Search results for: neural stem cells
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5417

Search results for: neural stem cells

4367 The Impact of Kids Science Labs Intervention Program on Independent Thinking and Academic Achievement in Young Children

Authors: Aliya Kamilyevna Salahova

Abstract:

This study examines the effectiveness of the Kids Science Labs intervention program, based on STEM, in fostering independent thinking among preschool and elementary school children and its influence on their academic achievement. Through a comprehensive methodology involving interviews, surveys, observations, case studies, and statistical tests, data were collected from various sources to accurately analyze the program's effects. The findings indicate a significant positive impact on children's independent thinking abilities, leading to improved academic performance in mathematics and science, enhanced learning motivation, and a propensity to critically evaluate problem-solving approaches. This research contributes to the theoretical understanding of how STEM activities can foster independent thinking and academic success in young children, providing valuable insights for the development of educational programs. Introduction: The goal of this study is to investigate the influence of the Kids Science Labs intervention program, grounded in STEM, on the development of independent thinking skills among preschool and elementary school children. By addressing this objective, we aim to explore the program's potential to enhance academic performance in mathematics and science. The study's findings have theoretical significance as they shed light on the ways in which STEM activities can foster independent thinking in young children, thus enabling educators to design effective learning programs that promote academic success. Methodology: This study employs a robust methodology that includes interviews, surveys, observations, case studies, and statistical tests. These methods were carefully selected to collect comprehensive data from multiple sources, such as documents and records, ensuring a thorough analysis of the program's effects. The use of diverse data collection and analysis procedures facilitated an in-depth exploration of the research questions and yielded reliable results. Results: The results indicate that children participating in the Kids Science Labs program experienced a sustained positive impact on their independent thinking abilities. Moreover, these children demonstrated improved academic performance in mathematics and science, displaying higher learning motivation and the capacity to critically evaluate problem-solving methods and seek optimal solutions. Theoretical Importance: This study contributes significantly to the existing theoretical knowledge by elucidating how STEM activities can foster independent thinking and enhance academic success in preschool and elementary school children. The findings have practical implications for educators, empowering them to develop learning programs that stimulate independent thinking, leading to improved academic performance in young children. Discussion: The findings of this research affirm that the Kids Science Labs intervention program is highly effective in fostering independent thinking among preschool and elementary school children. The program's positive impact extends to improved academic performance in mathematics and science, highlighting its potential to enhance learning outcomes. Educators can leverage these findings to develop educational programs that promote independent thinking and elevate academic achievement in young children. Conclusion: In conclusion, the Kids Science Labs intervention program has been found to be highly effective in fostering independent thinking among preschool and elementary school children. Furthermore, participation in the program correlates with improved academic performance in mathematics and science. The study's outcomes underscore the importance of developing educational initiatives that stimulate independent thinking in young children, thereby enhancing their academic success.

Keywords: STEM in preschool, STEM in elementary school, kids science labs, independent thinking, STEM activities in early childhood education

Procedia PDF Downloads 86
4366 Applying Artificial Neural Networks to Predict Speed Skater Impact Concussion Risk

Authors: Yilin Liao, Hewen Li, Paula McConvey

Abstract:

Speed skaters often face a risk of concussion when they fall on the ice floor and impact crash mats during practices and competitive races. Several variables, including those related to the skater, the crash mat, and the impact position (body side/head/feet impact), are believed to influence the severity of the skater's concussion. While computer simulation modeling can be employed to analyze these accidents, the simulation process is time-consuming and does not provide rapid information for coaches and teams to assess the skater's injury risk in competitive events. This research paper promotes the exploration of the feasibility of using AI techniques for evaluating skater’s potential concussion severity, and to develop a fast concussion prediction tool using artificial neural networks to reduce the risk of treatment delays for injured skaters. The primary data is collected through virtual tests and physical experiments designed to simulate skater-mat impact. It is then analyzed to identify patterns and correlations; finally, it is used to train and fine-tune the artificial neural networks for accurate prediction. The development of the prediction tool by employing machine learning strategies contributes to the application of AI methods in sports science and has theoretical involvements for using AI techniques in predicting and preventing sports-related injuries.

Keywords: artificial neural networks, concussion, machine learning, impact, speed skater

Procedia PDF Downloads 108
4365 Study of Mechanical Properties of Large Scale Flexible Silicon Solar Modules on the Various Substrates

Authors: M. Maleczek, Leszek Bogdan, Kazimierz Drabczyk, Agnieszka Iwan

Abstract:

Crystalline silicon (Si) solar cells are the main product in the market among the various photovoltaic technologies concerning such advantages as: material richness, high carrier mobilities, broad spectral absorption range and established technology. However, photovoltaic technology on the stiff substrates are heavier, more fragile and less cost-effective than devices on the flexible substrates to be applied in special applications. The main goal of our work was to incorporate silicon solar cells into various fabric, without any change of the electrical and mechanical parameters of devices. This work is realized for the GEKON project (No. GEKON2/O4/268473/23/2016) sponsored by The National Centre for Research and Development and The National Fund for Environmental Protection and Water Management. In our work, the polyamide or polyester fabrics were used as a flexible substrate in the created devices. Applied fabrics differ in tensile and tear strength. All investigated polyamide fabrics are resistant to weathering and UV, while polyester ones is resistant to ozone, water and ageing. The examined fabrics are tight at 100 cm water per 2 hours. In our work, commercial silicon solar cells with the size 156 × 156 mm were cut into nine parts (called single solar cells) by diamond saw and laser. Gap and edge after cutting of solar cells were checked by transmission electron microscope (TEM) to study morphology and quality of the prepared single solar cells. Modules with the size of 160 × 70 cm (containing about 80 single solar cells) were created and investigated by electrical and mechanical methods. Weight of constructed module is about 1.9 kg. Three types of solar cell architectures such as: -fabric/EVA/Si solar cell/EVA/film for lamination, -backsheet PET/EVA/Si solar cell/EVA/film for lamination, -fabric/EVA/Si solar cell/EVA/tempered glass, were investigated taking into consideration type of fabric and lamination process together with the size of solar cells. In investigated devices EVA, it is ethylene-vinyl acetate, while PET - polyethylene terephthalate. Depend on the lamination process and compatibility of textile with solar cell an efficiency of investigated flexible silicon solar cells was in the range of 9.44-16.64 %. Multi folding and unfolding of flexible module has no impact on its efficiency as was detected by Instron equipment. Power (P) of constructed solar module is 30 W, while voltage about 36 V. Finally, solar panel contains five modules with the polyamide fabric and tempered glass will be produced commercially for different applications (dual use).

