbon black. These nanoparticles were prepared using a simple impregnation reduction technique. During the observation, it was found that the nanoparticles had a spherical shape. Additionally, the average particle size remained consistent, falling within the range of about 4 nm. This approach aimed to obtain a loaded Pt-based electrocatalyst that would exhibit improved performance and stability when used in FAOR applications. By utilizing the impregnation reduction method and incorporating Ni nanoparticles along with Pt, we sought to enhance the catalytic properties of the material. By incorporating Ni atoms into the Pt structure, the electronic properties of Pt are modified, resulting in a delay in the chemisorption of harmful CO intermediate species. This modification also promotes the dehydrogenation pathway of the formic acid oxidation reaction (FAOR). Through electrochemical analysis, it has been observed that the Pt3Ni-C catalyst exhibits enhanced performance in FAOR compared to traditional Pt catalysts. This means that the addition of Ni atoms improves the efficiency and effectiveness of the Pt3Ni-C catalyst in facilitating the FAOR process. Overall, the utilization of these alloy nanoparticles as electrocatalysts represents a significant advancement in fuel cell technology.

Keywords: electrocatalyst, impregnation reduction method, formic acid electro-oxidation reaction, fuel cells

Procedia PDF Downloads 129
2776 The Effect of Substitution Concentrate with Leguminose Indigofera Zollingeriana in Lactation Goat Ration of Dry Matter, Organic Matter Intake, Milk Production, PUFA and CLA Content of Milk

Authors: Mardiati Zain, Elihasridas, Yolani Utami, Bima Bagaskara, Muhammad Taufic

Abstract:

The purpose of this study is to formulated a ration that can increased concentration of bioactive compounds in the form of conjugated linoleic acid (CLA) and polyunsaturated fatty acids acid (PUFA) in milk to produce functional milk that is beneficial for health. It has been proven that forage-based feeds (grass and legumes) are able to increased the presence of polyunsaturated fatty acids and in particular conjugated linoleic acid CLA in milk. Presence of bioactive compounds in product fat of ruminant origin these have generated great interest because they are associated with their potential as anti carcinogenic, anti diabetogenic and stimulant of the immune response. PUFA and CLA and especially n-3 fatty acids, only 4% of the fatty acids present in milk. For that, efforts need to be made to change the fatty acid composition of milk to increase the nutritional value for consumers through increasing the concentration of PUFA and CLA This is very important in the midst of the covid pandemic 19 which is increasing, it is necessary to drink and food that can improve the system body immunity. . The study was conducted in vivo using a randomized block design with 4 treatments and 4 replications. This experiment used 16 heads of 40-55 kg lactating goats. Goat were fed a basal diet containing (dry matter basis) 60% native grass and 40% concentrate. The treatment was A. 60% native grass + 40% concentrate, B. 60% native grass + 30% concentrate + 10% I. zollengeriana C. 60% native grass + 20% concentrate + 20% I. zollengeriana, D, 60% native grass + 10% concentrate + 30% I. zollengeriana.The results showed that the using of I. zollengeriana until 30% in ration gave the same result with using concentrate of nutrien intake, and milk production but increased the CLA dan PUFA content in milk. The results of this study concluded that I. zollengeriana can increased the content of CLA and PUFA at the use of 75% substitute concentrate in the diet of lactating goats.

Keywords: Indigofera zollengeriana, lactation goat, milk production, CLA, PUFA

Procedia PDF Downloads 240
2775 Waste Derived from Refinery and Petrochemical Plants Activities: Processing of Oil Sludge through Thermal Desorption

Authors: Anna Bohers, Emília Hroncová, Juraj Ladomerský

Abstract:

Oil sludge with its main characteristic of high acidity is a waste product generated from the operation of refinery and petrochemical plants. Former refinery and petrochemical plant - Petrochema Dubová is present in Slovakia as well. Its activities was to process the crude oil through sulfonation and adsorption technology for production of lubricating and special oils, synthetic detergents and special white oils for cosmetic and medical purposes. Seventy years ago – period, when this historical acid sludge burden has been created – comparing to the environmental awareness the production was in preference. That is the reason why, as in many countries, also in Slovakia a historical environmental burden is present until now – 229 211 m3 of oil sludge in the middle of the National Park of Nízke Tatry mountain chain. Neither one of tried treatment methods – bio or non-biologic one - was proved as suitable for processing or for recovery in the reason of different factors admission: i.e. strong aggressivity, difficulty with handling because of its sludgy and liquid state et sim. As a potential solution, also incineration was tested, but it was not proven as a suitable method, as the concentration of SO2 in combustion gases was too high, and it was not possible to decrease it under the acceptable value of 2000 mg.mn-3. That is the reason why the operation of incineration plant has been terminated, and the acid sludge landfills are present until nowadays. The objective of this paper is to present a new possibility of processing and valorization of acid sludgy-waste. The processing of oil sludge was performed through the effective separation - thermal desorption technology, through which it is possible to split the sludgy material into the matrix (soil, sediments) and organic contaminants. In order to boost the efficiency in the processing of acid sludge through thermal desorption, the work will present the possibility of application of an original technology – Method of Blowing Decomposition for recovering of organic matter into technological lubricating oil.

