Search results for: device designs
1812 The Behavior of Self-Compacting Light Weight Concrete Produced by Magnetic Water
Authors: Moosa Mazloom, Hojjat Hatami
Abstract:
The aim of this article is to access the optimal mix design of self-compacting light weight concrete. The effects of magnetic water, superplasticizer based on polycarboxylic-ether, and silica fume on characteristics of this type of concrete are studied. The workability of fresh concrete and the compressive strength of hardened concrete are considered here. For this purpose, nine mix designs were studied. The percentages of superplasticizer were 0.5, 1, and 2% of the weight of cement, and the percentages of silica fume were 0, 6, and 10% of the weight of cement. The water to cementitious ratios were 0.28, 0.32, and 0.36. The workability of concrete samples was analyzed by the devices such as slump flow, V-funnel, L box, U box, and Urimet with J ring. Then, the compressive strengths of the mixes at the ages of 3, 7, 28, and 90 days were obtained. The results show that by using magnetic water, the compressive strengths are improved at all the ages. In the concrete samples with ordinary water, more superplasticizer dosages were needed. Moreover, the combination of superplasticizer and magnetic water had positive effects on the mixes containing silica fume and they could flow easily.Keywords: magnetic water, self-compacting light weight concrete, silica fume, superplasticizer
Procedia PDF Downloads 3681811 Modeling and Simulation of a Hybrid System Solar Panel and Wind Turbine in the Quingeo Heritage Center in Ecuador
Authors: Juan Portoviejo Brito, Daniel Icaza Alvarez, Christian Castro Samaniego
Abstract:
In this article, we present the modeling, simulations, and energy conversion analysis of the solar-wind system for the Quingeo Heritage Center in Ecuador. A numerical model was constructed based on the 19 equations, it was coded in MATLAB R2017a, and the results were compared with the experimental data of the site. The model is built with the purpose of using it as a computer development for the optimization of resources and designs of hybrid systems in the Parish of Quingeo and its surroundings. The model obtained a fairly similar pattern compared to the data and curves obtained in the field experimentally and detailed in manuscript. It is important to indicate that this analysis has been carried out so that in the near future one or two of these power generation systems can be exploited in a massive way according to the budget assigned by the Parish GAD of Quingeo or other national or international organizations with the purpose of preserving this unique colonial helmet in Ecuador.Keywords: hybrid system, wind turbine, modeling, simulation, Smart Grid, Quingeo Azuay Ecuador
Procedia PDF Downloads 2691810 A Study of Shigeru Ban's Environmentally-Sensitive Design Approach
Authors: Duygu Merve Bulut, Fehime Yesim Gurani
Abstract:
The Japanese architect Shigeru Ban has succeeded in bringing a different understanding to the modern architectural design approach with both the material selection and the techniques he used while combining the material with the design. Ban, who reflects his respect to people and nature with his designs, has encouraged that design should be done with economic materials, easily accessible and understandable for everyone. Because of this, Ban has attracted attention and appreciated in the architectural world with his environmentally-sensitive design ideology and humanitarian projects. In order to understand Ban’s environmentally-sensitive design approach, with this article, Ban’s projects which have used natural materials; the projects of Ban’s Japenese Pavilion in Germany, Papertainer Museum in South Korea, Centre Pompidou-Metz in France and Cardboard Cathedral in New Zealand were examined and analyzed. In the following parts, 'paper tube' technology that creates awareness in architectural area, which developed and applied by Ban; has been examined in terms of building material and structure of sustainable space design. As a result of this review, Ban’s approach is evaluated in terms of its contribution to the understanding of sustainable design.Keywords: ecological design, environmentally-sensitive design, paper tube, Shigeru Ban, sustainability
Procedia PDF Downloads 4991809 An Essay on Origamic and Isomorphic Approach as Interface of Form in Architectural Basic Design Education
Authors: Gamze Atay, Altay Colak
Abstract:
It is a fact that today's technology shapes the change and development of architectural forms by creating different perspectives. The research is an experimental study that explores the integration of architectural forms in this process of change/development into design education through traditional design tools. An examination of the practices in the studio environment shows that the students who just started architectural education have difficulty accessing the form. The main objective of this study has been to enable students to use and interpret different disciplines in the design process to improve their perception of form. In this sense, the origami, which is defined as "the art of paper folding", and isomorphous (equally formed) approaches have been used with design studio students at the beginning stage as methods in the process of 3-dimensional thinking and creating the form. These two methods were examined with students in three stages: analysis, creation, and outcome. As a result of the study, it was seen that the use of different disciplines as a method during form creation gave the designs of the student originality, freedom, and dynamism.Keywords: architectural form, design education, isomorphic approach, origamic approach