Keywords: flexible devices, mechanical properties, silicon solar cells, textiles

Procedia PDF Downloads 172
4364 Water Demand Modelling Using Artificial Neural Network in Ramallah

Authors: F. Massri, M. Shkarneh, B. Almassri

Abstract:

Water scarcity and increasing water demand especially for residential use are major challenges facing Palestine. The need to accurately forecast water consumption is useful for the planning and management of this natural resource. The main objective of this paper is to (i) study the major factors influencing the water consumption in Palestine, (ii) understand the general pattern of Household water consumption, (iii) assess the possible changes in household water consumption and suggest appropriate remedies and (iv) develop prediction model based on the Artificial Neural Network to the water consumption in Palestinian cities. The paper is organized in four parts. The first part includes literature review of household water consumption studies. The second part concerns data collection methodology, conceptual frame work for the household water consumption surveys, survey descriptions and data processing methods. The third part presents descriptive statistics, multiple regression and analysis of the water consumption in the two Palestinian cities. The final part develops the use of Artificial Neural Network for modeling the water consumption in Palestinian cities.

Keywords: water management, demand forecasting, consumption, ANN, Ramallah

Procedia PDF Downloads 217
4363 Application of the Pattern Method to Form the Stable Neural Structures in the Learning Process as a Way of Solving Modern Problems in Education

Authors: Liudmyla Vesper

Abstract:

The problems of modern education are large-scale and diverse. The aspirations of parents, teachers, and experts converge - everyone interested in growing up a generation of whole, well-educated persons. Both the family and society are expected in the future generation to be self-sufficient, desirable in the labor market, and capable of lifelong learning. Today's children have a powerful potential that is difficult to realize in the conditions of traditional school approaches. Focusing on STEM education in practice often ends with the simple use of computers and gadgets during class. "Science", "technology", "engineering" and "mathematics" are difficult to combine within school and university curricula, which have not changed much during the last 10 years. Solving the problems of modern education largely depends on teachers - innovators, teachers - practitioners who develop and implement effective educational methods and programs. Teachers who propose innovative pedagogical practices that allow students to master large-scale knowledge and apply it to the practical plane. Effective education considers the creation of stable neural structures during the learning process, which allow to preserve and increase knowledge throughout life. The author proposed a method of integrated lessons – cases based on the maths patterns for forming a holistic perception of the world. This method and program are scientifically substantiated and have more than 15 years of practical application experience in school and student classrooms. The first results of the practical application of the author's methodology and curriculum were announced at the International Conference "Teaching and Learning Strategies to Promote Elementary School Success", 2006, April 22-23, Yerevan, Armenia, IREX-administered 2004-2006 Multiple Component Education Project. This program is based on the concept of interdisciplinary connections and its implementation in the process of continuous learning. This allows students to save and increase knowledge throughout life according to a single pattern. The pattern principle stores information on different subjects according to one scheme (pattern), using long-term memory. This is how neural structures are created. The author also admits that a similar method can be successfully applied to the training of artificial intelligence neural networks. However, this assumption requires further research and verification. The educational method and program proposed by the author meet the modern requirements for education, which involves mastering various areas of knowledge, starting from an early age. This approach makes it possible to involve the child's cognitive potential as much as possible and direct it to the preservation and development of individual talents. According to the methodology, at the early stages of learning students understand the connection between school subjects (so-called "sciences" and "humanities") and in real life, apply the knowledge gained in practice. This approach allows students to realize their natural creative abilities and talents, which makes it easier to navigate professional choices and find their place in life.

Keywords: science education, maths education, AI, neuroplasticity, innovative education problem, creativity development, modern education problem

Procedia PDF Downloads 61
4362 Lung Cancer Detection and Multi Level Classification Using Discrete Wavelet Transform Approach

Authors: V. Veeraprathap, G. S. Harish, G. Narendra Kumar

Abstract:

Uncontrolled growth of abnormal cells in the lung in the form of tumor can be either benign (non-cancerous) or malignant (cancerous). Patients with Lung Cancer (LC) have an average of five years life span expectancy provided diagnosis, detection and prediction, which reduces many treatment options to risk of invasive surgery increasing survival rate. Computed Tomography (CT), Positron Emission Tomography (PET), and Magnetic Resonance Imaging (MRI) for earlier detection of cancer are common. Gaussian filter along with median filter used for smoothing and noise removal, Histogram Equalization (HE) for image enhancement gives the best results without inviting further opinions. Lung cavities are extracted and the background portion other than two lung cavities is completely removed with right and left lungs segmented separately. Region properties measurements area, perimeter, diameter, centroid and eccentricity measured for the tumor segmented image, while texture is characterized by Gray-Level Co-occurrence Matrix (GLCM) functions, feature extraction provides Region of Interest (ROI) given as input to classifier. Two levels of classifications, K-Nearest Neighbor (KNN) is used for determining patient condition as normal or abnormal, while Artificial Neural Networks (ANN) is used for identifying the cancer stage is employed. Discrete Wavelet Transform (DWT) algorithm is used for the main feature extraction leading to best efficiency. The developed technology finds encouraging results for real time information and on line detection for future research.