Keywords: hazardous waste, oil sludge, remediation, thermal desorption

Procedia PDF Downloads 200
2774 Geochemistry of Natural Radionuclides Associated with Acid Mine Drainage (AMD) in a Coal Mining Area in Southern Brazil

Authors: Juliana A. Galhardi, Daniel M. Bonotto

Abstract:

Coal is an important non-renewable energy source of and can be associated with radioactive elements. In Figueira city, Paraná state, Brazil, it was recorded high uranium activity near the coal mine that supplies a local thermoelectric power plant. In this context, the radon activity (Rn-222, produced by the Ra-226 decay in the U-238 natural series) was evaluated in groundwater, river water and effluents produced from the acid mine drainage in the coal reject dumps. The samples were collected in August 2013 and in February 2014 and analyzed at LABIDRO (Laboratory of Isotope and Hydrochemistry), UNESP, Rio Claro city, Brazil, using an alpha spectrometer (AlphaGuard) adjusted to evaluate the mean radon activity concentration in five cycles of 10 minutes. No radon activity concentration above 100 Bq.L-1, which was a previous critic value established by the World Health Organization. The average radon activity concentration in groundwater was higher than in surface water and in effluent samples, possibly due to the accumulation of uranium and radium in the aquifer layers that favors the radon trapping. The lower value in the river waters can indicate dilution and the intermediate value in the effluents may indicate radon absorption in the coal particles of the reject dumps. The results also indicate that the radon activities in the effluents increase with the sample acidification, possibly due to the higher radium leaching and the subsequent radon transport to the drainage flow. The water samples of Laranjinha River and Ribeirão das Pedras stream, which, respectively, supply Figueira city and receive the mining effluent, exhibited higher pH values upstream the mine, reflecting the acid mine drainage discharge. The radionuclides transport indicates the importance of monitoring their activity concentration in natural waters due to the risks that the radioactivity can represent to human health.

Keywords: radon, radium, acid mine drainage, coal

Procedia PDF Downloads 437
2773 Investigation of Fumaric Acid Radiolysis Using Gamma Irradiation

Authors: Wafa Jahouach-Rabai, Khouloud Ouerghi, Zohra Azzouz-Berriche, Faouzi Hosni

Abstract:

Widely used organic products in the pharmaceutical industry have been detected in environmental systems, essentially carboxylic acids. In this purpose, the degradation efficiency of these contaminants was evaluated using an advanced oxidation process (AOP), namely ionization process as an alternative to conventional water treatment technologies. This process permitted the generation of radical reactions to directly degrade organic pollutants in wastewater. In fact, gamma irradiation of aqueous solutions produces several reactive radicals, essentially hydroxyl radical (OH), to destroy recalcitrant pollutants. Different concentrations of aqueous solutions of Fumaric acid (FA) were considered in this study (0.1-1 mmol/L), which were treated by irradiation doses from 1 to 15 kGy with 6.1 kGy/h rate by ionizing system in pilot scale (⁶⁰Co irradiator). Variations of main parameters influencing degradation efficiency versus absorbed doses were released in the aim to optimize total mineralization of considered pollutants. Preliminary degradation pathway until complete mineralization into CO₂ has been suggested based on detection of residual degradation derivatives using different techniques, namely high performance liquid chromatography (HPLC) and electron paramagnetic resonance spectroscopy (EPR). Results revealed total destruction of treated compound, which improve the efficiency of this process in water remediation. We investigated the reactivity of hydroxyl radicals generated by irradiation on dicarboxylic acid (FA) in aqueous solutions, leading to its degradation into other smaller molecules. In fact, gamma irradiation of FA leads to the formation of hydroxylated intermediates such as hydroxycarbonyl radical which were identified by EPR spectroscopy. Finally, pilot plant irradiation facilities improved the applicability of radiation technology on large scale.

