Search results for: blue color detection
3827 Production of Gluten-Free Bread Using Emulsifying Salts and Rennet Casein
Authors: A. Morina, S. Ö. Muti, M. Öztürk
Abstract:
Celiac disease is a chronic intestinal disease observed in individuals with gluten intolerance. In this study, our aim was to create a protein matrix to mimic the functional properties of gluten. For this purpose, rennet casein and four emulsifying salts (disodium phosphate (DSP), tetrasodium pyrophosphate (TSPP), sodium acid pyrophosphate (SAPP), and sodium hexametaphosphate (SHMP)) were investigated in gluten-free bread manufacture. Compositional, textural, and visual properties of the gluten-free bread dough and gluten-free breads were investigated by a two–level factorial experimental design with two-star points (α = 1.414) and two replicates of the center point. Manufacturing gluten-free bread with rennet casein and SHMP significantly increased the bread volume (P < 0.0001, R² = 97.8). In general, utilization of rennet casein with DSP and SAPP increased bread hardness while no difference was observed in samples manufactured with TSPP and SHMP. Except for TSPP, bread color was improved by the utilization of rennet casein and DSP, SAPP, and SHMP combinations. In conclusion, it is possible to manufacture gluten-free bread with acceptable texture and color by rennet casein and SHMP.Keywords: celiac disease, gluten-free bread, emulsified salts, rennet casein, rice flour
Procedia PDF Downloads 1683826 Vehicle Timing Motion Detection Based on Multi-Dimensional Dynamic Detection Network
Authors: Jia Li, Xing Wei, Yuchen Hong, Yang Lu
Abstract:
Detecting vehicle behavior has always been the focus of intelligent transportation, but with the explosive growth of the number of vehicles and the complexity of the road environment, the vehicle behavior videos captured by traditional surveillance have been unable to satisfy the study of vehicle behavior. The traditional method of manually labeling vehicle behavior is too time-consuming and labor-intensive, but the existing object detection and tracking algorithms have poor practicability and low behavioral location detection rate. This paper proposes a vehicle behavior detection algorithm based on the dual-stream convolution network and the multi-dimensional video dynamic detection network. In the videos, the straight-line behavior of the vehicle will default to the background behavior. The Changing lanes, turning and turning around are set as target behaviors. The purpose of this model is to automatically mark the target behavior of the vehicle from the untrimmed videos. First, the target behavior proposals in the long video are extracted through the dual-stream convolution network. The model uses a dual-stream convolutional network to generate a one-dimensional action score waveform, and then extract segments with scores above a given threshold M into preliminary vehicle behavior proposals. Second, the preliminary proposals are pruned and identified using the multi-dimensional video dynamic detection network. Referring to the hierarchical reinforcement learning, the multi-dimensional network includes a Timer module and a Spacer module, where the Timer module mines time information in the video stream and the Spacer module extracts spatial information in the video frame. The Timer and Spacer module are implemented by Long Short-Term Memory (LSTM) and start from an all-zero hidden state. The Timer module uses the Transformer mechanism to extract timing information from the video stream and extract features by linear mapping and other methods. Finally, the model fuses time information and spatial information and obtains the location and category of the behavior through the softmax layer. This paper uses recall and precision to measure the performance of the model. Extensive experiments show that based on the dataset of this paper, the proposed model has obvious advantages compared with the existing state-of-the-art behavior detection algorithms. When the Time Intersection over Union (TIoU) threshold is 0.5, the Average-Precision (MP) reaches 36.3% (the MP of baselines is 21.5%). In summary, this paper proposes a vehicle behavior detection model based on multi-dimensional dynamic detection network. This paper introduces spatial information and temporal information to extract vehicle behaviors in long videos. Experiments show that the proposed algorithm is advanced and accurate in-vehicle timing behavior detection. In the future, the focus will be on simultaneously detecting the timing behavior of multiple vehicles in complex traffic scenes (such as a busy street) while ensuring accuracy.Keywords: vehicle behavior detection, convolutional neural network, long short-term memory, deep learning
Procedia PDF Downloads 1303825 Isolation and Identification of Low-Temperature Tolerant-Yeast Strains from Apple with Biocontrol Activity
Authors: Lachin Mikjtarnejad, Mohsen Farzaneh
Abstract:
Various microbes, such as fungi and bacteria species, are naturally found in the fruit microbiota, and some of them act as a pathogen and result in fruit rot. Among non-pathogenic microbes, yeasts (single-celled microorganisms belonging to the fungi kingdom) can colonize fruit tissues and interact with them without causing any damage to them. Although yeasts are part of the plant microbiota, there is little information about their interactions with plants in comparison with bacteria and filamentous fungi. According to several existing studies, some yeasts can colonize different plant species and have the biological control ability to suppress some of the plant pathogens. It means those specific yeast-colonized plants are more resistant to some plant pathogens. The major objective of the present investigation is to isolate yeast strains from apple fruit and screen their ability to control Penicillium expansum, the causal agent of blue mold of fruits. In the present study, psychrotrophic and epiphytic yeasts were isolated from apple fruits that were stored at low temperatures (0–1°C). Totally, 42 yeast isolates were obtained and identified by molecular analysis based on genomic sequences of the D1/D2 and ITS1/ITS4 regions of their rDNA. All isolated yeasts were primarily screened by' in vitro dual culture assay against P. expansum by measuring the fungus' relative growth inhibition after 10 days of incubation. The results showed that the mycelial growth of P. expansum was reduced between 41–53% when challenged by promising yeast strains. The isolates with the strongest antagonistic activity belonged to Metschnikowia pulcherrima A13, Rhodotorula mucilaginosa A41, Leucosporidium Scottii A26, Aureobasidium pullulans A19, Pichia guilliermondii A32, Cryptococcus flavescents A25, and Pichia kluyveri A40. The results of seven superior isolates to inhibit blue mold decay on fruit showed that isolates A. pullulans A19, L. scottii A26, and Pi. guilliermondii A32 could significantly reduce the fruit rot and decay with 26 mm, 22 mm and 20 mm zone diameter, respectively, compared to the control sample with 43 mm. Our results show Pi. guilliermondii strain A13 was the most effective yeast isolates in inhibiting P. expansum on apple fruits. In addition, various biological control mechanisms