Keywords: artificial neural networks, ANN, discrete wavelet transform, DWT, gray-level co-occurrence matrix, GLCM, k-nearest neighbor, KNN, region of interest, ROI

Procedia PDF Downloads 153
4361 Game Structure and Spatio-Temporal Action Detection in Soccer Using Graphs and 3D Convolutional Networks

Authors: Jérémie Ochin

Abstract:

Soccer analytics are built on two data sources: the frame-by-frame position of each player on the terrain and the sequences of events, such as ball drive, pass, cross, shot, throw-in... With more than 2000 ball-events per soccer game, their precise and exhaustive annotation, based on a monocular video stream such as a TV broadcast, remains a tedious and costly manual task. State-of-the-art methods for spatio-temporal action detection from a monocular video stream, often based on 3D convolutional neural networks, are close to reach levels of performances in mean Average Precision (mAP) compatibles with the automation of such task. Nevertheless, to meet their expectation of exhaustiveness in the context of data analytics, such methods must be applied in a regime of high recall – low precision, using low confidence score thresholds. This setting unavoidably leads to the detection of false positives that are the product of the well documented overconfidence behaviour of neural networks and, in this case, their limited access to contextual information and understanding of the game: their predictions are highly unstructured. Based on the assumption that professional soccer players’ behaviour, pose, positions and velocity are highly interrelated and locally driven by the player performing a ball-action, it is hypothesized that the addition of information regarding surrounding player’s appearance, positions and velocity in the prediction methods can improve their metrics. Several methods are compared to build a proper representation of the game surrounding a player, from handcrafted features of the local graph, based on domain knowledge, to the use of Graph Neural Networks trained in an end-to-end fashion with existing state-of-the-art 3D convolutional neural networks. It is shown that the inclusion of information regarding surrounding players helps reaching higher metrics.

Keywords: fine-grained action recognition, human action recognition, convolutional neural networks, graph neural networks, spatio-temporal action recognition

Procedia PDF Downloads 22
4360 The Nature of the Complicated Fabric Textures: How to Represent in Primary Visual Cortex

Authors: J. L. Liu, L. Wang, B. Zhu, J. Zhou, W. D. Gao

Abstract:

Fabric textures are very common in our daily life. However, we never explore the representation of fabric textures from neuroscience view. Theoretical studies suggest that primary visual cortex (V1) uses a sparse code to efficiently represent natural images. However, how the simple cells in V1 encode the artificial textures is still a mystery. So, here we will take fabric texture as stimulus to study the response of independent component analysis that is established to model the receptive field of simple cells in V1. Experimental results based on 140 classical fabric images indicate that the receptive fields of simple cells have obvious selectivity in orientation, frequency, and phase when drifting gratings are used to determine their tuning properties. Additionally, the distribution of optimal orientation and frequency shows that the patch size selected from each original fabric image has a significant effect on the frequency selectivity.

Keywords: fabric texture, receptive filed, simple cell, spare coding

Procedia PDF Downloads 474
4359 Investigation and Estimation of State of Health of Battery Pack in Battery Electric Vehicles-Online Battery Characterization

Authors: Ali Mashayekh, Mahdiye Khorasani, Thomas Weyh

Abstract:

The tendency to use the Battery-Electric vehicle (BEV) for the low and medium driving range or even high driving range has been growing more and more. As a result, higher safety, reliability, and durability of the battery pack as a component of electric vehicles, which has a great share of cost and weight of the final product, are the topics to be considered and investigated. Battery aging can be considered as the predominant factor regarding the reliability and durability of BEV. To better understand the aging process, offline battery characterization has been widely used, which is time-consuming and needs very expensive infrastructures. This paper presents the substitute method for the conventional battery characterization methods, which is based on battery Modular Multilevel Management (BM3). According to this Topology, the battery cells can be drained and charged concerning their capacity, which allows varying battery pack structures. Due to the integration of the power electronics, the output voltage of the battery pack is no longer fixed but can be dynamically adjusted in small steps. In other words, each cell can have three different states, namely series, parallel, and bypass in connection with the neighbor cells. With the help of MATLAB/Simulink and by using the BM3 modules, the battery string model is created. This model allows us to switch two cells with the different SoC as parallel, which results in the internal balancing of the cells. But if the parallel switching lasts just for a couple of ms, we can have a perturbation pulse which can stimulate the cells out of the relaxation phase. With the help of modeling the voltage response pulse of the battery, it would be possible to characterize the cell. The Online EIS method, which is discussed in this paper, can be a robust substitute for the conventional battery characterization methods.

Keywords: battery characterization, SoH estimation, RLS, BEV

Procedia PDF Downloads 147
4358 Histone Deacetylases Inhibitor - Valproic Acid Sensitizes Human Melanoma Cells for alkylating agent and PARP inhibitor

Authors: Małgorzata Drzewiecka, Tomasz Śliwiński, Maciej Radek

Abstract:

The inhibition of histone deacetyles (HDACs) holds promise as a potential anti-cancer therapy because histone and non-histone protein acetylation is frequently disrupted in cancer, leading to cancer initiation and progression. Additionally, histone deacetylase inhibitors (HDACi) such as class I HDAC inhibitor - valproic acid (VPA) have been shown to enhance the effectiveness of DNA-damaging factors, such as cisplatin or radiation. In this study, we found that, using of VPA in combination with talazoparib (BMN-637 – PARP1 inhibitor – PARPi) and/or Dacarabazine (DTIC - alkylating agent) resulted in increased DNA double strand break (DSB) and reduced survival (while not affecting primary melanocytes )and proliferation of melanoma cells. Furthermore, pharmacologic inhibition of class I HDACs sensitizes melanoma cells to apoptosis following exposure to DTIC and BMN-637. In addition, inhibition of HDAC caused sensitization of melanoma cells to dacarbazine and BMN-637 in melanoma xenografts in vivo. At the mRNA and protein level histone deacetylase inhibitor downregulated RAD51 and FANCD2. This study provides that combining HDACi, alkylating agent and PARPi could potentially enhance the treatment of melanoma, which is known for being one of the most aggressive malignant tumors. The findings presented here point to a scenario in which HDAC via enhancing the HR-dependent repair of DSBs created during the processing of DNA lesions, are essential nodes in the resistance of malignant melanoma cells to methylating agent-based therapies.