Procedia PDF Downloads 1521808 The Techno-Pedagogical Pivot: Designing and Implementing a Digital Writing Tool
Authors: Justin D. Olmanson, Katrina S. Kennett, Bill Cope
Abstract:
In the field of education technology, innovation is often tightly coupled to recent technological inventions and emerging technologies. Despite this, some scholars have argued that using established technologies in new pedagogical or curricular ways recasts them and places them once more under the umbrella of emerging education technologies. In this study, we trace how an innovative education technology design emerged, not from a technological breakthrough, but rather via a techno-pedagogical pivot. We describe the design and impact of a digital writing tool created to scaffold student self-evaluation of academic texts. We theorize about and trace how innovation can also emerge from a pivot, namely how leveraging existing practices in new ways can create pedagogically and experientially innovative learning opportunities. After describing the design of Info Writer, we unpack the results of a study based on an implementation the tool, and then theorize and reflect on the way the design process and study findings suggest that pivoting an existing practice can lead to innovative education technology designs.Keywords: design, education, revision, technology, writing
Procedia PDF Downloads 4601807 Performance Evaluation of a Millimeter-Wave Phased Array Antenna Using Circularly Polarized Elements
Authors: Rawad Asfour, Salam Khamas, Edward A. Ball
Abstract:
This paper is focused on the design of an mm-wave phased array. To date, linear polarization is adapted in the reported designs of phased arrays. However, linear polarization faces several well-known challenges. As such, an advanced design for phased array antennas is required that offers circularly polarized (CP) radiation. A feasible solution for achieving CP phased array antennas is proposed using open-circular loop antennas. To this end, a 3-element circular loop phased array antenna is designed to operate at 28GHz. In addition, the array ability to control the direction of the main lobe is investigated. The results show that the highest achievable field of view (FOV) is 100°, i.e., 50° to the left and 50° to the right-hand side directions. The results are achieved with a CP bandwidth of 15%. Furthermore, the results demonstrate that a high broadside gain of circa 11 dBi can be achieved for the steered beam. Besides, a radiation efficiency of 97 % can also be achieved based on the proposed design.Keywords: loop antenna, phased array, beam steering, wide bandwidth, circular polarization, CST
Procedia PDF Downloads 3021806 Simplifying the Migration of Architectures in Embedded Applications Introducing a Pattern Language to Support the Workforce
Authors: Farha Lakhani, Michael J. Pont
Abstract:
There are two main architectures used to develop software for modern embedded systems: these can be labelled as “event-triggered” (ET) and “time-triggered” (TT). The research presented in this paper is concerned with the issues involved in migration between these two architectures. Although TT architectures are widely used in safety-critical applications they are less familiar to developers of mainstream embedded systems. The research presented in this paper began from the premise that–for a broad class of systems that have been implemented using an ET architecture–migration to a TT architecture would improve reliability. It may be tempting to assume that conversion between ET and TT designs will simply involve converting all event-handling software routines into periodic activities. However, the required changes to the software architecture are, in many cases rather more profound. The main contribution of the work presented in this paper is to identify ways in which the significant effort involved in migrating between existing ET architectures and “equivalent” (and effective) TT architectures could be reduced. The research described in this paper has taken an innovative step in this regard by introducing the use of ‘Design patterns’ for this purpose for the first time.Keywords: embedded applications, software architectures, reliability, pattern
Procedia PDF Downloads 3291805 Thermodynamic Behaviour of Binary Mixtures of 1, 2-Dichloroethane with Some Cyclic Ethers: Experimental Results and Modelling
Authors: Fouzia Amireche-Ziar, Ilham Mokbel, Jacques Jose
Abstract:
The vapour pressures of the three binary mixtures: 1, 2- dichloroethane + 1,3-dioxolane, + 1,4-dioxane or + tetrahydropyrane, are carried out at ten temperatures ranging from 273 to 353.15 K. An accurate static device was employed for these measurements. The VLE data were reduced using the Redlich-Kister equation by taking into consideration the vapour pressure non-ideality in terms of the second molar virial coefficient. The experimental data were compared to the results predicted with the DISQUAC and Dortmund UNIFAC group contribution models for the total pressures P and the excess molar Gibbs energies GE.Keywords: disquac model, dortmund UNIFAC model, excess molar Gibbs energies GE, VLE
Procedia PDF Downloads 2581804 Simulation of Photocatalytic Degradation of Rhodamine B in Annular Photocatalytic Reactor
Authors: Jatinder Kumar, Ajay Bansal
Abstract:
Simulation of a photocatalytic reactor helps in understanding the complex behavior of the photocatalytic degradation. Simulation also aids the designing and optimization of the photocatalytic reactor. Lack of simulation strategies is a huge hindrance in the commercialization of the photocatalytic technology. With the increased performance of computational resources, and development of simulation software, computational fluid dynamics (CFD) is becoming an affordable engineering tool to simulate and optimize reactor designs. In the present paper, a CFD (Computational fluid dynamics) model for simulating the performance of an immobilized-titanium dioxide based annular photocatalytic reactor was developed. The computational model integrates hydrodynamics, species mass transport, and chemical reaction kinetics using a commercial CFD code Fluent 6.3.26. The CFD model was based on the intrinsic kinetic parameters determined experimentally in a perfectly mixed batch reactor. Rhodamine B, a complex organic compound, was selected as a test pollutant for photocatalytic degradation. It was observed that CFD could become a valuable tool to understand and improve the photocatalytic systems.Keywords: simulation, computational fluid dynamics (CFD), annular photocatalytic reactor, titanium dioxide
Procedia PDF Downloads 5851803 A Measurement Device of Condensing Flow Rate, an Order of MilliGrams per Second
Authors: Hee Joon Lee
Abstract:
There are many difficulties in measuring a small flow rate of an order of milli grams per minute (LPM) or less using a conventional flowmeter. Therefore, a flow meter with minimal loss and based on a new concept was designed as part of this paper. A chamber was manufactured with a level transmitter and an on-off control valve. When the level of the collected condensed water reaches the top of the chamber, the valve opens to allow the collected water to drain back into the tank. To allow the water to continue to drain when the signal is lost, the valve is held open for a few seconds by a time delay switch and then closed. After an examination, the condensing flow rate was successfully measured with the uncertainty of ±5.7% of the full scale for the chamber.Keywords: chamber, condensation, flow meter, milli-grams
Procedia PDF Downloads 2811802 The Effect of Bearing Surface Finish on the Engine's Lubrication System Performance
Authors: Kudakwashe Diana Nyamugure
Abstract:
Engine design has evolved to suit new industry standards of smaller compact designs that operate at high temperatures and even higher stress loads. Research has proven that the interaction of the bearing surface and the lubrication film is affected by the bearing's surface texture, geometry, and dimensional tolerances. The challenge now for the automotive manufacturing industry is to understand which processes can be applied on bearing surfaces to reduce the 65% energy loss in engines, 15% of which is caused by friction. This paper will discuss a post grinding process known as microfinishing which optimises the characteristics of a manufactured surface such as roughness, profile, and waviness. Microfinishing is becoming an increasing trend within the automotive industry and has so far been applied on high performance and mass production crank or cam bearing surfaces in bid of friction reduction and extended engine service life. In the near future, microfinishing will be applied to more engine components because of the stringent environmental regulations demands on fuel consumption, reliability, power, and service life of engine components.Keywords: bearings, tribology, friction reduction, energy efficiency
Procedia PDF Downloads 4791801 Performance Analysis on the Smoke Management System of the Weiwuying Center for the Arts Using Hot Smoke Tests
Authors: K. H. Yang, T. C. Yeh, P. S. Lu, F. C. Yang, T. Y. Wu, W. J. Sung
Abstract:
In this study, a series of full-scale hot smoke tests has been conducted to validate the performances of the smoke management system in the WWY center for arts before grand opening. Totaled 19 scenarios has been established and experimented with fire sizes ranging from 2 MW to 10 MW. The measured ASET data provided by the smoke management system experimentation were compared with the computer-simulated RSET values for egress during the design phase. The experimental result indicated that this system could successfully provide a safety margin of 200% and ensure a safe evacuation in case of fire in the WWY project, including worst-cases and fail-safe scenarios. The methodology developed and results obtained in this project can provide a useful reference for future applications, such as for the large-scale indoor sports dome and arena, stadium, shopping malls, airport terminals, and stations or tunnels for railway and subway systems.Keywords: building hot smoke tests, performance-based smoke management system designs, full-scale experimental validation, tenable condition criteria
Procedia PDF Downloads 4451800 Human’s Sensitive Reactions during Different Geomagnetic Activity: An Experimental Study in Natural and Simulated Conditions
Authors: Ketevan Janashia, Tamar Tsibadze, Levan Tvildiani, Nikoloz Invia, Elguja Kubaneishvili, Vasili Kukhianidze, George Ramishvili
Abstract:
This study considers the possible effects of geomagnetic activity (GMA) on humans situated on Earth by performing experiments concerning specific sensitive reactions in humans in both: natural conditions during different GMA and by the simulation of different GMA in the lab. The measurements of autonomic nervous system (ANS) responses to different GMA via measuring the heart rate variability (HRV) indices and stress index (SI) and their comparison with the K-index of GMA have been presented and discussed. The results of experiments indicate an intensification of the sympathetic part of the ANS as a stress reaction of the human organism when it is exposed to high level of GMA as natural as well as in simulated conditions. Aim: We tested the hypothesis whether the GMF when disturbed can have effects on human ANS causing specific sensitive stress-reactions depending on the initial type of ANS. Methods: The study focuses on the effects of different GMA on ANS by comparing of HRV indices and stress index (SI) of n= 78, 18-24 years old healthy male volunteers. Experiments were performed as natural conditions on days of low (K= 1-3) and high (K= 5-7) GMA as well as in the lab by the simulation of different GMA using the device of geomagnetic storm (GMS) compensation and simulation. Results: In comparison with days of low GMA (K=1-3) the initial values of HRV shifted towards the intensification of the sympathetic part (SP) of the ANS during days of GMSs (K=5-7) with statistical significance p-values: HR (heart rate, p= 0.001), SDNN (Standard deviation of all Normal to Normal intervals, p= 0.0001), RMSSD (The square root of the arithmetical mean of the sum of the squares of differences between adjacent NN intervals, p= 0.0001). In comparison with conditions during GMSs compensation mode (K= 0, B= 0-5nT), the ANS balance was observed to shift during exposure to simulated GMSs with intensities in the range of natural GMSs (K= 7, B= 200nT). However, the initial values of the ANS resulted in different dynamics in its variation depending of GMA level. In the case of initial balanced regulation type (HR > 80) significant intensification of SP was observed with p-values: HR (p= 0.0001), SDNN (p= 0.047), RMSSD (p= 0.28), LF/HF (p=0.03), SI (p= 0.02); while in the case of initial parasympathetic regulation type (HR < 80), an insignificant shift to the intensification of the parasympathetic part (PP) was observed. Conclusions: The results indicate an intensification of SP as a stress reaction of the human organism when it is exposed to high level of GMA in both natural and simulated conditions.Keywords: autonomic nervous system, device of magneto compensation/simulation, geomagnetic storms, heart rate variability
Procedia PDF Downloads 1411799 Channel Length Modulation Effect on Monolayer Graphene Nanoribbon Field Effect Transistor
Authors: Mehdi Saeidmanesh, Razali Ismail
Abstract:
Recently, Graphene Nanoribbon Field Effect Transistors (GNR FETs) attract a great deal of attention due to their better performance in comparison with conventional devices. In this paper, channel length Modulation (CLM) effect on the electrical characteristics of GNR FETs is analytically studied and modeled. To this end, the special distribution of the electric potential along the channel and current-voltage characteristic of the device is modeled. The obtained results of analytical model are compared to the experimental data of published works. As a result, it is observable that considering the effect of CLM, the current-voltage response of GNR FET is more realistic.Keywords: graphene nanoribbon, field effect transistors, short channel effects, channel length modulation
Procedia PDF Downloads 4031798 Melnikov Analysis for the Chaos of the Nonlocal Nanobeam Resting on Fractional-Order Softening Nonlinear Viscoelastic Foundations
Authors: Guy Joseph Eyebe, Gambo Betchewe, Alidou Mohamadou, Timoleon Crepin Kofane
Abstract:
In the present study, the dynamics of nanobeam resting on fractional order softening nonlinear viscoelastic pasternack foundations is studied. The Hamilton principle is used to derive the nonlinear equation of the motion. Approximate analytical solution is obtained by applying the standard averaging method. The Melnikov method is used to investigate the chaotic behaviors of device, the critical curve separating the chaotic and non-chaotic regions are found. It is shown that appearance of chaos in the system depends strongly on the fractional order parameter.Keywords: chaos, fractional-order, Melnikov method, nanobeam
Procedia PDF Downloads 1591797 Novel CFRP Adhesive Joints and Structures for Offshore Application
Authors: M. R. Abusrea, Shiyi Jiang, Dingding Chen, Kazuo Arakawa
Abstract:
Novel wind-lens turbine designs can augment power output. Vacuum-Assisted Resin Transfer Molding (VARTM) is used to form large and complex structures from a Carbon Fiber Reinforced Polymer (CFRP) composite. Typically, wind-lens turbine structures are fabricated in segments, and then bonded to form the final structure. This paper introduces five new adhesive joints, divided into two groups: One is constructed between dry carbon and CFRP fabrics, and the other is constructed with two dry carbon fibers. All joints and CFRP fabrics were made in our laboratory using VARTM manufacturing techniques. Specimens were prepared for tensile testing to measure joint performance. The results showed that the second group of joints achieved a higher tensile strength than the first group. On the other hand, the tensile fracture behavior of the two groups showed the same pattern of crack originating near the joint ends followed by crack propagation until fracture.Keywords: adhesive joints, CFRP, VARTM, resin transfer molding
Procedia PDF Downloads 4361796 Development of Portable Hybrid Renewable Energy System for Sustainable Electricity Supply to Rural Communities in Nigeria
Authors: Abdulkarim Nasir, Alhassan T. Yahaya, Hauwa T. Abdulkarim, Abdussalam El-Suleiman, Yakubu K. Abubakar
Abstract:
The need for sustainable and reliable electricity supply in rural communities of Nigeria remains a pressing issue, given the country's vast energy deficit and the significant number of inhabitants lacking access to electricity. This research focuses on the development of a portable hybrid renewable energy system designed to provide a sustainable and efficient electricity supply to these underserved regions. The proposed system integrates multiple renewable energy sources, specifically solar and wind, to harness the abundant natural resources available in Nigeria. The design and development process involves the selection and optimization of components such as photovoltaic panels, wind turbines, energy storage units (batteries), and power management systems. These components are chosen based on their suitability for rural environments, cost-effectiveness, and ease of maintenance. The hybrid system is designed to be portable, allowing for easy transportation and deployment in remote locations with limited infrastructure. Key to the system's effectiveness is its hybrid nature, which ensures continuous power supply by compensating for the intermittent nature of individual renewable sources. Solar energy is harnessed during the day, while wind energy is captured whenever wind conditions are favourable, thus ensuring a more stable and reliable energy output. Energy storage units are critical in this setup, storing excess energy generated during peak production times and supplying power during periods of low renewable generation. These studies include assessing the solar irradiance, wind speed patterns, and energy consumption needs of rural communities. The simulation results inform the optimization of the system's design to maximize energy efficiency and reliability. This paper presents the development and evaluation of a 4 kW standalone hybrid system combining wind and solar power. The portable device measures approximately 8 feet 5 inches in width, 8 inches 4 inches in depth, and around 38 feet in height. It includes four solar panels with a capacity of 120 watts each, a 1.5 kW wind turbine, a solar charge controller, remote power storage, batteries, and battery control mechanisms. Designed to operate independently of the grid, this hybrid device offers versatility for use in highways and various other applications. It also presents a summary and characterization of the device, along with photovoltaic data collected in Nigeria during the month of April. The construction plan for the hybrid energy tower is outlined, which involves combining a vertical-axis wind turbine with solar panels to harness both wind and solar energy. Positioned between the roadway divider and automobiles, the tower takes advantage of the air velocity generated by passing vehicles. The solar panels are strategically mounted to deflect air toward the turbine while generating energy. Generators and gear systems attached to the turbine shaft enable power generation, offering a portable solution to energy challenges in Nigerian communities. The study also addresses the economic feasibility of the system, considering the initial investment costs, maintenance, and potential savings from reduced fossil fuel use. A comparative analysis with traditional energy supply methods highlights the long-term benefits and sustainability of the hybrid system.Keywords: renewable energy, solar panel, wind turbine, hybrid system, generator
Procedia PDF Downloads 411795 The Complexity of Testing Cryptographic Devices on Input Faults
Authors: Alisher Ikramov, Gayrat Juraev
Abstract:
The production of logic devices faces the occurrence of faults during manufacturing. This work analyses the complexity of testing a special type of logic device on inverse, adhesion, and constant input faults. The focus of this work is on devices that implement cryptographic functions. The complexity values for the general case faults and for some frequently occurring subsets were determined and proved in this work. For a special case, when the length of the text block is equal to the length of the key block, the complexity of testing is proven to be asymptotically half the complexity of testing all logic devices on the same types of input faults.Keywords: complexity, cryptographic devices, input faults, testing
Procedia PDF Downloads 2251794 The Influence of Fiber Fillers on the Bonding Safety of Wood-Adhesive Interfaces: A Fracture Energetic Approach
Authors: M. H. Brandtner-Hafner
Abstract:
Adhesives have established themselves as an innovative joining technology in the wood industry. The strengths of adhesive bonding lie in the realization of lightweight designs, the avoidance of material weakening, and the joining of different types of materials. There is now a number of ways to positively influence the properties of bonded joints. One way is to add fiber fillers. This leads to an improvement in adhesion, structural integrity, and fracture toughness. In this study, the effectiveness of fiber-modified adhesives for bonding wooden joints is reviewed. A series of experimental tests were performed using the fracture analytical GF-principle to study the adhesive bonding safety and performance of the wood-adhesive interface. Two different construction adhesives based on epoxy and PUR were modified with different fiber materials and applied to bond wooden joints. The results show that bonding efficiency by adding fibrous materials to the bonding matrix leads to significant improvements in structural material properties.Keywords: fiber-modified adhesives, bonding safety, wood-adhesive interfaces, fracture analysis