of promising biological isolates against blue mold have been evaluated to date, including competition for nutrients and space, production of volatile metabolites, reduction of spore germination, production of siderophores and production of extracellular lytic enzymes such as chitinase and β-1,3-glucanase. However, the competition for nutrients and the ability to inhibit P. expansum spore growth have been introduced as the prevailing mechanisms among them. Accordingly, in our study, isolates A13, A41, A40, A25, A32, A19 and A26 inhibited the germination of P. expansum, whereas isolates A13 and A19 were the strongest inhibitors of P. expansum mycelia growth, causing 89.13% and 81.75 % reduction in the mycelial surface, respectively. All the promising isolates produced chitinase and β-1,3-glucanase after 3, 5 and 7 days of cultivation. Finally, based on our findings, we are proposing that, Pi. guilliermondiias as an effective biocontrol agent and alternative to chemical fungicides to control the blue mold of apple fruit.Keywords: yeast, yeast enzymes, biocontrol, post harvest diseases
Procedia PDF Downloads 1273824 Fabrication of Poly(Ethylene Oxide)/Chitosan/Indocyanine Green Nanoprobe by Co-Axial Electrospinning Method for Early Detection
Authors: Zeynep R. Ege, Aydin Akan, Faik N. Oktar, Betul Karademir, Oguzhan Gunduz
Abstract:
Early detection of cancer could save human life and quality in insidious cases by advanced biomedical imaging techniques. Designing targeted detection system is necessary in order to protect of healthy cells. Electrospun nanofibers are efficient and targetable nanocarriers which have important properties such as nanometric diameter, mechanical properties, elasticity, porosity and surface area to volume ratio. In the present study, indocyanine green (ICG) organic dye was stabilized and encapsulated in polymer matrix which polyethylene oxide (PEO) and chitosan (CHI) multilayer nanofibers via co-axial electrospinning method at one step. The co-axial electrospun nanofibers were characterized as morphological (SEM), molecular (FT-IR), and entrapment efficiency of Indocyanine Green (ICG) (confocal imaging). Controlled release profile of PEO/CHI/ICG nanofiber was also evaluated up to 40 hours.Keywords: chitosan, coaxial electrospinning, controlled releasing, drug delivery, indocyanine green, polyethylene oxide
Procedia PDF Downloads 1693823 ANOVA-Based Feature Selection and Machine Learning System for IoT Anomaly Detection
Authors: Muhammad Ali
Abstract:
Cyber-attacks and anomaly detection on the Internet of Things (IoT) infrastructure is emerging concern in the domain of data-driven intrusion. Rapidly increasing IoT risk is now making headlines around the world. denial of service, malicious control, data type probing, malicious operation, DDos, scan, spying, and wrong setup are attacks and anomalies that can affect an IoT system failure. Everyone talks about cyber security, connectivity, smart devices, and real-time data extraction. IoT devices expose a wide variety of new cyber security attack vectors in network traffic. For further than IoT development, and mainly for smart and IoT applications, there is a necessity for intelligent processing and analysis of data. So, our approach is too secure. We train several machine learning models that have been compared to accurately predicting attacks and anomalies on IoT systems, considering IoT applications, with ANOVA-based feature selection with fewer prediction models to evaluate network traffic to help prevent IoT devices. The machine learning (ML) algorithms that have been used here are KNN, SVM, NB, D.T., and R.F., with the most satisfactory test accuracy with fast detection. The evaluation of ML metrics includes precision, recall, F1 score, FPR, NPV, G.M., MCC, and AUC & ROC. The Random Forest algorithm achieved the best results with less prediction time, with an accuracy of 99.98%.Keywords: machine learning, analysis of variance, Internet of Thing, network security, intrusion detection
Procedia PDF Downloads 1253822 A General Framework for Knowledge Discovery Using High Performance Machine Learning Algorithms
Authors: S. Nandagopalan, N. Pradeep
Abstract:
The aim of this paper is to propose a general framework for storing, analyzing, and extracting knowledge from two-dimensional echocardiographic images, color Doppler images, non-medical images, and general data sets. A number of high performance data mining algorithms have been used to carry out this task. Our framework encompasses four layers namely physical storage, object identification, knowledge discovery, user level. Techniques such as active contour model to identify the cardiac chambers, pixel classification to segment the color Doppler echo image, universal model for image retrieval, Bayesian method for classification, parallel algorithms for image segmentation, etc., were employed. Using the feature vector database that have been efficiently constructed, one can perform various data mining tasks like clustering, classification, etc. with efficient algorithms along with image mining given a query image. All these facilities are included in the framework that is supported by state-of-the-art user interface (UI). The algorithms were tested with actual patient data and Coral image database and the results show that their performance is better than the results reported already.Keywords: active contour, bayesian, echocardiographic image, feature vector
Procedia PDF Downloads 4203821 Multi-Criteria Evaluation of IDS Architectures in Cloud Computing
Authors: Elmahdi Khalil, Saad Enniari, Mostapha Zbakh
Abstract:
Cloud computing promises to increase innovation and the velocity with witch applications are deployed, all while helping any enterprise meet most IT service needs at a lower total cost of ownership and higher return investment. As the march of cloud continues, it brings both new opportunities and new security challenges. To take advantages of those opportunities while minimizing risks, we think that Intrusion Detection Systems (IDS) integrated in the cloud is one of the best existing solutions nowadays in the field. The concept of intrusion detection was known since past and was first proposed by a well-known researcher named Anderson in 1980's. Since that time IDS's are evolving. Although, several efforts has been made in the area of Intrusion Detection systems for cloud computing environment, many attacks still prevail. Therefore, the work presented in this paper proposes a multi criteria analysis and a comparative study between several IDS architectures designated to work in a cloud computing environments. To achieve this objective, in the first place we will search in the state of the art of several consistent IDS architectures designed to work in a cloud environment. Whereas, in a second step we will establish the criteria that will be useful for the evaluation of architectures. Later, using the approach of multi criteria decision analysis Mac Beth (Measuring Attractiveness by a Categorical Based Evaluation Technique we will evaluate the criteria and assign to each one the appropriate weight according to their importance in the field of IDS architectures in cloud computing. The last step is to evaluate architectures against the criteria and collecting results of the model constructed in the previous steps.Keywords: cloud computing, cloud security, intrusion detection/prevention system, multi-criteria decision analysis