Keywords: melanoma, hdac, parp inhibitor, valproic acid

Procedia PDF Downloads 81
4357 Quantitative Evaluation of Supported Catalysts Key Properties from Electron Tomography Studies: Assessing Accuracy Using Material-Realistic 3D-Models

Authors: Ainouna Bouziane

Abstract:

The ability of Electron Tomography to recover the 3D structure of catalysts, with spatial resolution in the subnanometer scale, has been widely explored and reviewed in the last decades. A variety of experimental techniques, based either on Transmission Electron Microscopy (TEM) or Scanning Transmission Electron Microscopy (STEM) have been used to reveal different features of nanostructured catalysts in 3D, but High Angle Annular Dark Field imaging in STEM mode (HAADF-STEM) stands out as the most frequently used, given its chemical sensitivity and avoidance of imaging artifacts related to diffraction phenomena when dealing with crystalline materials. In this regard, our group has developed a methodology that combines image denoising by undecimated wavelet transforms (UWT) with automated, advanced segmentation procedures and parameter selection methods using CS-TVM (Compressed Sensing-total variation minimization) algorithms to reveal more reliable quantitative information out of the 3D characterization studies. However, evaluating the accuracy of the magnitudes estimated from the segmented volumes is also an important issue that has not been properly addressed yet, because a perfectly known reference is needed. The problem particularly complicates in the case of multicomponent material systems. To tackle this key question, we have developed a methodology that incorporates volume reconstruction/segmentation methods. In particular, we have established an approach to evaluate, in quantitative terms, the accuracy of TVM reconstructions, which considers the influence of relevant experimental parameters like the range of tilt angles, image noise level or object orientation. The approach is based on the analysis of material-realistic, 3D phantoms, which include the most relevant features of the system under analysis.

Keywords: electron tomography, supported catalysts, nanometrology, error assessment

Procedia PDF Downloads 83
4356 Representativity Based Wasserstein Active Regression

Authors: Benjamin Bobbia, Matthias Picard

Abstract:

In recent years active learning methodologies based on the representativity of the data seems more promising to limit overfitting. The presented query methodology for regression using the Wasserstein distance measuring the representativity of our labelled dataset compared to the global distribution. In this work a crucial use of GroupSort Neural Networks is made therewith to draw a double advantage. The Wasserstein distance can be exactly expressed in terms of such neural networks. Moreover, one can provide explicit bounds for their size and depth together with rates of convergence. However, heterogeneity of the dataset is also considered by weighting the Wasserstein distance with the error of approximation at the previous step of active learning. Such an approach leads to a reduction of overfitting and high prediction performance after few steps of query. After having detailed the methodology and algorithm, an empirical study is presented in order to investigate the range of our hyperparameters. The performances of this method are compared, in terms of numbers of query needed, with other classical and recent query methods on several UCI datasets.

Keywords: active learning, Lipschitz regularization, neural networks, optimal transport, regression

Procedia PDF Downloads 80
4355 PDMS-Free Microfluidic Chips Fabrication and Utilisation for Pulsed Electric Fields Applications

Authors: Arunas Stirke, Neringa Bakute, Gatis Mozolevskis

Abstract:

A technology of microfluidics is an emerging tool in the field of biology, medicine and chemistry. Microfluidic device is also known as ‘lab-on-a-chip’ technology [1]. In moving from macro- to microscale, there is unprecedented control over spatial and temporal gradients and patterns that cannot be captured in conventional Petri dishes and well plates [2]. However, there is not a single standard microfluidic chip designated for all purposes – every different field of studies needs a specific microchip with certain geometries, inlet/outlet, channel depth and other parameters to precisely regulate the required function. Since our group is studying an effect of pulsed electric field (PEF) to the cells, we have manufactured a microfluidic chip designated for high-throughput electroporation of cells. In our microchip, a cell culture chamber is divided into two parallel channels by a membrane, meanwhile electrodes for electroporation are attached to the wall of the channels. Both microchannels have their own inlet and outlet, enabling injection of transfection material separately. Our perspective is to perform electroporation of mammalian cells in two different ways: (1) plasmid and cells are injected in the same microchannel and (2) injected into separate microchannels. Moreover, oxygen and pH sensors are integrated on order to analyse cell viability parameters after PEF treatment.

Keywords: microfluidics, chip, fabrication, electroporation

Procedia PDF Downloads 82
4354 Orthogonal Basis Extreme Learning Algorithm and Function Approximation

Authors: Ying Li, Yan Li

Abstract:

A new algorithm for single hidden layer feedforward neural networks (SLFN), Orthogonal Basis Extreme Learning (OBEL) algorithm, is proposed and the algorithm derivation is given in the paper. The algorithm can decide both the NNs parameters and the neuron number of hidden layer(s) during training while providing extreme fast learning speed. It will provide a practical way to develop NNs. The simulation results of function approximation showed that the algorithm is effective and feasible with good accuracy and adaptability.