Keywords: AOP, radiolysis, fumaric acid, gamma irradiation, hydroxyl radical, EPR, HPLC

Procedia PDF Downloads 173
2772 Biobased Toughening Filler for Polylactic Acid from Ultrafine Fully Vulcanized Powder Natural Rubber Grafted with Polymethylmethacrylate

Authors: Panyawutthi Rimdusit, Krittapas Charoensuk, Sarawut Rimdusit

Abstract:

A biobased toughening filler for polylactic acid (PLA) based on natural rubber is developed in this work. Deproteinized natural rubber (DPNR) was modified by grafting polymerization with methyl methacrylate monomer (MMA) and further crosslinked by e-beam irradiation and spray drying process to achieve ultrafine full vulcanized powdered natural rubber grafted with polymethylmethacrylate (UFPNRg-PMMA) to solves in the challenges of incompatibility between natural rubber and PLA. Intriguingly, UFPNR-g-PMMA revealed outstanding and unique properties with minimal particle aggregation. The average particle size of rubber powder obtained from UFPNR-g-PMMA at PMMA grafting content of 20 phr reduced to 3.3±1.2 µm, compared to that of neat UFPNR of 5.3±2.3 µm which also showed partial particle aggregation. It is also found that the impact strength of the filled PLA was enhanced to 33.4±5.6 kJ/m2 at PLA/UFPNR-gPMMA 20 wt% compared to neat PLA of 9.6±3 kJ/m2. The thermal degradation temperature of the PLA composites was enhanced with increasing UFPNR-g-PMMA content without affecting the glass transition temperature of the composites. The fracture surface of PLA/ UFPNR-g-PMMA suggested internal cavitation and crazes are the main effects of rubber toughening PLA with substantial interfacial interaction between the filler and the matrix.

Keywords: natural rubber, ultrafine fully vulcanized powder rubber, polylactic acid, polymer composites

Procedia PDF Downloads 13
2771 Tri/Tetra-Block Copolymeric Nanocarriers as a Potential Ocular Delivery System of Lornoxicam: Experimental Design-Based Preparation, in-vitro Characterization and in-vivo Estimation of Transcorneal Permeation

Authors: Alaa Hamed Salama, Rehab Nabil Shamma

Abstract:

Introduction: Polymeric micelles that can deliver drug to intended sites of the eye have attracted much scientific attention recently. The aim of this study was to review the aqueous-based formulation of drug-loaded polymeric micelles that hold significant promise for ophthalmic drug delivery. This study investigated the synergistic performance of mixed polymeric micelles made of linear and branched poly (ethylene oxide)-poly (propylene oxide) for the more effective encapsulation of Lornoxicam (LX) as a hydrophobic model drug. Methods: The co-micellization process of 10% binary systems combining different weight ratios of the highly hydrophilic poloxamers; Synperonic® PE/P84, and Synperonic® PE/F127 and the hydrophobic poloxamine counterpart (Tetronic® T701) was investigated by means of photon correlation spectroscopy and cloud point. The drug-loaded micelles were tested for their solubilizing capacity towards LX. Results: Results showed a sharp solubility increase from 0.46 mg/ml up to more than 4.34 mg/ml, representing about 136-fold increase. Optimized formulation was selected to achieve maximum drug solubilizing power and clarity with lowest possible particle size. The optimized formulation was characterized by 1HNMR analysis which revealed complete encapsulation of the drug within the micelles. Further investigations by histopathological and confocal laser studies revealed the non-irritant nature and good corneal penetrating power of the proposed nano-formulation. Conclusion: LX-loaded polymeric nanomicellar formulation was fabricated allowing easy application of the drug in the form of clear eye drops that do not cause blurred vision or discomfort, thus achieving high patient compliance.

Keywords: confocal laser scanning microscopy, Histopathological studies, Lornoxicam, micellar solubilization

Procedia PDF Downloads 449
2770 The Effect of Gamma-Aminobutyric Acid on Mechanical Properties, Water Vapor Permeability and Solubility of Pectin Films

Authors: Jitrawadee Meerasri, Rungsinee Sothornvit

Abstract:

Pectin is a structural polysaccharide from plant cell walls and can be used as a stabilizer, gelling and film-forming agents to improve many food products. Moreover, pectin film as a natural biopolymer can be a carrier of several active ingredients such as antioxidant and antimicrobial to provide an active or functional film. Gamma-aminobutyric acid (GABA) is a well-known agent to reduce neuronal excitability throughout the nervous system and it is interesting to investigate the GABA effect as a substitute of normal plasticizer (glycerol) on edible film properties. Therefore, the objective of this study was to determine the effect of GABA concentrations (5-15% of pectin) on film mechanical properties, moisture content, water vapor permeability, and solubility compared with those from glycerol (10% of pectin) plasticized pectin film including a control film (pectin film without any plasticizer). It was found that an increase in GABA concentrations decreased film tensile strength, modulus, solubility and water vapor permeability, but elongation was increased without a change in the moisture content. The smaller amount of GABA showed the equivalent film properties as using a higher amount of glycerol. Consequently, GABA can act as an alternative plasticizer substitute of glycerol at the lower amount used. Moreover, GABA provides the nutritional high value in the food products when the edible packaging material is consumed with products.