Procedia PDF Downloads 4723820 The Impact of Initiators on Fast Drying Traffic Marking Paint
Authors: Maryam Taheri, Mehdi Jahanfar, Kenji Ogino
Abstract:
Fast drying traffic marking paint comprising a solvent-borne resin, a filler, a pigment and a solvent that is especially suitable for colder ambient (temperatures near freezing) applications, where waterborne traffic paint cannot be used. Acrylic resins based on methyl methacrylate, butyl acrylate, acrylic acid, and styrene were synthesized in different solvents using organic peroxide initiators such as peroxyester, peroxyketal, dialkylperoxide and azo. After polymerization, the molecular weight (Mw), polydispersity index= PDI (Mw/Mn), viscosity, total residual monomer and APHA color were evaluated and results of organic peroxide initiators (t- butyl and t-amyl derivatives) were also compared with the azo initiator. The Mw, PDI, viscosity, mass conversation and APHA color of resins with t-amyl derivatives of organic peroxide initiators are very proper. The results of the traffic marking paints test such as non-volatile matter, no- pick- up time, hiding power, resistance to wear and water resistance study that produced with these resins also confirm this.Keywords: fast drying traffic marking paint, acrylic resin, organic peroxide initiator, peroxyester, peroxyketal, dialkylperoxide and azo initiator
Procedia PDF Downloads 2083819 Estimating Interdependence of Social Statuses in a Cooperative Breeding Birds through Mathematical Modelling
Authors: Sinchan Ghosh, Fahad Al Basir, Santanu Ray, Sabyasachi Bhattacharya
Abstract:
The cooperatively breeding birds have two major ranks for the sexually mature birds. The breeders mate and produce offspring while the non-breeding helpers increase the chick production rate through help in mate-finding and allo-parenting. However, the chicks also cooperate to raise their younger siblings through warming, defending and food sharing. Although, the existing literatures describes the evolution of allo-parenting in birds but do not differentiate the significance of allo-parenting in sexually immature and mature helpers separately. This study addresses the significance of both immature and mature helpers’ contribution to the total sustainable bird population in a breeding site using Blue-tailed bee-eater as a test-bed species. To serve this purpose, a mathematical model has been built considering each social status and chicks as separate but interactive compartments. Also, to observe the dynamics of each social status with changing prey abundance, a prey population has been introduced as an additional compartment. The model was analyzed for stability condition and was validated using field-data. A simulation experiment was then performed to observe the change in equilibria with a varying helping rate from both the helpers. The result from the simulation experiment suggest that the cooperative breeding population changes its population sizes significantly with a change in helping rate from the sexually immature helpers. On the other hand, the mature helpers do not contribute to the stability of the population equilibrium as much as the immature helpers.Keywords: Blue-tailed bee eater, Altruism, Mathematical Ethology, Behavioural modelling
Procedia PDF Downloads 1623818 In vitro Antioxidant and DNA Protectant Activity of Different Skin Colored Eggplant (Solanum melongena)
Authors: K. M. Somawathie, V. Rizliya, H. A. M. Wickrmasinghe, Terrence Madhujith
Abstract:
The main objective of our study was to determine the in vitro antioxidant and DNA protectant activity of aqueous extract of S. melongena with different skin colors; dark purple (DP), moderately purple (MP), light purple (LP) and purple and green (PG). The antioxidant activity was evaluated using the DPPH and ABTS free radical scavenging assay, ferric reducing antioxidant power (FRAP), ferric thiocyanate (FTC) and the egg yolk model. The effectiveness of eggplant extracts against radical induced DNA damage was also determined. There was a significant difference (p < 0.0001) between the skin color and antioxidant activity. TPC and FRAP values of eggplant extracts ranged from 48.67±0.27-61.11±0.26 (mg GAE/100 g fresh weight) and 4.19±0.11-7.46±0.26 (mmol of FeS04/g of fresh weight) respectively. MP displayed the highest percentage of DPPH radical scavenging activity while, DP demonstrated the strongest total antioxidant capacity. In the FTC and egg yolk model, DP and MP showed better antioxidant activity than PG and LP. All eggplant extracts showed potent antioxidant activity in retaining DNA against AAPH mediated radical damage. DP and MP demonstrated better antioxidant activity which may be attributed to the higher phenolic content since a positive correlation was observed between the TPC and the antioxidant parameters.Keywords: Solanum melongena, skin color, antioxidant, DNA protection, lipid peroxidation
Procedia PDF Downloads 4313817 Effect of Whey Protein Based Edible Coating on the Moisture Loss and Sensory Attributes of Fresh Mutton
Authors: Saba Belgheisi
Abstract:
Food packaging, is an important discipline in the area of food technology, concerns preservation and protection of foods. The objective of this research was to determine of the effect of whey protein based edible coating on the moisture loss and sensory attributes of fresh mutton after 0, 1, 3 and 5 days at 5° C. The moisture content, moisture loss and sensory attributes (juiciness, color and odor) of the coated and uncoated samples were analyzed. The results showed that, moisture content, moisture loss, juiciness and color of the coated and uncoated samples have significant differences (p < 0.05) at the intervals of 0 to 1 and 1 to 3 days of storage. But no significant difference was observed at interval time 3 to 5 days of storage (p > 0.05). Also, there was no significant differences in the odor values of the coated and uncoated samples (p > 0.05). Therefore, the coated samples had consistently more moisture, juiciness and colored values than uncoated samples after 3 days at 5° C. So, whey protein edible coating could enhance product presentation and eliminate the need for placing absorbent pads at the bottom of the trays.Keywords: coating, whey protein, mutton, moisture, sensory
Procedia PDF Downloads 4613816 R-Killer: An Email-Based Ransomware Protection Tool
Authors: B. Lokuketagoda, M. Weerakoon, U. Madushan, A. N. Senaratne, K. Y. Abeywardena
Abstract:
Ransomware has become a common threat in past few years and the recent threat reports show an increase of growth in Ransomware infections. Researchers have identified different variants of Ransomware families since 2015. Lack of knowledge of the user about the threat is a major concern. Ransomware detection methodologies are still growing through the industry. Email is the easiest method to send Ransomware to its victims. Uninformed users tend to click on links and attachments without much consideration assuming the emails are genuine. As a solution to this in this paper R-Killer Ransomware detection tool is introduced. Tool can be integrated with existing email services. The core detection Engine (CDE) discussed in the paper focuses on separating suspicious samples from emails and handling them until a decision is made regarding the suspicious mail. It has the capability of preventing execution of identified ransomware processes. On the other hand, Sandboxing and URL analyzing system has the capability of communication with public threat intelligence services to gather known threat intelligence. The R-Killer has its own mechanism developed in its Proactive Monitoring System (PMS) which can monitor the processes created by downloaded email attachments and identify potential Ransomware activities. R-killer is capable of gathering threat intelligence without exposing the user’s data to public threat intelligence services, hence protecting the confidentiality of user data.Keywords: ransomware, deep learning, recurrent neural networks, email, core detection engine
Procedia PDF Downloads 2153815 A Less Complexity Deep Learning Method for Drones Detection
Authors: Mohamad Kassab, Amal El Fallah Seghrouchni, Frederic Barbaresco, Raed Abu Zitar
Abstract:
Detecting objects such as drones is a challenging task as their relative size and maneuvering capabilities deceive machine learning models and cause them to misclassify drones as birds or other objects. In this work, we investigate applying several deep learning techniques to benchmark real data sets of flying drones. A deep learning paradigm is proposed for the purpose of mitigating the complexity of those systems. The proposed paradigm consists of a hybrid between the AdderNet deep learning paradigm and the Single Shot Detector (SSD) paradigm. The goal was to minimize multiplication operations numbers in the filtering layers within the proposed system and, hence, reduce complexity. Some standard machine learning technique, such as SVM, is also tested and compared to other deep learning systems. The data sets used for training and testing were either complete or filtered in order to remove the images with mall objects. The types of data were RGB or IR data. Comparisons were made between all these types, and conclusions were presented.Keywords: drones detection, deep learning, birds versus drones, precision of detection, AdderNet
Procedia PDF Downloads 1823814 Zeolite Supported Iron-Sensitized TIO₂ for Tetracycline Photocatalytic Degradation under Visible Light: A Comparison between Doping and Ion Exchange
Authors: Ghadeer Jalloul, Nour Hijazi, Cassia Boyadjian, Hussein Awala, Mohammad N. Ahmad, Ahmad Albadarin
Abstract:
In this study, we applied Fe-sensitized TiO₂ supported over embryonic Beta zeolite (BEA) zeolite for the photocatalytic degradation of Tetracycline (TC) antibiotic under visible light. Four different samples having 20, 40, 60, and 100% w/w as a ratio of TiO₂/BEA were prepared. The immobilization of solgel TiO₂ (33 m²/g) over BEA (390 m²/g) increased its surface area to (227 m²/g) and enhanced its adsorption capacity from 8% to 19%. To expand the activity of TiO₂ photocatalyst towards the visible light region (λ>380 nm), we explored two different metal sensitization techniques with Iron ions (Fe³⁺). In the ion-exchange method, the substitutional cations in the zeolite in TiO₂/BEA were exchanged with (Fe³⁺) in an aqueous solution of FeCl₃. In the doping technique, solgel TiO₂ was doped with (Fe³⁺) from FeCl₃ precursor during its synthesis and before its immobilization over BEA. (Fe-TiO₂/BEA) catalysts were characterized using SEM, XRD, BET, UV-VIS DRS, and FTIR. After testing the performance of the various ion-exchanged catalysts under blue and white lights, only (Fe-TiO₂/BEA 60%) showed better activity as compared to pure TiO₂ under white light with 100 ppm initial catalyst concentration and 20 ppm TC concentration. As compared to ion-exchanged (Fe-TiO₂/BEA), doped (Fe-TiO₂/BEA) resulted in higher photocatalytic efficiencies under blue and white lights. The 3%-Fe-doped TiO₂/BEA removed 92% of TC compared to 54% by TiO₂ under white light. The catalysts were also tested under real solar irradiations. This improvement in the photocatalytic performance of TiO₂ was due to its higher adsorption capacity due to BEA support combined with the presence of Iron ions that enhance the visible light absorption and minimize the recombination effect by the charge carriers. Keywords: Tetracycline, photocatalytic degradation, immobilized TiO₂, zeolite, iron-doped TiO₂, ion-exchange
Procedia PDF Downloads 1083813 Dynamic Background Updating for Lightweight Moving Object Detection
Authors: Kelemewerk Destalem, Joongjae Cho, Jaeseong Lee, Ju H. Park, Joonhyuk Yoo
Abstract:
Background subtraction and temporal difference are often used for moving object detection in video. Both approaches are computationally simple and easy to be deployed in real-time image processing. However, while the background subtraction is highly sensitive to dynamic background and illumination changes, the temporal difference approach is poor at extracting relevant pixels of the moving object and at detecting the stopped or slowly moving objects in the scene. In this paper, we propose a moving object detection scheme based on adaptive background subtraction and temporal difference exploiting dynamic background updates. The proposed technique consists of a histogram equalization, a linear combination of background and temporal difference, followed by the novel frame-based and pixel-based background updating techniques. Finally, morphological operations are applied to the output images. Experimental results show that the proposed algorithm can solve the drawbacks of both background subtraction and temporal difference methods and can provide better performance than that of each method.Keywords: background subtraction, background updating, real time, light weight algorithm, temporal difference
Procedia PDF Downloads 3423812 A Comparison between Underwater Image Enhancement Techniques
Authors: Ouafa Benaida, Abdelhamid Loukil, Adda Ali Pacha
Abstract:
In recent years, the growing interest of scientists in the field of image processing and analysis of underwater images and videos has been strengthened following the emergence of new underwater exploration techniques, such as the emergence of autonomous underwater vehicles and the use of underwater image sensors facilitating the exploration of underwater mineral resources as well as the search for new species of aquatic life by biologists. Indeed, underwater images and videos have several defects and must be preprocessed before their analysis. Underwater landscapes are usually darkened due to the interaction of light with the marine environment: light is absorbed as it travels through deep waters depending on its wavelength. Additionally, light does not follow a linear direction but is scattered due to its interaction with microparticles in water, resulting in low contrast, low brightness, color distortion, and restricted visibility. The improvement of the underwater image is, therefore, more than necessary in order to facilitate its analysis. The research presented in this paper aims to implement and evaluate a set of classical techniques used in the field of improving the quality of underwater images in several color representation spaces. These methods have the particularity of being simple to implement and do not require prior knowledge of the physical model at the origin of the degradation.Keywords: underwater image enhancement, histogram normalization, histogram equalization, contrast limited adaptive histogram equalization, single-scale retinex