Keywords: neural network, orthogonal basis extreme learning, function approximation

Procedia PDF Downloads 533
4353 Electrophysiological Correlates of Statistical Learning in Children with and without Developmental Language Disorder

Authors: Ana Paula Soares, Alexandrina Lages, Helena Oliveira, Francisco-Javier Gutiérrez-Domínguez, Marisa Lousada

Abstract:

From an early age, exposure to a spoken language allows us to implicitly capture the structure underlying the succession of the speech sounds in that language and to segment it into meaningful units (words). Statistical learning (SL), i.e., the ability to pick up patterns in the sensory environment even without intention or consciousness of doing it, is thus assumed to play a central role in the acquisition of the rule-governed aspects of language and possibly to lie behind the language difficulties exhibited by children with development language disorder (DLD). The research conducted so far has, however, led to inconsistent results, which might stem from the behavioral tasks used to test SL. In a classic SL experiment, participants are first exposed to a continuous stream (e.g., syllables) in which, unbeknownst to the participants, stimuli are grouped into triplets that always appear together in the stream (e.g., ‘tokibu’, ‘tipolu’), with no pauses between each other (e.g., ‘tokibutipolugopilatokibu’) and without any information regarding the task or the stimuli. Following exposure, SL is assessed by asking participants to discriminate between triplets previously presented (‘tokibu’) from new sequences never presented together during exposure (‘kipopi’), i.e., to perform a two-alternative-forced-choice (2-AFC) task. Despite the widespread use of the 2-AFC to test SL, it has come under increasing criticism as it is an offline post-learning task that only assesses the result of the learning that had occurred during the previous exposure phase and that might be affected by other factors beyond the computation of regularities embedded in the input, typically the likelihood two syllables occurring together, a statistic known as transitional probability (TP). One solution to overcome these limitations is to assess SL as exposure to the stream unfolds using online techniques such as event-related potentials (ERP) that is highly sensitive to the time-course of the learning in the brain. Here we collected ERPs to examine the neurofunctional correlates of SL in preschool children with DLD, and chronological-age typical language development (TLD) controls who were exposed to an auditory stream in which eight three-syllable nonsense words, four of which presenting high-TPs and the other four low-TPs, to further analyze whether the ability of DLD and TLD children to extract-word-like units from the steam was modulated by words’ predictability. Moreover, to ascertain if the previous knowledge of the to-be-learned-regularities affected the neural responses to high- and low-TP words, children performed the auditory SL task, firstly, under implicit, and, subsequently, under explicit conditions. Although behavioral evidence of SL was not obtained in either group, the neural responses elicited during the exposure phases of the SL tasks differentiated children with DLD from children with TLD. Specifically, the results indicated that only children from the TDL group showed neural evidence of SL, particularly in the SL task performed under explicit conditions, firstly, for the low-TP, and, subsequently, for the high-TP ‘words’. Taken together, these findings support the view that children with DLD showed deficits in the extraction of the regularities embedded in the auditory input which might underlie the language difficulties.

Keywords: development language disorder, statistical learning, transitional probabilities, word segmentation

Procedia PDF Downloads 187
4352 Experimental Study and Neural Network Modeling in Prediction of Surface Roughness on Dry Turning Using Two Different Cutting Tool Nose Radii

Authors: Deba Kumar Sarma, Sanjib Kr. Rajbongshi

Abstract:

Surface finish is an important product quality in machining. At first, experiments were carried out to investigate the effect of the cutting tool nose radius (considering 1mm and 0.65mm) in prediction of surface finish with process parameters of cutting speed, feed and depth of cut. For all possible cutting conditions, full factorial design was considered as two levels four parameters. Commercial Mild Steel bar and High Speed Steel (HSS) material were considered as work-piece and cutting tool material respectively. In order to obtain functional relationship between process parameters and surface roughness, neural network was used which was found to be capable for the prediction of surface roughness within a reasonable degree of accuracy. It was observed that tool nose radius of 1mm provides better surface finish in comparison to 0.65 mm. Also, it was observed that feed rate has a significant influence on surface finish.

Keywords: full factorial design, neural network, nose radius, surface finish

Procedia PDF Downloads 365
4351 Application of Neural Network in Portfolio Product Companies: Integration of Boston Consulting Group Matrix and Ansoff Matrix

Authors: M. Khajezadeh, M. Saied Fallah Niasar, S. Ali Asli, D. Davani Davari, M. Godarzi, Y. Asgari

Abstract:

This study aims to explore the joint application of both Boston and Ansoff matrices in the operational development of the product. We conduct deep analysis, by utilizing the Artificial Neural Network, to predict the position of the product in the market while the company is interested in increasing its share. The data are gathered from two industries, called hygiene and detergent. In doing so, the effort is being made by investigating the behavior of top player companies and, recommend strategic orientations. In conclusion, this combination analysis is appropriate for operational development; as well, it plays an important role in providing the position of the product in the market for both hygiene and detergent industries. More importantly, it will elaborate on the company’s strategies to increase its market share related to a combination of the Boston Consulting Group (BCG) Matrix and Ansoff Matrix.

Keywords: artificial neural network, portfolio analysis, BCG matrix, Ansoff matrix

Procedia PDF Downloads 140
4350 Role of Endonuclease G in Exogenous DNA Stability in HeLa Cells

Authors: Vanja Misic, Mohamed El-Mogy, Yousef Haj-Ahmad

Abstract:

Endonuclease G (EndoG) is a well conserved mitochondrio-nuclear nuclease with dual lethal and vital roles in the cell. The aim of our study was to examine whether EndoG exerts its nuclease activity on exogenous DNA substrates such as plasmid DNA (pDNA), considering their importance in gene therapy applications. The effects of EndoG knockdown on pDNA stability and levels of encoded reporter gene expression were evaluated in the cervical carcinoma HeLa cells. Transfection of pDNA vectors encoding short-hairpin RNAs (shRNAs) reduced levels of EndoG mRNA and nuclease activity in HeLa cells. In physiological circumstances, EndoG knockdown did not have an effect on the stability of pDNA or the levels of encoded transgene expression as measured over a four day time-course. However, when endogenous expression of EndoG was induced by an extrinsic stimulus, targeting of EndoG by shRNA improved the perceived stability and transgene expression of pDNA vectors. Therefore, EndoG is not a mediator of exogenous DNA clearance, but in non-physiological circumstances it may non-specifically cleave intracellular DNA regardless of its origin. These findings make it unlikely that targeting of EndoG is a viable strategy for improving the duration and level of transgene expression from non-viral DNA vectors in gene therapy efforts.