Keywords: gamma-aminobutyric acid, pectin, plasticizer, edible film

Procedia PDF Downloads 130
2769 Zebrafish Larvae Model: A High Throughput Screening Tool to Study Autism

Authors: Shubham Dwivedi, Raghavender Medishetti, Rita Rani, Aarti Sevilimedu, Pushkar Kulkarni, Yogeeswari Perumal

Abstract:

Autism Spectrum Disorder (ASD) is a complex neurodevelopmental disorder of early onset, characterized by impaired sociability, cognitive function and stereotypies. There is a significant urge to develop and establish new animal models with ASD-like characteristics for better understanding of underlying mechanisms. The aim of the present study was to develop a cost and time effective zebrafish model with quantifiable parameters to facilitate mechanistic studies as well as high-throughput screening of new molecules for autism. Zebrafish embryos were treated with valproic acid and a battery of behavioral tests (anxiety, inattentive behavior, irritability and social impairment) was performed on larvae at 7th day post fertilization, followed by study of molecular markers of autism. This model shows a significant behavioural impairment in valproic acid treated larvae in comparison to control which was again supported by alteration in few marker genes and proteins of autism. The model also shows a rescue of behavioural despair with positive control drugs. The model shows robust parameters to study behavior, molecular mechanism and drug screening approach in a single frame. Thus we postulate that our 7 days zebrafish larval model for autism can help in high throughput screening of new molecules on autism.

Keywords: autism, zebrafish, valproic acid, neurodevelopment, behavioral assay

Procedia PDF Downloads 162
2768 Determination of Physicochemical Properties, Bioaccessibility of Phenolics and Antioxidant Capacity of Mineral Enriched Linden Herbal Tea Beverage

Authors: Senem Suna, Canan Ece Tamer, Ömer Utku Çopur

Abstract:

In this research, dried linden (Tilia argentea) leaves and blossoms were used as a raw material for mineral enriched herbal tea beverage production. For this aim, %1 dried linden was infused with boiling water (100 °C) for 5 minutes. After cooling, sucrose, citric acid, ascorbic acid, natural lemon flavor and natural mineral water were added. Beverage samples were plate filtered, filled into 200-mL glass bottles, capped then pasteurized at 98 °C for 15 minutes. Water soluble dry matter, titratable acidity, ascorbic acid, pH, minerals (Fe, Ca, Mg, K, Na), color (L*, a*, b*), turbidity, bioaccessible phenolics and antioxidant capacity were analyzed. Water soluble dry matter, titratable acidity, and ascorbic were determined as 7.66±0.28 g/100 g, 0.13±0.00 g/100 mL, and 19.42±0.62 mg/100 mL, respectively. pH was measured as 3.69. Fe, Ca, Mg, K and Na contents of the beverage were determined as 0.12±0.00, 115.48±0.05, 34.72±0.14, 48.67±0.43 and 85.72±1.01 mg/L, respectively. Color was measured as 13.63±0.05, -4.33±0.05, and 3.06±0.05 for L*, a*, and b* values. Turbidity was determined as 0.69±0.07 NTU. Bioaccessible phenolics were determined as 312.82±5.91 mg GAE/100 mL. Antioxidant capacities of chemical (MetOH:H2O:HCl) and physiological extracts (in vitro digestive enzymatic extraction) with DPPH (27.59±0.53 and 0.17±0.02 μmol trolox/mL), FRAP (21.01±0.97 and 13.27±0.19 μmol trolox/mL) and CUPRAC (44.71±9.42 and 2.80±0.64 μmol trolox/mL) methods were also evaluated. As a result, enrichment with natural mineral water was proposed for the development of functional and nutritional values together with a good potential for commercialization.