Procedia PDF Downloads 971793 Transformers in Gene Expression-Based Classification
Authors: Babak Forouraghi
Abstract:
A genetic circuit is a collection of interacting genes and proteins that enable individual cells to implement and perform vital biological functions such as cell division, growth, death, and signaling. In cell engineering, synthetic gene circuits are engineered networks of genes specifically designed to implement functionalities that are not evolved by nature. These engineered networks enable scientists to tackle complex problems such as engineering cells to produce therapeutics within the patient's body, altering T cells to target cancer-related antigens for treatment, improving antibody production using engineered cells, tissue engineering, and production of genetically modified plants and livestock. Construction of computational models to realize genetic circuits is an especially challenging task since it requires the discovery of flow of genetic information in complex biological systems. Building synthetic biological models is also a time-consuming process with relatively low prediction accuracy for highly complex genetic circuits. The primary goal of this study was to investigate the utility of a pre-trained bidirectional encoder transformer that can accurately predict gene expressions in genetic circuit designs. The main reason behind using transformers is their innate ability (attention mechanism) to take account of the semantic context present in long DNA chains that are heavily dependent on spatial representation of their constituent genes. Previous approaches to gene circuit design, such as CNN and RNN architectures, are unable to capture semantic dependencies in long contexts as required in most real-world applications of synthetic biology. For instance, RNN models (LSTM, GRU), although able to learn long-term dependencies, greatly suffer from vanishing gradient and low-efficiency problem when they sequentially process past states and compresses contextual information into a bottleneck with long input sequences. In other words, these architectures are not equipped with the necessary attention mechanisms to follow a long chain of genes with thousands of tokens. To address the above-mentioned limitations of previous approaches, a transformer model was built in this work as a variation to the existing DNA Bidirectional Encoder Representations from Transformers (DNABERT) model. It is shown that the proposed transformer is capable of capturing contextual information from long input sequences with attention mechanism. In a previous work on genetic circuit design, the traditional approaches to classification and regression, such as Random Forrest, Support Vector Machine, and Artificial Neural Networks, were able to achieve reasonably high R2 accuracy levels of 0.95 to 0.97. However, the transformer model utilized in this work with its attention-based mechanism, was able to achieve a perfect accuracy level of 100%. Further, it is demonstrated that the efficiency of the transformer-based gene expression classifier is not dependent on presence of large amounts of training examples, which may be difficult to compile in many real-world gene circuit designs.Keywords: transformers, generative ai, gene expression design, classification
Procedia PDF Downloads 591792 An Elegant Technique to Achieve ZCS in a Boost Converter Incorporating Complete Energy Transfer
Authors: Nagesh Vangala, Rayudu Mannam
Abstract:
Soft switching has attracted the interest of various researchers constantly. Many techniques are in vogue to achieve soft switching (ZVS and/or ZCS) in Boost converters. These techniques utilize an auxiliary switch to incorporate the ZCS/ZVS. Such schemes require additional control circuit and induce complexity in design. This paper proposes an elegant fly back approach which guarantees zero current switching of the main Switch without the need for any additional active device. A simple flyback transformer scheme is implemented which absorbs the initial turn ON energy (or the Reverse recovery energy of Boost diode) and delivers to the output.Keywords: boost converter, complete energy transfer, flyback, zero current switching
Procedia PDF Downloads 3971791 Narratives of the Body: Significance and Meanings of Tattoos of Selected Filipino LGBTs
Authors: Generoso Pamittan Jr., Freddielyn Pontemayor
Abstract:
Through the years, the purpose of tattoos in the Philippines, has changed from being tribal and traditional-ritualistic to personal and individualistic. Hence it is interesting to know the stories and meanings behind tattoos of particular individuals. Using the frames of Anabela Pereira’s concept of ‘body art’ as ‘visual language’, this paper scrutinizes the tattoos of selected Filipino LGBTs to (1) unfold the stories behind their body symbols, (2) describe the meanings and significance of their tattoos, and (3) determine the dominant themes that are common among the tattoos of the selected LGBTs. Semi-structured interviews were conducted with selected respondents to obtain in-depth information about the tattoos. Photos of tattoos were also taken, with respondents’ consent, to describe and analyze the details of tattoos’ patterns/ designs. Based on the interviews and analysis, most of the immediate relatives of the selected LGBTs were initially against the idea of having tattoos because of social stigma. However, the LGBT respondents considered their tattoos as symbols of their penchant for something (arts, cooking, etc.), expression of their personality and life’s aspirations, assertion of their identity amidst heteronormative tendencies and symbols that constantly remind them of the significant people and milestones in their lives.Keywords: body art, body tattoo, gender, identity, LGBT, tattoo