Keywords: EndoG, silencing, exogenous DNA stability, HeLa cells

Procedia PDF Downloads 459
4349 An Integrated Approach to Find the Effect of Strain Rate on Ultimate Tensile Strength of Randomly Oriented Short Glass Fiber Composite in Combination with Artificial Neural Network

Authors: Sharad Shrivastava, Arun Jalan

Abstract:

In this study tensile testing was performed on randomly oriented short glass fiber/epoxy resin composite specimens which were prepared using hand lay-up method. Samples were tested over a wide range of strain rate/loading rate from 2mm/min to 40mm/min to see the effect on ultimate tensile strength of the composite. A multi layered 'back propagation artificial neural network of supervised learning type' was used to analyze and predict the tensile properties with strain rate and temperature as given input and output as UTS to predict. Various network structures were designed and investigated with varying parameters and network sizes, and an optimized network structure was proposed to predict the UTS of short glass fiber/epoxy resin composite specimens with reasonably good accuracy.

Keywords: glass fiber composite, mechanical properties, strain rate, artificial neural network

Procedia PDF Downloads 436
4348 Evaluation of NH3-Slip from Diesel Vehicles Equipped with Selective Catalytic Reduction Systems by Neural Networks Approach

Authors: Mona Lisa M. Oliveira, Nara A. Policarpo, Ana Luiza B. P. Barros, Carla A. Silva

Abstract:

Selective catalytic reduction systems for nitrogen oxides reduction by ammonia has been the chosen technology by most of diesel vehicle (i.e. bus and truck) manufacturers in Brazil, as also in Europe. Furthermore, at some conditions, over-stoichiometric ammonia availability is also needed that increases the NH3 slips even more. Ammonia (NH3) by this vehicle exhaust aftertreatment system provides a maximum efficiency of NOx removal if a significant amount of NH3 is stored on its catalyst surface. In the other words, the practice shows that slightly less than 100% of the NOx conversion is usually targeted, so that the aqueous urea solution hydrolyzes to NH3 via other species formation, under relatively low temperatures. This paper presents a model based on neural networks integrated with a road vehicle simulator that allows to estimate NH3-slip emission factors for different driving conditions and patterns. The proposed model generates high NH3slips which are not also limited in Brazil, but more efforts needed to be made to elucidate the contribution of vehicle-emitted NH3 to the urban atmosphere.

Keywords: ammonia slip, neural-network, vehicles emissions, SCR-NOx

Procedia PDF Downloads 212
4347 Impact of Integrated Signals for Doing Human Activity Recognition Using Deep Learning Models

Authors: Milagros Jaén-Vargas, Javier García Martínez, Karla Miriam Reyes Leiva, María Fernanda Trujillo-Guerrero, Francisco Fernandes, Sérgio Barroso Gonçalves, Miguel Tavares Silva, Daniel Simões Lopes, José Javier Serrano Olmedo

Abstract:

Human Activity Recognition (HAR) is having a growing impact in creating new applications and is responsible for emerging new technologies. Also, the use of wearable sensors is an important key to exploring the human body's behavior when performing activities. Hence, the use of these dispositive is less invasive and the person is more comfortable. In this study, a database that includes three activities is used. The activities were acquired from inertial measurement unit sensors (IMU) and motion capture systems (MOCAP). The main objective is differentiating the performance from four Deep Learning (DL) models: Deep Neural Network (DNN), Convolutional Neural Network (CNN), Recurrent Neural Network (RNN) and hybrid model Convolutional Neural Network-Long Short-Term Memory (CNN-LSTM), when considering acceleration, velocity and position and evaluate if integrating the IMU acceleration to obtain velocity and position represent an increment in performance when it works as input to the DL models. Moreover, compared with the same type of data provided by the MOCAP system. Despite the acceleration data is cleaned when integrating, results show a minimal increase in accuracy for the integrated signals.

Keywords: HAR, IMU, MOCAP, acceleration, velocity, position, feature maps

Procedia PDF Downloads 96
4346 RBF Neural Network Based Adaptive Robust Control for Bounded Position/Force Control of Bilateral Teleoperation Arms

Authors: Henni Mansour Abdelwaheb

Abstract:

This study discusses the design of a bounded position/force feedback controller developed to ensure position and force tracking for bilateral teleoperation arms operating with variable delay, and actuator saturation. Also, an adaptive robust Radial Basis Function (RBF) neural network is used to estimate the environment torque. The parameters of the environment torque are then sent from the slave site to the master site as a non-power signal to avoid passivity problems. Moreover, a nonlinear function is applied to each controller term as a smooth saturation function, providing a bounded control signal and preserving the system’s actuators. Lastly, the Lyapunov approach demonstrates the global stability of the controlled system, and numerical experiment results further confirm the validity of the presented strategy.