Procedia PDF Downloads 893811 Financial Statement Fraud: The Need for a Paradigm Shift to Forensic Accounting
Authors: Ifedapo Francis Awolowo
Abstract:
The unrelenting series of embarrassing audit failures should stimulate a paradigm shift in accounting. And in this age of information revolution, there is need for a constant improvement on the products or services one offers to the market in order to be relevant. This study explores the perceptions of external auditors, forensic accountants and accounting academics on whether a paradigm shift to forensic accounting can reduce financial statement frauds. Through Neo-empiricism/inductive analytical approach, findings reveal that a paradigm shift to forensic accounting might be the right step in the right direction in order to increase the chances of fraud prevention and detection in the financial statement. This research has implication on accounting education on the need to incorporate forensic accounting into present day accounting curriculum. Accounting professional bodies, accounting standard setters and accounting firms all have roles to play in incorporating forensic accounting education into accounting curriculum. Particularly, there is need to alter the ISA 240 to make the prevention and detection of frauds the responsibilities of bot those charged with the management and governance of companies and statutory auditors.Keywords: financial statement fraud, forensic accounting, fraud prevention and detection, auditing, audit expectation gap, corporate governance
Procedia PDF Downloads 3663810 Detection and Classification Strabismus Using Convolutional Neural Network and Spatial Image Processing
Authors: Anoop T. R., Otman Basir, Robert F. Hess, Eileen E. Birch, Brooke A. Koritala, Reed M. Jost, Becky Luu, David Stager, Ben Thompson
Abstract:
Strabismus refers to a misalignment of the eyes. Early detection and treatment of strabismus in childhood can prevent the development of permanent vision loss due to abnormal development of visual brain areas. We developed a two-stage method for strabismus detection and classification based on photographs of the face. The first stage detects the presence or absence of strabismus, and the second stage classifies the type of strabismus. The first stage comprises face detection using Haar cascade, facial landmark estimation, face alignment, aligned face landmark detection, segmentation of the eye region, and detection of strabismus using VGG 16 convolution neural networks. Face alignment transforms the face to a canonical pose to ensure consistency in subsequent analysis. Using facial landmarks, the eye region is segmented from the aligned face and fed into a VGG 16 CNN model, which has been trained to classify strabismus. The CNN determines whether strabismus is present and classifies the type of strabismus (exotropia, esotropia, and vertical deviation). If stage 1 detects strabismus, the eye region image is fed into stage 2, which starts with the estimation of pupil center coordinates using mask R-CNN deep neural networks. Then, the distance between the pupil coordinates and eye landmarks is calculated along with the angle that the pupil coordinates make with the horizontal and vertical axis. The distance and angle information is used to characterize the degree and direction of the strabismic eye misalignment. This model was tested on 100 clinically labeled images of children with (n = 50) and without (n = 50) strabismus. The True Positive Rate (TPR) and False Positive Rate (FPR) of the first stage were 94% and 6% respectively. The classification stage has produced a TPR of 94.73%, 94.44%, and 100% for esotropia, exotropia, and vertical deviations, respectively. This method also had an FPR of 5.26%, 5.55%, and 0% for esotropia, exotropia, and vertical deviation, respectively. The addition of one more feature related to the location of corneal light reflections may reduce the FPR, which was primarily due to children with pseudo-strabismus (the appearance of strabismus due to a wide nasal bridge or skin folds on the nasal side of the eyes).Keywords: strabismus, deep neural networks, face detection, facial landmarks, face alignment, segmentation, VGG 16, mask R-CNN, pupil coordinates, angle deviation, horizontal and vertical deviation
Procedia PDF Downloads 933809 Modified Gold Screen Printed Electrode with Ruthenium Complex for Selective Detection of Porcine DNA
Authors: Siti Aishah Hasbullah
Abstract:
Studies on identification of pork content in food have grown rapidly to meet the Halal food standard in Malaysia. The used mitochondria DNA (mtDNA) approaches for the identification of pig species is thought to be the most precise marker due to the mtDNA genes are present in thousands of copies per cell, the large variability of mtDNA. The standard method commonly used for DNA detection is based on polymerase chain reaction (PCR) method combined with gel electrophoresis but has major drawback. Its major drawbacks are laborious, need longer time and toxic to handle. Therefore, the need for simplicity and fast assay of DNA is vital and has triggered us to develop DNA biosensors for porcine DNA detection. Therefore, the aim of this project is to develop electrochemical DNA biosensor based on ruthenium (II) complex, [Ru(bpy)2(p-PIP)]2+ as DNA hybridization label. The interaction of DNA and [Ru(bpy)2(p-HPIP)]2+ will be studied by electrochemical transduction using Gold Screen-Printed Electrode (GSPE) modified with gold nanoparticles (AuNPs) and succinimide acrylic microspheres. The electrochemical detection by redox active ruthenium (II) complex was measured by cyclic voltammetry (CV) and differential pulse voltammetry (DPV). The results indicate that the interaction of [Ru(bpy)2(PIP)]2+ with hybridization complementary DNA has higher response compared to single-stranded and mismatch complementary DNA. Under optimized condition, this porcine DNA biosensor incorporated modified GSPE shows good linear range towards porcine DNA.Keywords: gold, screen printed electrode, ruthenium, porcine DNA
Procedia PDF Downloads 3093808 Surface-Enhanced Raman Detection in Chip-Based Chromatography via a Droplet Interface
Authors: Renata Gerhardt, Detlev Belder
Abstract:
Raman spectroscopy has attracted much attention as a structurally descriptive and label-free detection method. It is particularly suited for chemical analysis given as it is non-destructive and molecules can be identified via the fingerprint region of the spectra. In this work possibilities are investigated how to integrate Raman spectroscopy as a detection method for chip-based chromatography, making use of a droplet interface. A demanding task in lab-on-a-chip applications is the specific and sensitive detection of low concentrated analytes in small volumes. Fluorescence detection is frequently utilized but restricted to fluorescent molecules. Furthermore, no structural information is provided. Another often applied technique is mass spectrometry which enables the identification of molecules based on their mass to charge ratio. Additionally, the obtained fragmentation pattern gives insight into the chemical structure. However, it is only applicable as an end-of-the-line detection because analytes are destroyed during measurements. In contrast to mass spectrometry, Raman spectroscopy can be applied on-chip and substances can be processed further downstream after detection. A major drawback of Raman spectroscopy is the inherent weakness of the Raman signal, which is due to the small cross-sections associated with the scattering process. Enhancement techniques, such as surface enhanced Raman spectroscopy (SERS), are employed to overcome the poor sensitivity even allowing detection on a single molecule level. In SERS measurements, Raman signal intensity is improved by several orders of magnitude if the analyte is in close proximity to nanostructured metal surfaces or nanoparticles. The main gain of lab-on-a-chip technology is the building block-like ability to seamlessly integrate different functionalities, such as synthesis, separation, derivatization and detection on a single device. We intend to utilize this powerful toolbox to realize Raman detection in chip-based chromatography. By interfacing on-chip separations with a droplet generator, the separated analytes are encapsulated into numerous discrete containers. These droplets can then be injected with a silver nanoparticle solution and investigated via Raman spectroscopy. Droplet microfluidics is a sub-discipline of microfluidics which instead of a continuous flow operates with the segmented flow. Segmented flow is created by merging two immiscible phases (usually an aqueous phase and oil) thus forming small discrete volumes of one phase in the carrier phase. The study surveys different chip designs to realize coupling of chip-based chromatography with droplet microfluidics. With regards to maintaining a sufficient flow rate for chromatographic separation and ensuring stable eluent flow over the column different flow rates of eluent and oil phase are tested. Furthermore, the detection of analytes in droplets with surface enhanced Raman spectroscopy is examined. The compartmentalization of separated compounds preserves the analytical resolution since the continuous phase restricts dispersion between the droplets. The droplets are ideal vessels for the insertion of silver colloids thus making use of the surface enhancement effect and improving the sensitivity of the detection. The long-term goal of this work is the first realization of coupling chip based chromatography with droplets microfluidics to employ surface enhanced Raman spectroscopy as means of detection.Keywords: chip-based separation, chip LC, droplets, Raman spectroscopy, SERS
Procedia PDF Downloads 2453807 Rapid and Sensitive Detection: Biosensors as an Innovative Analytical Tools
Authors: Sylwia Baluta, Joanna Cabaj, Karol Malecha
Abstract:
The evolution of biosensors was driven by the need for faster and more versatile analytical methods for application in important areas including clinical, diagnostics, food analysis or environmental monitoring, with minimum sample pretreatment. Rapid and sensitive neurotransmitters detection is extremely important in modern medicine. These compounds mainly occur in the brain and central nervous system of mammals. Any changes in the neurotransmitters concentration may lead to many diseases, such as Parkinson’s or schizophrenia. Classical techniques of chemical analysis, despite many advantages, do not permit to obtain immediate results or automatization of measurements.Keywords: adrenaline, biosensor, dopamine, laccase, tyrosinase
Procedia PDF Downloads 1423806 Detecting Indigenous Languages: A System for Maya Text Profiling and Machine Learning Classification Techniques
Authors: Alejandro Molina-Villegas, Silvia Fernández-Sabido, Eduardo Mendoza-Vargas, Fátima Miranda-Pestaña
Abstract:
The automatic detection of indigenous languages in digital texts is essential to promote their inclusion in digital media. Underrepresented languages, such as Maya, are often excluded from language detection tools like Google’s language-detection library, LANGDETECT. This study addresses these limitations by developing a hybrid language detection solution that accurately distinguishes Maya (YUA) from Spanish (ES). Two strategies are employed: the first focuses on creating a profile for the Maya language within the LANGDETECT library, while the second involves training a Naive Bayes classification model with two categories, YUA and ES. The process includes comprehensive data preprocessing steps, such as cleaning, normalization, tokenization, and n-gram counting, applied to text samples collected from various sources, including articles from La Jornada Maya, a major newspaper in Mexico and the only media outlet that includes a Maya section. After the training phase, a portion of the data is used to create the YUA profile within LANGDETECT, which achieves an accuracy rate above 95% in identifying the Maya language during testing. Additionally, the Naive Bayes classifier, trained and tested on the same database, achieves an accuracy close to 98% in distinguishing between Maya and Spanish, with further validation through F1 score, recall, and logarithmic scoring, without signs of overfitting. This strategy, which combines the LANGDETECT profile with a Naive Bayes model, highlights an adaptable framework that can be extended to other underrepresented languages in future research. This fills a gap in Natural Language Processing and supports the preservation and revitalization of these languages.Keywords: indigenous languages, language detection, Maya language, Naive Bayes classifier, natural language processing, low-resource languages
Procedia PDF Downloads 163805 Influence of Visual Merchandising Elements on Instant Purchase
Authors: Pooja Sharma, Renu Jain, Alka David
Abstract:
The primary goal of this research is to comprehend the many features of visual merchandising (VM) and impulsive or instant purchasing behavior. It aims to explain the link between visual merchandising and customer purchasing behavior. The reviews were compiled from research articles, professional journal articles, and the opinions of many authors. It also discusses the impact of different internal and external VM elements on instant purchasing. The visual merchandising elements are divided into two sections: interior element (inside the display, spaces, and layout, fixtures, mannequins, attention-grabbing device) and outside element (outside display, space, and layout, fixture, mannequins, attention-grabbing device) (Window Display, Exterior signs, Marquees, Entrance, color, and texture). By focusing on selected clothing stores from the four markets of Bhopal city, we discovered that the exterior elements (window display, color, and texture) and interior elements (mannequins like dummies and fixtures such as lighting) have a significant positive impact on instant buying among the elements of Visual merchandising.Keywords: instant purchase, visual merchandising, instant buying behavior, consumer behavior, window display, fixtures, mannequins, marquees