Procedia PDF Downloads 1891790 Low Power Consuming Electromagnetic Actuators for Pulsed Pilot Stages
Authors: M. Honarpardaz, Z. Zhang, J. Derkx, A. Trangärd, J. Larsson
Abstract:
Pilot stages are one of the most common positioners and regulators in industry. In this paper, we present two novel concepts for pilot stages with low power consumption to regulate a pneumatic device. Pilot 1, first concept, is designed based on a conventional frame core electro-magnetic actuator and a leaf spring to control the air flow and pilot 2 has an axisymmetric actuator and spring made of non-oriented electrical steel. Concepts are simulated in a system modeling tool to study their dynamic behavior. Both concepts are prototyped and tested. Experimental results are comprehensively analyzed and compared. The most promising concept that consumes less than 8 mW is highlighted and presented.Keywords: electro-magnetic actuator, multidisciplinary system, low power consumption, pilot stage
Procedia PDF Downloads 2581789 Oxygen Transfer in Viscous Non-Newtonian Liquid in a Hybrid Bioreactor
Authors: Sérgio S. de Jesus, Aline Santana, Rubens Maciel Filho
Abstract:
Global oxygen transfer coefficient (kLa) was characterized in a mechanically agitated airlift bio reactor. The experiments were carried out in an airlift bio reactor (3.2 L) with internal re circulation (a concentric draft-tube airlift vessel device); the agitation is carried out through a turbine Rushton impeller located along with the gas sparger in the region comprised in the riser. The experiments were conducted using xanthan gum (0.6%) at 250 C and a constant rotation velocity of 0 and 800 rpm, as well as in the absence of agitation (airlift mode); the superficial gas velocity varied from 0.0157 to 0.0262 ms-1. The volumetric oxygen transfer coefficient dependence of the rotational speed revealed that the presence of agitation increased up to two times the kLa value.Keywords: aeration, mass transfer, non-Newtonian fluids, stirred airlift bioreactor
Procedia PDF Downloads 4601788 Enhancement of Visual Comfort Using Parametric Double Skin Façade
Authors: Ahmed A. Khamis, Sherif A. Ibrahim, Mahmoud El Khatieb, Mohamed A. Barakat
Abstract:
Parametric design is an icon of the modern architectural that facilitate taking complex design decisions counting on altering various design parameters. Double skin facades are one of the parametric applications for using parametric designs. This paper opts to enhance different daylight parameters of a selected case study office building in Cairo using parametric double skin facade. First, the design and optimization process executed utilizing Grasshopper parametric design software which is a plugin in rhino. The daylighting performance of the base case building model was compared with the one used the double façade showing an enhancement in daylighting performance indicators like glare and task illuminance in the modified model, execution drawings are made for the optimized design to be executed through Revit, followed by computerized digital fabrication stages of the designed model with various scales to reach the final design decisions using Simplify 3D for mock-up digital fabricationKeywords: parametric design, double skin facades, digital fabrication, grasshopper, simplify 3D
Procedia PDF Downloads 1181787 Electability of Stable Insiders’ Coalition Governments
Authors: Tryphon Kollintzas, Lambros Pechlivanos
Abstract:
In this paper, we formulate a general equilibrium theory that explains the existence and stability of democratically elected governments that support certain groups of individuals in society (insiders) to the detriment of everybody else (outsiders), even if the latter constitute a majority. The vehicle is a dynamic general equilibrium model, where insiders get monopoly rents and outsiders get less than what they would have gotten under a common good regime. We construct such political economy equilibria, and we identify the conditions under which such political regimes (coalitions of insiders): (a) can safeguard against opportunistic behavior (i.e., do not fall from within) and (b) may come to power in the first place (i.e., manage to get elected). To that end, we highlight the role of perception manipulation and self-serving bias as a gluing device to garner an electable coalition.Keywords: insiders, coalition governments, stability, electability, politico-economic equilibrium, perceptions manipulation
Procedia PDF Downloads 651786 A 1.8 GHz to 43 GHz Low Noise Amplifier with 4 dB Noise Figure in 0.1 µm Galium Arsenide Technology
Authors: Mantas Sakalas, Paulius Sakalas
Abstract:
This paper presents an analysis and design of a ultrawideband 1.8GHz to 43GHz Low Noise Amplifier (LNA) in 0.1 μm Galium Arsenide (GaAs) pseudomorphic High Electron Mobility Transistor (pHEMT) technology. The feedback based bandwidth extension techniques is analyzed and based on the outcome, a two stage LNA is designed. The impedance fine tuning is implemented by using Transmission Line (TL) structures. The measured performance shows a good agreement with simulation results and an outstanding wideband noise matching. The measured small signal gain was 12 dB, whereas a 3 dB gain flatness in range from 1.8 - 43 GHz was reached. The noise figure was below 4 dB almost all over the entire frequency band of 1.8GHz to 43GHz, the output power at 1 dB compression point was 6 dBm and the DC power consumption was 95 mW. To the best knowledge of the authors the designed LNA outperforms the State of the Art (SotA) reported LNA designs in terms of combined parameters of noise figure within the addressed ultra-wide 3 dB bandwidth, linearity and DC power consumption.Keywords: feedback amplifiers, GaAs pHEMT, monolithic microwave integrated circuit, LNA, noise matching