Keywords: linden, herbal tea beverage, bioaccessibility, antioxidant capacity

Procedia PDF Downloads 175
2767 A Review on Development of Pedicle Screws and Characterization of Biomaterials for Fixation in Lumbar Spine

Authors: Shri Dubey, Jamal Ghorieshi

Abstract:

Instability of the lumbar spine is caused by various factors that include degenerative disc, herniated disc, traumatic injuries, and other disorders. Pedicle screws are widely used as a main fixation device to construct rigid linkages of vertebrae to provide a fully functional and stable spine. Various technologies and methods have been used to restore the stabilization. However, loosening of pedicle screws is the main cause of concerns for neurosurgeons. This could happen due to poor bone quality with osteoporosis as well as types of pedicle screw used. Compatibilities and stabilities of pedicle screws with bone depend on design (thread design, length, and diameter) and material. Grip length and pullout strength affect the motion and stability of the spine when it goes through different phases such as extension, flexion, and rotation. Pullout strength of augmented pedicle screws is increased in both primary and salvage procedures by 119% (p = 0.001) and 162% (p = 0.01), respectively. Self-centering pedicle screws at different trajectories (0°, 10°, 20°, and 30°) show the same pullout strength as insertion in a straight-ahead trajectory. The outer cylindrical and inner conical shape of pedicle screws show the highest pullout strength in Grades 5 and 15 foams (synthetic bone). An outer cylindrical and inner conical shape with a V-shape thread exhibit the highest pullout strength in all foam grades. The maximum observed pullout strength is at axial pullout configuration at 0°. For Grade 15 (240 kg/m³) foam, there is a decline in pull out strength. The largest decrease in pullout strength is reported for Grade 10 (160 kg/m³) foam. The maximum pullout strength of 2176 N (0.32-g/cm³ Sawbones) on all densities. Type 1 Pedicle screw shows the best fixation due to smaller conical core diameter and smaller thread pitch (Screw 2 with 2 mm; Screws 1 and 3 with 3 mm).

Keywords: polymethylmethacrylate, PMMA, classical pedicle screws, CPS, expandable poly-ether-ether-ketone shell, EPEEKS, includes translaminar facet screw, TLFS, poly-ether-ether-ketone, PEEK, transfacetopedicular screw, TFPS

Procedia PDF Downloads 155
2766 Use of Pig as an Animal Model for Assessing the Differential MicroRNA Profiling in Kidney after Aristolochic Acid Intoxication

Authors: Daniela E. Marin, Cornelia Braicu, Gina C. Pistol, Roxana Cojocneanu-Petric, Ioana Berindan Neagoe, Mihail A. Gras, Ionelia Taranu

Abstract:

Aristolochic acid (AA) is a carcinogenic, mutagenic, and nephrotoxic compound commonly found in the Aristolochiaceae family of plants. AA is frequently associated with urothelial carcinoma of the upper urinary tract in human and animals and is considered as being responsible for Balkan Endemic Nephropathy. The pig provides a good animal model because the porcine urological system is very similar to that of humans, both in aspects of physiology and anatomy. MicroRNA (miRNA) are small non-coding RNAs that have an impact on a wide range of biological processes by regulating gene expression at post-transcriptional level. The objective of this study was to analyze the miRNA profiling in the kidneys of AA intoxicated swine. For this purpose, ten TOPIGS-40 crossbred weaned piglets, 4-week-old, male and females with an initial average body weight of 9.83 ± 0.5 kg were studied for 28 days. They were given ad libitum access to water and feed and randomly allotted to one of the following groups: control group (C) or aristolochic acid group (AA). They were fed a maize-soybean-meal-based diet contaminated or not with 0.25mgAA/kg. To profile miRNA in the kidneys of pigs, microarrays and bioinformatics approaches were applied to analyze the miRNA in the kidney of control and AA intoxicated pigs. After normalization, our results have shown that a total of 5 known miRNAs and 4 novel miRNAs had different profiling in the kidney of intoxicated animals versus control ones. Expression of miR-32-5p, miR-497-5p, miR-423-3p, miR-218-5p, miR-128-3p were up-regulated by 0.25mgAA/kg feed, while the expression of miR-9793-5p, miR-9835-3p, miR-9840-3p, miR-4334-5p was down-regulated. The microRNA profiling in kidney of intoxicated animals was associated with modified expression of target genes as: RICTOR, LASP1, SFRP2, DKK2, BMI1, RAF1, IGF1R, MAP2K1, WEE1, HDGF, BCL2, EIF4E etc, involved in cell division cycle, apoptosis, cell differentiation and cell migration, cell signaling, cancer etc. In conclusion, this study provides new data concerning the microRNA profiling in kidney after aristolochic acid intoxications with important implications for human and animal health.