Procedia PDF Downloads 1163804 The Impact of Recurring Events in Fake News Detection
Authors: Ali Raza, Shafiq Ur Rehman Khan, Raja Sher Afgun Usmani, Asif Raza, Basit Umair
Abstract:
Detection of Fake news and missing information is gaining popularity, especially after the advancement in social media and online news platforms. Social media platforms are the main and speediest source of fake news propagation, whereas online news websites contribute to fake news dissipation. In this study, we propose a framework to detect fake news using the temporal features of text and consider user feedback to identify whether the news is fake or not. In recent studies, the temporal features in text documents gain valuable consideration from Natural Language Processing and user feedback and only try to classify the textual data as fake or true. This research article indicates the impact of recurring and non-recurring events on fake and true news. We use two models BERT and Bi-LSTM to investigate, and it is concluded from BERT we get better results and 70% of true news are recurring and rest of 30% are non-recurring.Keywords: natural language processing, fake news detection, machine learning, Bi-LSTM
Procedia PDF Downloads 233803 Evaluating the Diagnostic Accuracy of the ctDNA Methylation for Liver Cancer
Authors: Maomao Cao
Abstract:
Objective: To test the performance of ctDNA methylation for the detection of liver cancer. Methods: A total of 1233 individuals have been recruited in 2017. 15 male and 15 female samples (including 10 cases of liver cancer) were randomly selected in the present study. CfDNA was extracted by MagPure Circulating DNA Maxi Kit. The concentration of cfDNA was obtained by Qubit™ dsDNA HS Assay Kit. A pre-constructed predictive model was used to analyze methylation data and to give a predictive score for each cfDNA sample. Individuals with a predictive score greater than or equal to 80 were classified as having liver cancer. CT tests were considered the gold standard. Sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) for the diagnosis of liver cancer were calculated. Results: 9 patients were diagnosed with liver cancer according to the prediction model (with high sensitivity and threshold of 80 points), with scores of 99.2, 91.9, 96.6, 92.4, 91.3, 92.5, 96.8, 91.1, and 92.2, respectively. The sensitivity, specificity, positive predictive value, and negative predictive value of ctDNA methylation for the diagnosis of liver cancer were 0.70, 0.90, 0.78, and 0.86, respectively. Conclusions: ctDNA methylation could be an acceptable diagnostic modality for the detection of liver cancer.Keywords: liver cancer, ctDNA methylation, detection, diagnostic performance
Procedia PDF Downloads 1513802 Analyses of Copper Nanoparticles Impregnated Wood and Its Fungal Degradation Performance
Authors: María Graciela Aguayo, Laura Reyes, Claudia Oviedo, José Navarrete, Liset Gómez, Hugo Torres
Abstract:
Most wood species used in construction deteriorate when exposed to environmental conditions that favor wood-degrading organisms’ growth. Therefore, chemical protection by impregnation allows more efficient use of forest resources extending the wood useful life. A wood protection treatment which has attracted considerable interest in the scientific community during the last decade is wood impregnation with nano compounds. Radiata pine is the main wood species used in the Chilean construction industry, with total availability of 8 million m³ sawn timber. According to the requirements of the American Wood Protection Association (AWPA) and the Chilean Standards (NCh) radiata pine timber used in construction must be protected due to its low natural durability. In this work, the impregnation with copper nanoparticles (CuNP) was studied in terms of penetration and its protective effect against wood rot fungi. Two concentrations: 1 and 3 g/L of NPCu were applied by impregnation on radiata pine sapwood. Test penetration under AWPA A3-91 standard was carried out, and wood decay tests were performed according to EN 113, with slight modifications. The results of penetration for 1 g/L CuNP showed an irregular total penetration, and the samples impregnated with 3 g/L showed a total penetration with uniform concentration (blue color in all cross sections). The impregnation wood mass losses due to fungal exposure were significantly reduced, regardless of the concentration of the solution or the fungus. In impregnated wood samples, exposure to G. trabeum resulted ML values of 2.70% and 1.19% for 1 g/L and 3 g/L CuNP, respectively, and exposure to P. placenta resulted in 4.02% and 0.70%-ML values for 1 g/L and 3 g/L CuNP, respectively. In this study, the penetration analysis confirmed a uniform distribution inside the wood, and both concentrations were effective against the tested fungi, giving mass loss values lower than 5%. Therefore, future research in wood preservatives should focus on new nanomaterials that are more efficient and environmentally friendly. Acknowledgments: CONICYT FONDEF IDeA I+D 2019, grant number ID19I10122.Keywords: copper nanoparticles, fungal degradation, radiata pine wood, wood preservation
Procedia PDF Downloads 1993801 A Comparison of Inverse Simulation-Based Fault Detection in a Simple Robotic Rover with a Traditional Model-Based Method
Authors: Murray L. Ireland, Kevin J. Worrall, Rebecca Mackenzie, Thaleia Flessa, Euan McGookin, Douglas Thomson
Abstract:
Robotic rovers which are designed to work in extra-terrestrial environments present a unique challenge in terms of the reliability and availability of systems throughout the mission. Should some fault occur, with the nearest human potentially millions of kilometres away, detection and identification of the fault must be performed solely by the robot and its subsystems. Faults in the system sensors are relatively straightforward to detect, through the residuals produced by comparison of the system output with that of a simple model. However, faults in the input, that is, the actuators of the system, are harder to detect. A step change in the input signal, caused potentially by the loss of an actuator, can propagate through the system, resulting in complex residuals in multiple outputs. These residuals can be difficult to isolate or distinguish from residuals caused by environmental disturbances. While a more complex fault detection method or additional sensors could be used to solve these issues, an alternative is presented here. Using inverse simulation (InvSim), the inputs and outputs of the mathematical model of the rover system are reversed. Thus, for a desired trajectory, the corresponding actuator inputs are obtained. A step fault near the input then manifests itself as a step change in the residual between the system inputs and the input trajectory obtained through inverse simulation. This approach avoids the need for additional hardware on a mass- and power-critical system such as the rover. The InvSim fault detection method is applied to a simple four-wheeled rover in simulation. Additive system faults and an external disturbance force and are applied to the vehicle in turn, such that the dynamic response and sensor output of the rover are impacted. Basic model-based fault detection is then employed to provide output residuals which may be analysed to provide information on the fault/disturbance. InvSim-based fault detection is then employed, similarly providing input residuals which provide further information on the fault/disturbance. The input residuals are shown to provide clearer information on the location and magnitude of an input fault than the output residuals. Additionally, they can allow faults to be more clearly discriminated from environmental disturbances.Keywords: fault detection, ground robot, inverse simulation, rover