Keywords: teleoperation manipulators system, time-varying delay, actuator saturation, adaptive robust rbf neural network approximation, uncertainties

Procedia PDF Downloads 73
4345 Study the Effect of Lipoid Acid as a Protective Against Rheumatoid Arthritis Through Diminishing Pro-inflammatory Markers and Chemokine Expression

Authors: Khairy Mohamed Abdalla Zoheir

Abstract:

One of the most severe complications of Rheumatoid arthritis is delayed recovery. lipoic acid possesses antioxidant, hypoglycemic, and anti-inflammatory activity. In the present study, the effects of lipoic acid were investigated on the key mediators of Rheumatoid arthritis, namely, CD4+CD25+ T cell subsets, GITR expressing cells, CD4+CD25+Foxp3+ regulatory T (Treg) cells, T-helper-17 (Th17) cells and pro-inflammatory cytokines Interleukin-1β (IL-1β), Interleukin-6 (IL-6) and Tumor Necrosis Factor- α (TNF-α)] through flow-cytometry and qPCR analyses. Lipoic acid-treated mice showed a significant decrease in Rheumatoid arthritis, the frequency of GITR-expressing cells, and Th1 cytokines (IL-17A, TNF-αand Interferon- γ (IFN-γ) compared with positive and negative controlled mice. Lipoic acid treatment also downregulated the mRNA expression of the inflammatory mediators compared with the Rheumatoid arthritis mouse model and untreated mice. The number of Tregs was also found to be significantly upregulated in lipoic acid-treated mice. Our results were confirmed by the histopathological examination. This study showed the beneficial role of lipoic acid in promoting a well-balanced tool for the therapy of Rheumatoid arthritis.

Keywords: lipoic acid, inflammatory markers, rheumatoid arthritis, qPCR

Procedia PDF Downloads 98
4344 Thermal Barrier Coated Diesel Engine With Neural Networks Mathematical Modelling

Authors: Hanbey Hazar, Hakan Gul

Abstract:

In this study; piston, exhaust, and suction valves of a diesel engine were coated in 300 mm thickness with Tungsten Carbide (WC) by using the HVOF coating method. Mathematical modeling of a coated and uncoated (standardized) engine was performed by using ANN (Artificial Neural Networks). The purpose was to decrease the number of repetitions of tests and reduce the test cost through mathematical modeling of engines by using ANN. The results obtained from the tests were entered in ANN and therefore engines' values at all speeds were estimated. Results obtained from the tests were compared with those obtained from ANN and they were observed to be compatible. It was also observed that, with thermal barrier coating, hydrocarbon (HC), carbon monoxide (CO), and smoke density values of the diesel engine decreased; but nitrogen oxides (NOx) increased. Furthermore, it was determined that results obtained through mathematical modeling by means of ANN reduced the number of test repetitions. Therefore, it was understood that time, fuel and labor could be saved in this way.

Keywords: Artificial Neural Network, Diesel Engine, Mathematical Modelling, Thermal Barrier Coating

Procedia PDF Downloads 527
4343 Automatic Classification of Periodic Heart Sounds Using Convolutional Neural Network

Authors: Jia Xin Low, Keng Wah Choo

Abstract:

This paper presents an automatic normal and abnormal heart sound classification model developed based on deep learning algorithm. MITHSDB heart sounds datasets obtained from the 2016 PhysioNet/Computing in Cardiology Challenge database were used in this research with the assumption that the electrocardiograms (ECG) were recorded simultaneously with the heart sounds (phonocardiogram, PCG). The PCG time series are segmented per heart beat, and each sub-segment is converted to form a square intensity matrix, and classified using convolutional neural network (CNN) models. This approach removes the need to provide classification features for the supervised machine learning algorithm. Instead, the features are determined automatically through training, from the time series provided. The result proves that the prediction model is able to provide reasonable and comparable classification accuracy despite simple implementation. This approach can be used for real-time classification of heart sounds in Internet of Medical Things (IoMT), e.g. remote monitoring applications of PCG signal.

Keywords: convolutional neural network, discrete wavelet transform, deep learning, heart sound classification

Procedia PDF Downloads 346
4342 Comparing Double-Stranded RNA Uptake Mechanisms in Dipteran and Lepidopteran Cell Lines

Authors: Nazanin Amanat, Alison Tayler, Steve Whyard

Abstract:

While chemical insecticides effectively control many insect pests, they also harm many non-target species. Double-stranded RNA (dsRNA) pesticides, in contrast, can be designed to target unique gene sequences and thus act in a species-specific manner. DsRNA insecticides do not, however, work equally well for all insects, and for some species that are considered refractory to dsRNA, a primary factor affecting efficacy is the relative ease by which dsRNA can enter a target cell’s cytoplasm. In this study, we are examining how different structured dsRNAs (linear, hairpin, and paperclip) can enter mosquito and lepidopteran cells, as they represent dsRNA-sensitive and refractory species, respectively. To determine how the dsRNAs enter the cells, we are using chemical inhibitors and RNA interference (RNAi)-mediated knockdown of key proteins associated with different endocytosis processes. Understanding how different dsRNAs enter cells will ultimately help in the design of molecules that overcome refractoriness to RNAi or develop resistance to dsRNA-based insecticides. To date, we have conducted chemical inhibitor experiments on both cell lines and have evidence that linear dsRNAs enter the cells using clathrin-mediated endocytosis, while the paperclip dsRNAs (pcRNAs) can enter both species’ cells in a clathrin-independent manner to induce RNAi. An alternative uptake mechanism for the pcRNAs has been tentatively identified, and the outcomes of our RNAi-mediated knockdown experiments, which should provide corroborative evidence of our initial findings, will be discussed.

Keywords: dsRNA, RNAi, uptake, insecticides, dipteran, lepidopteran

Procedia PDF Downloads 72
4341 Scaling Siamese Neural Network for Cross-Domain Few Shot Learning in Medical Imaging

Authors: Jinan Fiaidhi, Sabah Mohammed

Abstract:

Cross-domain learning in the medical field is a research challenge as many conditions, like in oncology imaging, use different imaging modalities. Moreover, in most of the medical learning applications, the sample training size is relatively small. Although few-shot learning (FSL) through the use of a Siamese neural network was able to be trained on a small sample with remarkable accuracy, FSL fails to be effective for use in multiple domains as their convolution weights are set for task-specific applications. In this paper, we are addressing this problem by enabling FSL to possess the ability to shift across domains by designing a two-layer FSL network that can learn individually from each domain and produce a shared features map with extra modulation to be used at the second layer that can recognize important targets from mix domains. Our initial experimentations based on mixed medical datasets like the Medical-MNIST reveal promising results. We aim to continue this research to perform full-scale analytics for testing our cross-domain FSL learning.