Keywords: aristolochic acid, kidney, microRNA, swine

Procedia PDF Downloads 285
2765 Functionalized PU Foam for Water Filtration

Authors: Nidal H. Abu-Zahra, Subhashini Gunashekar

Abstract:

Polyurethane foam is functionalized with Sulfonic acid groups to remove lead ions (Pb2+) from drinking water through a action exchange process. The synthesis is based on addition polymerization of the -NCO groups of an isocyanine with the –OH groups of a polio to form the urethane. Toluene-diisocyanateis reacted with Polypropylene glycol to form a linear pre-polymer, which is further polymerized using a chain extender, N, N-bis(2-hydorxyethyl)-2-aminoethane-sulfonic acid (BES). BES acts as a functional group site to exchange Pb2+ ions. A set of experiments was designed to study the effect of various processing parameters on the performance of the synthesized foam. The maximum Pb2+ ion exchange capacity of the foam was found to be 47ppb/g from a 100ppb Pb2+ solution over a period of 60 minutes. A multistage batch filtration process increased the lead removal to 50-54ppb/3g of foam over a period of 90 minutes.

Keywords: adsorption, functionalized, ion exchange, polyurethane, sulfonic

Procedia PDF Downloads 244
2764 Comparative Histological, Immunohistochemical and Biochemical Study on the Effect of Vit. C, Vit. E, Gallic Acid and Silymarin on Carbon Tetrachloride Model of Liver Fibrosis in Rats

Authors: Safaa S. Hassan, Mohammed H. Elbakry, Safwat A. Mangoura, Zainab M. Omar

Abstract:

Background: Liver fibrosis is the main reason for increased mortality in chronic liver disease. It has no standard treatment. Antioxidants from a variety of sources are capable of slowing or preventing oxidation of other molecules. Aim: to evaluate the hepatoprotective effect of vit. C, vit. E and gallic acid in comparison to silymarin in the rat model of carbon tetrachloride induced liver fibrosis and their possible mechanisms of action. Material& Methods: A total number of 60 adult male albino rats 160-200gm were divided into six equal groups; received subcutaneous (s.c) injection for 8 weeks. Group I: as control. Group II: received 1.5 mL/kg of CCL4 .Group III: CCL4 and co- treatment with silymarin 100mg/kg p.o. daily. Group IV: CCL4 and co-treatment with vit. C 50mg/kg p.o. daily. Group V: CCL4 and co-treatment with vit. E 200mg/kg. p.o. Group VI: CCL4 and co-treatment with Gallic acid 100mg/kg. p.o. daily. Liver was processed for histological and immunohistochemical examination. Levels of AST, ALT, ALP, reduced GSH, MDA, SOD and hydroxyproline concentration were measured and evaluated statistically. Results: Light and electron microscopic examination of liver of group II exhibited foci of altered cells with dense nuclei and vacuolated, granular cytoplasm, mononuclear cell infiltration in portal areas, profuse collagen fiber deposits were found around portal tract, more intense staining α-SMA-positive cells occupied most of the liver fibrosis tissue, electron lucent areas in the cytoplasm of the hepatocytes, margination of nuclear chromatin. Treatment by any of the antioxidants variably reduced the hepatic structural changes induced by CCL4. Biochemical analysis showed that carbon tetrachloride significantly increased the levels of serum AST, ALT, ALP, hepatic malondialdehyde and hydroxyproline content. Moreover, it decreased the activities of superoxide dismutase and glutathione. Treatment with silymarin, gallic acid, vit. C and vit. E decreased significantly the AST, ALT, and ALP levels in plasma, MDA and hydroxyproline and increased the activities of SOD and glutathione in liver tissue. The effect of administration of CCl4 was improved with the used antioxidants in variable degrees. The most efficient antioxidant was silymarin followed by gallic acid and vit. C then vit. E. It is possibly due to their antioxidant effect, free radical scavenging properties and the reduction of oxidant dependent activation and proliferation of HSCs. Conclusion: So these antioxidants can be a promising drugs candidate for ameliorating liver fibrosis better than the use of the drugs and their side effects.

Keywords: antioxidant, ccl4, gallic acid, liver fibrosis

Procedia PDF Downloads 273
2763 Enhanced Poly Fluoroalkyl Substances Degradation in Complex Wastewater Using Modified Continuous Flow Nonthermal Plasma Reactor

Authors: Narasamma Nippatlapallia

Abstract:

Communities across the world are desperate to get their environment free of toxic per-poly fluoroalkyl substances (PFAS) especially when these chemicals are in aqueous media. In the present study, two different chain length PFAS (PFHxA (C6), PFDA (C10)) are selected for degradation using a modified continuous flow nonthermal plasma. The results showed 82.3% PFHxA and 94.1 PFDA degradation efficiencies, respectively. The defluorination efficiency is also evaluated which is 28% and 34% for PFHxA and PFDA, respectively. The results clearly indicates that the structure of PFAS has a great impact on degradation efficiency. The effect of flow rate is studied. increase in flow rate beyond 2 mL/min, decrease in degradation efficiency of the targeted PFAS was noticed. PFDA degradation was decreased from 85% to 42%, and PFHxA was decreased to 32% from 64% with increase in flow rate from 2 to 5 mL/min. Similarly, with increase in flow rate the percentage defluorination was decreased for both C10, and C6 compounds. This observation can be attributed to mainly because of change in residence time (contact time). Real water/wastewater is a composition of various organic, and inorganic ions that may affect the activity of oxidative species such as 𝑂𝐻. radicals on the target pollutants. Therefore, it is important to consider radicals quenching chemicals to understand the efficiency of the reactor. In gas-liquid NTP discharge reactors 𝑂𝐻. , 𝑒𝑎𝑞 − , 𝑂 . , 𝑂3, 𝐻2𝑂2, 𝐻. are often considered as reactive species for oxidation and reduction of pollutants. In this work, the role played by two distinct 𝑂 .𝐻 Scavengers, ethanol and glycerol, on PFAS percentage degradation, and defluorination efficiency (i,e., fluorine removal) are measured was studied. The addition of scavenging agents to the PFAS solution diminished the PFAS degradation to different extents depending on the target compound molecular structure. In comparison with the degradation of only PFAS solution, the addition of 1.25 M ethanol inhibited C10, and C6 degradation by 8%, and 12%, respectively. This research was supported with energy efficiency, production rate, and specific yield, fluoride, and PFAS concentration analysis with respect to optimum hydraulic retention time (HRT) of the continuous flow reactor.

Keywords: wastewater, PFAS, nonthermal plasma, mineralization, defluorination

Procedia PDF Downloads 31
2762 Conversion of Glycerol to 3-Hydroxypropanoic Acid by Genetically Engineered Bacillus subtilis

Authors: Aida Kalantari, Boyang Ji, Tao Chen, Ivan Mijakovic

Abstract:

3-hydroxypropanoic acid (3-HP) is one of the most important biomass-derivable platform chemicals that can be converted into a number of industrially important compounds. There have been several attempts at production of 3-HP from renewable sources in cell factories, focusing mainly on Escherichia coli, Klebsiella pneumoniae, and Saccharomyces cerevisiae. Despite the significant progress made in this field, commercially exploitable large-scale production of 3-HP in microbial strains has still not been achieved. In this study, we investigated the potential of Bacillus subtilis to be used as a microbial platform for bioconversion of glycerol into 3-HP. Our recombinant B. subtilis strains overexpress the two-step heterologous pathway containing glycerol dehydratase and aldehyde dehydrogenase from various backgrounds. The recombinant strains harboring the codon-optimized synthetic pathway from K. pneumoniae produced low levels of 3-HP. Since the enzymes in the heterologous pathway are sensitive to oxygen, we had to perform our experiments in micro-aerobic conditions. Under these conditions, the cell produces lactate in order to regenerate NAD+, and we found the lactate production to be in competition with the production of 3-HP. Therefore, based on the in silico predictions, we knocked out the glycerol kinase (glpk), which in combination with growth on glucose, resulted in improving the 3-HP titer to 1 g/L and the removal of lactate. Cultivation of the same strain in an enriched medium improved the 3-HP titer up to 7.6 g/L. Our findings provide the first report of successful introduction of the biosynthetic pathway for conversion of glycerol into 3-HP in B. subtilis.

Keywords: bacillus subtilis, glycerol, 3-hydroxypropanoic acid, metabolic engineering

Procedia PDF Downloads 247
2761 Encapsulation of Venlafaxine-Dowex® Resinate: A Once Daily Multiple Unit Formulation

Authors: Salwa Mohamed Salah Eldin, Howida Kamal Ibrahim

Abstract:

Introduction: Major depressive disorder affects high proportion of the world’s population presenting cost load in health care. Extended release venlafaxine is more convenient and could reduce discontinuation syndrome. The once daily dosing also reduces the potential for adverse events such as nausea due to reduced Cmax. Venlafaxine is an effective first-line agent in the treatment of depression. A once daily formulation was designed to enhance patient compliance. Complexing with a resin was suggested to improve loading of the water soluble drug. The formulated systems were thoroughly evaluated in vitro to prove superiority to previous trials and were compared to the commercial extended release product in experimental animals. Materials and Methods: Venlafaxine-resinates were prepared using Dowex®50WX4-400 and Dowex®50WX8-100 at drug to resin weight ratio of 1: 1. The prepared resinates were evaluated for their drug content, particle shape and surface properties and in vitro release profile in gradient pH. The release kinetics and mechanism were evaluated. Venlafaxine-Dowex® resinates were encapsulated using O/W solvent evaporation technique. Poly-ε-caprolactone, Poly(D, L-lactide-co-glycolide) ester, Poly(D, L-lactide) ester and Eudragit®RS100 were used as coating polymers alone and in combination. Drug-resinate microcapsules were evaluated for morphology, entrapment efficiency and in-vitro release profile. The selected formula was tested in rabbits using a randomized, single-dose, 2-way crossover study against Effexor-XR tablets under fasting condition. Results and Discussion: The equilibrium time was 30 min for Dowex®50WX4-400 and 90 min for Dowex®50WX8-100. The percentage drug loaded was 93.96 and 83.56% for both resins, respectively. Both drug-Dowex® resintes were efficient in sustaining venlafaxine release in comparison to the free drug (up to 8h.). Dowex®50WX4-400 based venlafaxine-resinate was selected for further encapsulation to optimize the release profile for once daily dosing and to lower the burst effect. The selected formula (coated with a mixture of Eudragit RS and PLGA in a ratio of 50/50) was chosen by applying a group of mathematical equations according to targeted values. It recorded the minimum burst effect, the maximum MDT (Mean dissolution time) and a Q24h (percentage drug released after 24 hours) between 95 and 100%. The 90% confidence intervals for the test/reference mean ratio of the log-transformed data of AUC0–24 and AUC0−∞ are within (0.8–1.25), which satisfies the bioequivalence criteria. Conclusion: The optimized formula could be a promising extended release form of the water soluble, short half lived venlafaxine. Being a multiple unit formulation, it lowers the probability of dose dumping and reduces the inter-subject variability in absorption.

Keywords: biodegradable polymers, cation-exchange resin, microencapsulation, venlafaxine hcl

Procedia PDF Downloads 395
2760 Antimicrobial Activity of Fatty Acid Salts against Microbes for Food Safety

Authors: Aya Tanaka, Mariko Era, Manami Masuda, Yui Okuno, Takayoshi Kawahara, Takahide Kanyama, Hiroshi Morita

Abstract:

Objectives— Fungi and bacteria are present in a wide range of natural environments. They are breed in the foods such as vegetables and fruit, causing corruption and deterioration of these foods in some cases. Furthermore, some species of fungi and bacteria are known to cause food intoxication or allergic reactions in some individuals. To prevent fungal and bacterial contamination, various fungicides and bactericidal have been developed that inhibit fungal and bacterial growth. Fungicides and bactericides must show high antifungal and antibacterial activity, sustainable activity, and a high degree of safety. Therefore, we focused on the fatty acid salt which is the main component of soap. We focused on especially C10K and C12K. This study aimed to find the effectiveness of the fatty acid salt as antimicrobial agents for food safety. Materials and Methods— Cladosporium cladosporioides NBRC 30314, Penicillium pinophilum NBRC 6345, Aspergillus oryzae (Akita Konno store), Rhizopus oryzae NBRC 4716, Fusarium oxysporum NBRC 31631, Escherichia coli NBRC 3972, Bacillus subtilis NBRC 3335, Staphylococcus aureus NBRC 12732, Pseudomonas aenuginosa NBRC 13275 and Serratia marcescens NBRC 102204 were chosen as tested fungi and bacteria. Hartmannella vermiformis NBRC 50599 and Acanthamoeba castellanii NBRC 30010 were chosen as tested amoeba. Nine fatty acid salts including potassium caprate (C10K) and laurate (C12K) at 350 mM and pH 10.5 were used as antifungal activity. The spore suspension of each fungus (3.0×10⁴ spores/mL) or the bacterial suspension (3.0×10⁵ or 3.0×10⁶ or 3.0×10⁷ CFU/mL) was mixed with each of the fatty acid salts (final concentration of 175 mM). Samples were counted at 0, 10, 60, and 180 min by plating (100 µL) on potato dextrose agar or nutrient agar. Fungal and bacterial colonies were counted after incubation for 1 or 2 days at 30 °C. Results— C10K was antifungal activity of 4 log-unit incubated time for 10 min against fungi other than A. oryzae. C12K was antifungal activity of 4 log-unit incubated time for 10 min against fungi other than P. pinophilum and A. oryzae. C10K and C12K did not show high anti-yeast activity. C10K was antibacterial activity of 6 or 7 log-unit incubated time for 10 min against bacteria other than B. subtilis. C12K was antibacterial activity of 5 to 7 log-unit incubated time for 10 min against bacteria other than S. marcescens. C12K was anti-amoeba activity of 4 log-unit incubated time for 10 min against H. vermiformis. These results suggest C10K and C12K have potential in the field of food safety.

Keywords: food safety, microbes, antimicrobial, fatty acid salts

Procedia PDF Downloads 486