Procedia PDF Downloads 3083800 Band Characterization and Development of Hyperspectral Indices for Retrieving Chlorophyll Content
Authors: Ramandeep Kaur M. Malhi, Prashant K. Srivastava, G.Sandhya Kiran
Abstract:
Quantitative estimates of foliar biochemicals, namely chlorophyll content (CC), serve as key information for the assessment of plant productivity, stress, and the availability of nutrients. This also plays a critical role in predicting the dynamic response of any vegetation to altering climate conditions. The advent of hyperspectral data with an enhanced number of available wavelengths has increased the possibility of acquiring improved information on CC. Retrieval of CC is extensively carried through well known spectral indices derived from hyperspectral data. In the present study, an attempt is made to develop hyperspectral indices by identifying optimum bands for CC estimation in Butea monosperma (Lam.) Taub growing in forests of Shoolpaneshwar Wildlife Sanctuary, Narmada district, Gujarat State, India. 196 narrow bands of EO-1 Hyperion images were screened, and the best optimum wavelength from blue, green, red, and near infrared (NIR) regions were identified based on the coefficient of determination (R²) between band reflectance and laboratory estimated CC. The identified optimum wavelengths were then employed for developing 12 hyperspectral indices. These spectral index values and CC values were then correlated to investigate the relation between laboratory measured CC and spectral indices. Band 15 of blue range and Band 22 of green range, Band 40 of the red region, and Band 79 of NIR region were found to be optimum bands for estimating CC. The optimum band based combinations on hyperspectral data proved to be the most effective indices for quantifying Butea CC with NDVI and TVI identified as the best (R² > 0.7, p < 0.01). The study demonstrated the significance of band characterization in the development of the best hyperspectral indices for the chlorophyll estimation, which can aid in monitoring the vitality of forests.Keywords: band, characterization, chlorophyll, hyperspectral, indices
Procedia PDF Downloads 1553799 Air Handling Units Power Consumption Using Generalized Additive Model for Anomaly Detection: A Case Study in a Singapore Campus
Authors: Ju Peng Poh, Jun Yu Charles Lee, Jonathan Chew Hoe Khoo
Abstract:
The emergence of digital twin technology, a digital replica of physical world, has improved the real-time access to data from sensors about the performance of buildings. This digital transformation has opened up many opportunities to improve the management of the building by using the data collected to help monitor consumption patterns and energy leakages. One example is the integration of predictive models for anomaly detection. In this paper, we use the GAM (Generalised Additive Model) for the anomaly detection of Air Handling Units (AHU) power consumption pattern. There is ample research work on the use of GAM for the prediction of power consumption at the office building and nation-wide level. However, there is limited illustration of its anomaly detection capabilities, prescriptive analytics case study, and its integration with the latest development of digital twin technology. In this paper, we applied the general GAM modelling framework on the historical data of the AHU power consumption and cooling load of the building between Jan 2018 to Aug 2019 from an education campus in Singapore to train prediction models that, in turn, yield predicted values and ranges. The historical data are seamlessly extracted from the digital twin for modelling purposes. We enhanced the utility of the GAM model by using it to power a real-time anomaly detection system based on the forward predicted ranges. The magnitude of deviation from the upper and lower bounds of the uncertainty intervals is used to inform and identify anomalous data points, all based on historical data, without explicit intervention from domain experts. Notwithstanding, the domain expert fits in through an optional feedback loop through which iterative data cleansing is performed. After an anomalously high or low level of power consumption detected, a set of rule-based conditions are evaluated in real-time to help determine the next course of action for the facilities manager. The performance of GAM is then compared with other approaches to evaluate its effectiveness. Lastly, we discuss the successfully deployment of this approach for the detection of anomalous power consumption pattern and illustrated with real-world use cases.Keywords: anomaly detection, digital twin, generalised additive model, GAM, power consumption, supervised learning
Procedia PDF Downloads 1543798 Detection of Helicobacter Pylori by PCR and ELISA Methods in Patients with Hyperlipidemia
Authors: Simin Khodabakhshi, Hossein Rassi
Abstract:
Hyperlipidemia refers to any of several acquired or genetic disorders that result in a high level of lipids circulating in the blood. Helicobacter pylori infection is a contributing factor in the progression of hyperlipidemia with serum lipid changes. The aim of this study was to detect of Helicobacter pylori by PCR and serological methods in patients with hyperlipidemia. In this case-control study, 174 patients with hyperlipidemia and 174 healthy controls were studied. Also, demographics, physical and biochemical parameters were performed in all samples. The DNA extracted from blood specimens was amplified by H pylori cagA specific primers. The results show that H. pylori cagA positivity was detected in 79% of the hyperlipidemia and in 56% of the control group by ELISA test and 49% of the hyperlipidemia and in 24% of the control group by PCR test. Prevalence of H. pylori infection was significantly higher in hyperlipidemia as compared to controls. In addition, patients with hyperlipidemia had significantly higher values for triglyceride, total cholesterol, LDL-C, waist to hip ratio, body mass index, diastolic and systolic blood pressure and lower levels of HDL-C than control participants (all p < 0.0001). Our result detected the ELISA was a rapid and cost-effective detection and considering the high prevalence of cytotoxigenic H. pylori strains, cag A is suggested as a promising target for PCR and ELISA tests for detection of infection with toxigenic strains. In general, it can be concluded that molecular analysis of H. pylori cagA and clinical parameters are important in early detection of hyperlipidemia and atherosclerosis with H. pylori infection by PCR and ELISA tests.Keywords: Helicobacter pylori, hyperlipidemia, PCR, ELISA
Procedia PDF Downloads 199