Keywords: Siamese neural network, few-shot learning, meta-learning, metric-based learning, thick data transformation and analytics

Procedia PDF Downloads 55
4340 Comparative Analysis of Sigmoidal Feedforward Artificial Neural Networks and Radial Basis Function Networks Approach for Localization in Wireless Sensor Networks

Authors: Ashish Payal, C. S. Rai, B. V. R. Reddy

Abstract:

With the increasing use and application of Wireless Sensor Networks (WSN), need has arisen to explore them in more effective and efficient manner. An important area which can bring efficiency to WSNs is the localization process, which refers to the estimation of the position of wireless sensor nodes in an ad hoc network setting, in reference to a coordinate system that may be internal or external to the network. In this paper, we have done comparison and analysed Sigmoidal Feedforward Artificial Neural Networks (SFFANNs) and Radial Basis Function (RBF) networks for developing localization framework in WSNs. The presented work utilizes the Received Signal Strength Indicator (RSSI), measured by static node on 100 x 100 m2 grid from three anchor nodes. The comprehensive evaluation of these approaches is done using MATLAB software. The simulation results effectively demonstrate that FFANNs based sensor motes will show better localization accuracy as compared to RBF.

Keywords: localization, wireless sensor networks, artificial neural network, radial basis function, multi-layer perceptron, backpropagation, RSSI, GPS

Procedia PDF Downloads 337
4339 Safety Assessment and Prophylactic Efficacy of Moringa stenopetala Leaf Extract Through Mitigation of Oxidative Stress in BV-2 Microglial Cell

Authors: Stephen Adeniyi Adefegha, Vitor Mostardeiro, Vera Maria Morsch, Ademir F. Morel, Ivana Beatrice Manica Da Cruz, Sabrina Somacal Maria Rosa Chitolina Schetinger

Abstract:

Moringa stenopetala is often consumed as food and used in folkloric medicine for the management of several diseases. Purpose: This study was set up in order to assess the effect of aqueous extract of Moringa stenopetala on cell viability and oxidative stress biomarkers in BV-2 microglial cells. Aqueous extracts of M. stenopetala were prepared, lyophilized and reconstituted in 0.5% dimethylsulphoxide (DMSO). Cells were treated with M. stenopetala extracts (0.1 - 100 µg/ml) for cell viability and nitric oxide (NO) production tests. However, M. stenopetala extract (50 µg/ml) was used in the treatment of cells for the determination of protein carbonyl content and reactive oxygen species (ROS) level. Incubation of BV-2 microglia cell with M. stenopetala extract maintained cell viability, diminished NO and ROS levels, and reduced protein carbonyl contents Chlorogenic acid, rutin, kaempferol and quercetin derivatives were the main phenolic compounds identified in M. stenopetala leaf extract. These phenolic compounds present in M. stenopetala may be responsible for the mitigation of oxidative stress in BV-2 microglial cells.

Keywords: oxidative stress, BV-2 microglial cell, Moringa stenopetala, cell viability, antioxidant

Procedia PDF Downloads 109
4338 Mechanism of Modeling the Level of Bcr-Abl Oncoprotein by Ubiquitin-Proteasome System in Chronic Myeloid Leukemia

Authors: Svitlana Antonenko, Gennady Telegeev

Abstract:

Introductive statement: The development of chronic myeloid leukemia (CML) is caused by Bcr-Abl oncoprotein. Modern treatments with tyrosine kinase inhibitors are greatly complicated by the mutational variability of the Bcr-Abl oncoprotein, which causes drug resistance. Therefore, there is an urgent need to develop new approaches to the treatment of the disease, which will allow modeling the level of Bcr-Abl oncoprotein in the cell. Promising in this direction is the identification of proteases that can selectively promote cellular proteolysis of oncoproteins. The aim of the study was to study the effect of the interaction of Bcr-Abl with deubiquitinase USP1 on the level of oncoprotein in CML cells. Methodology: K562 cells were selected for the experiment. Сells were incubated with ML323 inhibitor for 24 hours. Precipitation of endogenous proteins from K562 cell lysate was performed using anti-Bcr-Abl antibodies. Cell lysates and precipitation results were studied by Western blot. Subcellular localization of proteins was studied by immunofluorescence analysis followed by confocal microscopy. The results were analyzed quantitatively and statistically. Major findings: The Bcr-Abl/USP1 protein complex was detected in CML cells, and it was found that inhibition of USP1 deubiquitinating activity by the compound ML323 leads to disruption of this protein complex and a decrease in the level of Bcr-Abl oncoprotein in cells. The interaction of Bcr-Abl with USP1 may result in deubiquitination of the oncoprotein, which disrupts its proteasomal degradation and leads to the accumulation of CML in cells. Conclusion: We believe that the interaction of oncoprotein with USP1 may be one of the prerequisites that contribute to malignant cell transformation due to the deubiquitination of oncoprotein, which leads to its accumulation and disease progression. A correlation was found between the deubiquitinating activity of USP1 and the level of oncoprotein in CML cells. Thus, we identify deubiquitinase USP1 as a promising therapeutic target for the development of a new strategy for the treatment of CML by modulating the level of Bcr-Abl in the cell.

Keywords: chronic myeloid leukemia, Bcr-Abl, USP1, deubiquitination Bcr-Abl, K562 cell

Procedia PDF Downloads 68