Procedia PDF Downloads 2161785 Construction of Large Scale UAVs Using Homebuilt Composite Techniques
Authors: Brian J. Kozak, Joshua D. Shipman, Peng Hao Wang, Blake Shipp
Abstract:
The unmanned aerial system (UAS) industry is growing at a rapid pace. This growth has increased the demand for low cost, custom made and high strength unmanned aerial vehicles (UAV). The area of most growth is in the area of 25 kg to 200 kg vehicles. Vehicles this size are beyond the size and scope of simple wood and fabric designs commonly found in hobbyist aircraft. These high end vehicles require stronger materials to complete their mission. Traditional aircraft construction materials such as aluminum are difficult to use without machining or advanced computer controlled tooling. However, by using general aviation composite aircraft homebuilding techniques and materials, a large scale UAV can be constructed cheaply and easily. Furthermore, these techniques could be used to easily manufacture cost made composite shapes and airfoils that would be cost prohibitive when using metals. These homebuilt aircraft techniques are being demonstrated by the researchers in the construction of a 75 kg aircraft.Keywords: composite aircraft, homebuilding, unmanned aerial system industry, UAS, unmanned aerial vehicles, UAV
Procedia PDF Downloads 1381784 An Efficient Automated Radiation Measuring System for Plasma Monopole Antenna
Authors: Gurkirandeep Kaur, Rana Pratap Yadav
Abstract:
This experimental study is aimed to examine the radiation characteristics of different plasma structures of a surface wave-driven plasma antenna by an automated measuring system. In this study, a 30 cm long plasma column of argon gas with a diameter of 3 cm is excited by surface wave discharge mechanism operating at 13.56 MHz with RF power level up to 100 Watts and gas pressure between 0.01 to 0.05 mb. The study reveals that a single structured plasma monopole can be modified into an array of plasma antenna elements by forming multiple striations or plasma blobs inside the discharge tube by altering the values of plasma properties such as working pressure, operating frequency, input RF power, discharge tube dimensions, i.e., length, radius, and thickness. It is also reported that plasma length, electron density, and conductivity are functions of operating plasma parameters and controlled by changing working pressure and input power. To investigate the antenna radiation efficiency for the far-field region, an automation-based radiation measuring system has been fabricated and presented in detail. This developed automated system involves a combined setup of controller, dc servo motors, vector network analyzer, and computing device to evaluate the radiation intensity, directivity, gain and efficiency of plasma antenna. In this system, the controller is connected to multiple motors for moving aluminum shafts in both elevation and azimuthal plane whereas radiation from plasma monopole antenna is measured by a Vector Network Analyser (VNA) which is further wired up with the computing device to display radiations in polar plot forms. Here, the radiation characteristics of both continuous and array plasma monopole antenna have been studied for various working plasma parameters. The experimental results clearly indicate that the plasma antenna is as efficient as a metallic antenna. The radiation from plasma monopole antenna is significantly influenced by plasma properties which provides a wider range in radiation pattern where desired radiation parameters like beam-width, the direction of radiation, radiation intensity, antenna efficiency, etc. can be achieved in a single monopole. Due to its wide range of selectivity in radiation pattern; this can meet the demands of wider bandwidth to get high data speed in communication systems. Moreover, this developed system provides an efficient and cost-effective solution for measuring the radiation pattern in far-field zone for any kind of antenna system.Keywords: antenna radiation characteristics, dynamically reconfigurable, plasma antenna, plasma column, plasma striations, surface wave
Procedia PDF Downloads 1191783 3D Printed Multi-Modal Phantom Using Computed Tomography and 3D X-Ray Images
Authors: Sung-Suk Oh, Bong-Keun Kang, Sang-Wook Park, Hui-Jin Joo, Jong-Ryul Choi, Seong-Jun Lee, Jeong-Woo Sohn
Abstract:
The imaging phantom is utilized for the verification, evaluation and tuning of the medical imaging device and system. Although it could be costly, 3D printing is an ideal technique for a rapid, customized, multi-modal phantom making. In this article, we propose the multi-modal phantom using 3D printing. First of all, the Dicom images for were measured by CT (Computed Tomography) and 3D X-ray systems (PET/CT and Angio X-ray system of Siemens) and then were analyzed. Finally, the 3D modeling was processed using Dicom images. The 3D printed phantom was scanned by PET/CT and MRI systems and then evaluated.Keywords: imaging phantom, MRI (Magnetic Resonance Imaging), PET / CT (Positron Emission Tomography / Computed Tomography), 3D printing
Procedia PDF Downloads 580