Search results for: IoT sensors
239 The Optimal Irrigation in the Mitidja Plain
Authors: Gherbi Khadidja
Abstract:
In the Mediterranean region, water resources are limited and very unevenly distributed in space and time. The main objective of this project is the development of a wireless network for the management of water resources in northern Algeria, the Mitidja plain, which helps farmers to irrigate in the most optimized way and solve the problem of water shortage in the region. Therefore, we will develop an aid tool that can modernize and replace some traditional techniques, according to the real needs of the crops and according to the soil conditions as well as the climatic conditions (soil moisture, precipitation, characteristics of the unsaturated zone), These data are collected in real-time by sensors and analyzed by an algorithm and displayed on a mobile application and the website. The results are essential information and alerts with recommendations for action to farmers to ensure the sustainability of the agricultural sector under water shortage conditions. In the first part: We want to set up a wireless sensor network, for precise management of water resources, by presenting another type of equipment that allows us to measure the water content of the soil, such as the Watermark probe connected to the sensor via the acquisition card and an Arduino Uno, which allows collecting the captured data and then program them transmitted via a GSM module that will send these data to a web site and store them in a database for a later study. In a second part: We want to display the results on a website or a mobile application using the database to remotely manage our smart irrigation system, which allows the farmer to use this technology and offers the possibility to the growers to access remotely via wireless communication to see the field conditions and the irrigation operation, at home or at the office. The tool to be developed will be based on satellite imagery as regards land use and soil moisture. These tools will make it possible to follow the evolution of the needs of the cultures in time, but also to time, and also to predict the impact on water resources. According to the references consulted, if such a tool is used, it can reduce irrigation volumes by up to up to 40%, which represents more than 100 million m3 of savings per year for the Mitidja. This volume is equivalent to a medium-size dam.Keywords: optimal irrigation, soil moisture, smart irrigation, water management
Procedia PDF Downloads 109238 Off-Body Sub-GHz Wireless Channel Characterization for Dairy Cows in Barns
Authors: Said Benaissa, David Plets, Emmeric Tanghe, Jens Trogh, Luc Martens, Leen Vandaele, Annelies Van Nuffel, Frank A. M. Tuyttens, Bart Sonck, Wout Joseph
Abstract:
The herd monitoring and managing - in particular the detection of ‘attention animals’ that require care, treatment or assistance is crucial for effective reproduction status, health, and overall well-being of dairy cows. In large sized farms, traditional methods based on direct observation or analysis of video recordings become labour-intensive and time-consuming. Thus, automatic monitoring systems using sensors have become increasingly important to continuously and accurately track the health status of dairy cows. Wireless sensor networks (WSNs) and internet-of-things (IoT) can be effectively used in health tracking of dairy cows to facilitate herd management and enhance the cow welfare. Since on-cow measuring devices are energy-constrained, a proper characterization of the off-body wireless channel between the on-cow sensor nodes and the back-end base station is required for a power-optimized deployment of these networks in barns. The aim of this study was to characterize the off-body wireless channel in indoor (barns) environment at 868 MHz using LoRa nodes. LoRa is an emerging wireless technology mainly targeted at WSNs and IoT networks. Both large scale fading (i.e., path loss) and temporal fading were investigated. The obtained path loss values as a function of the transmitter-receiver separation were well fitted by a lognormal path loss model. The path loss showed an additional increase of 4 dB when the wireless node was actually worn by the cow. The temporal fading due to movement of other cows was well described by Rician distributions with a K-factor of 8.5 dB. Based on this characterization, network planning and energy consumption optimization of the on-body wireless nodes could be performed, which enables the deployment of reliable dairy cow monitoring systems.Keywords: channel, channel modelling, cow monitoring, dairy cows, health monitoring, IoT, LoRa, off-body propagation, PLF, propagation
Procedia PDF Downloads 318237 Organic Thin-Film Transistors with High Thermal Stability
Authors: Sibani Bisoyi, Ute Zschieschang, Alexander Hoyer, Hagen Klauk
Abstract:
Abstract— Organic thin-film transistors (TFTs) have great potential to be used for various applications such as flexible displays or sensors. For some of these applications, the TFTs must be able to withstand temperatures in excess of 100 °C, for example to permit the integration with devices or components that require high process temperatures, or to make it possible that the devices can be subjected to the standard sterilization protocols required for biomedical applications. In this work, we have investigated how the thermal stability of low-voltage small-molecule semiconductor dinaphtho[2,3-b:2’,3’-f]thieno[3,2-b]thiophene (DNTT) TFTs is affected by the encapsulation of the TFTs and by the ambient in which the thermal stress is performed. We also studied to which extent the thermal stability of the TFTs depends on the channel length. Some of the TFTs were encapsulated with a layer of vacuum-deposited Teflon, while others were left without encapsulation, and the thermal stress was performed either in nitrogen or in air. We found that the encapsulation with Teflon has virtually no effect on the thermal stability of our TFTs. In contrast, the ambient in which the thermal stress is conducted was found to have a measurable effect, but in a surprising way: When the thermal stress is carried out in nitrogen, the mobility drops to 70% of its initial value at a temperature of 160 °C and to close to zero at 170 °C, whereas when the stress is performed in air, the mobility remains at 75% of its initial value up to a temperature of 160 °C and at 60% up to 180 °C. To understand this behavior, we studied the effect of the thermal stress on the semiconductor thin-film morphology by scanning electron microscopy. While the DNTT films remain continuous and conducting when the heating is carried out in air, the semiconductor morphology undergoes a dramatic change, including the formation of large, thick crystals of DNTT and a complete loss of percolation, when the heating is conducted in nitrogen. We also found that when the TFTs are heated to a temperature of 200 °C in air, all TFTs with a channel length greater than 50 µm are destroyed, while TFTs with a channel length of less than 50 µm survive, whereas when the TFTs are heated to the same temperature (200 °C) in nitrogen, only the TFTs with a channel smaller than 8 µm survive. This result is also linked to the thermally induced changes in the semiconductor morphology.Keywords: organic thin-film transistors, encapsulation, thermal stability, thin-film morphology
Procedia PDF Downloads 349236 Effects of Machining Parameters on the Surface Roughness and Vibration of the Milling Tool
Authors: Yung C. Lin, Kung D. Wu, Wei C. Shih, Jui P. Hung
Abstract:
High speed and high precision machining have become the most important technology in manufacturing industry. The surface roughness of high precision components is regarded as the important characteristics of the product quality. However, machining chatter could damage the machined surface and restricts the process efficiency. Therefore, selection of the appropriate cutting conditions is of importance to prevent the occurrence of chatter. In addition, vibration of the spindle tool also affects the surface quality, which implies the surface precision can be controlled by monitoring the vibration of the spindle tool. Based on this concept, this study was aimed to investigate the influence of the machining conditions on the surface roughness and the vibration of the spindle tool. To this end, a series of machining tests were conducted on aluminum alloy. In tests, the vibration of the spindle tool was measured by using the acceleration sensors. The surface roughness of the machined parts was examined using white light interferometer. The response surface methodology (RSM) was employed to establish the mathematical models for predicting surface finish and tool vibration, respectively. The correlation between the surface roughness and spindle tool vibration was also analyzed by ANOVA analysis. According to the machining tests, machined surface with or without chattering was marked on the lobes diagram as the verification of the machining conditions. Using multivariable regression analysis, the mathematical models for predicting the surface roughness and tool vibrations were developed based on the machining parameters, cutting depth (a), feed rate (f) and spindle speed (s). The predicted roughness is shown to agree well with the measured roughness, an average percentage of errors of 10%. The average percentage of errors of the tool vibrations between the measurements and the predictions of mathematical model is about 7.39%. In addition, the tool vibration under various machining conditions has been found to have a positive influence on the surface roughness (r=0.78). As a conclusion from current results, the mathematical models were successfully developed for the predictions of the surface roughness and vibration level of the spindle tool under different cutting condition, which can help to select appropriate cutting parameters and to monitor the machining conditions to achieve high surface quality in milling operation.Keywords: machining parameters, machining stability, regression analysis, surface roughness
Procedia PDF Downloads 231235 Realization and Characterizations of Conducting Ceramics Based on ZnO Doped by TiO₂, Al₂O₃ and MgO
Authors: Qianying Sun, Abdelhadi Kassiba, Guorong Li
Abstract:
ZnO with wurtzite structure is a well-known semiconducting oxide (SCO), being applied in thermoelectric devices, varistors, gas sensors, transparent electrodes, solar cells, liquid crystal displays, piezoelectric and electro-optical devices. Intrinsically, ZnO is weakly n-type SCO due to native defects (Znⱼ, Vₒ). However, the substitutional doping by metallic elements as (Al, Ti) gives rise to a high n-type conductivity ensured by donor centers. Under CO+N₂ sintering atmosphere, Schottky barriers of ZnO ceramics will be suppressed by lowering the concentration of acceptors at grain boundaries and then inducing a large increase in the Hall mobility, thereby increasing the conductivity. The presented work concerns ZnO based ceramics, which are fabricated with doping by TiO₂ (0.50mol%), Al₂O₃ (0.25mol%) and MgO (1.00mol%) and sintering in different atmospheres (Air (A), N₂ (N), CO+N₂(C)). We obtained uniform, dense ceramics with ZnO as the main phase and Zn₂TiO₄ spinel as a secondary and minor phase. An important increase of the conductivity was shown for the samples A, N, and C which were sintered under different atmospheres. The highest conductivity (σ = 1.52×10⁵ S·m⁻¹) was obtained under the reducing atmosphere (CO). The role of doping was investigated with the aim to identify the local environment and valence states of the doping elements. Thus, Electron paramagnetic spectroscopy (EPR) determines the concentration of defects and the effects of charge carriers in ZnO ceramics as a function of the sintering atmospheres. The relation between conductivity and defects concentration shows the opposite behavior between these parameters suggesting that defects act as traps for charge carriers. For Al ions, nuclear magnetic resonance (NMR) technique was used to identify the involved local coordination of these ions. Beyond the six and forth coordinated Al, an additional NMR signature of ZnO based TCO requires analysis taking into account the grain boundaries and the conductivity through the Knight shift effects. From the thermal evolution of the conductivity as a function of the sintering atmosphere, we succeed in defining the conditions to realize ZnO based TCO ceramics with an important thermal coefficient of resistance (TCR) which is promising for electrical safety of devices.Keywords: ceramics, conductivity, defects, TCO, ZnO
Procedia PDF Downloads 196234 A Selective and Fast Hydrogen Sensor Using Doped-LaCrO₃ as Sensing Electrode
Authors: He Zhang, Jianxin Yi
Abstract:
As a clean energy, hydrogen shows many advantages such as renewability, high heat value, and extensive sources and may play an important role in the future society. However, hydrogen is a combustible gas because of its low ignition energy (0.02mJ) and wide explosive limit (4% ~ 74% in air). It is very likely to cause fire hazard or explosion once leakage is happened and not detected in time. Mixed-potential type sensor has attracted much attention in monitoring and detecting hydrogen due to its high response, simple support electronics and long-term stability. Typically, this kind of sensor is consisted of a sensing electrode (SE), a reference electrode (RE) and a solid electrolyte. The SE and RE materials usually display different electrocatalytic abilities to hydrogen. So hydrogen could be detected by measuring the EMF change between the two electrodes. Previous reports indicate that a high-performance sensing electrode is important for improving the sensing characteristics of the sensor. In this report, a planar type mixed-potential hydrogen sensor using La₀.₈Sr₀.₂Cr₀.₅Mn₀.₅O₃₋δ (LSCM) as SE, Pt as RE and yttria-stabilized zirconia (YSZ) as solid electrolyte was developed. The reason for selecting LSCM as sensing electrode is that it shows the high electrocatalytic ability to hydrogen in solid oxide fuel cells. The sensing performance of the fabricated LSCM/YSZ/Pt sensor was tested systemically. The experimental results show that the sensor displays high response to hydrogen. The response values for 100ppm and 1000ppm hydrogen at 450 ºC are -70 mV and -118 mV, respectively. The response time is an important parameter to evaluate a sensor. In this report, the sensor response time decreases with increasing hydrogen concentration and get saturated above 500ppm. The steady response time at 450 ºC is as short as 4s, indicating the sensor shows great potential in practical application to monitor hydrogen. An excellent response repeatability to 100ppm hydrogen at 450 ˚C and a good sensor reproducibility among three sensors were also observed. Meanwhile, the sensor exhibits excellent selectivity to hydrogen compared with several interfering gases such as NO₂, CH₄, CO, C₃H₈ and NH₃. Polarization curves were tested to investigate the sensing mechanism and the results indicated the sensor abide by the mixed-potential mechanism.Keywords: fire hazard, H₂ sensor, mixed-potential, perovskite
Procedia PDF Downloads 185233 Hybrid Nanostructures of Acrylonitrile Copolymers
Authors: A. Sezai Sarac
Abstract:
Acrylonitrile (AN) copolymers with typical comonomers of vinyl acetate (VAc) or methyl acrylate (MA) exhibit better mechanical behaviors than its homopolymer. To increase processability of conjugated polymer, and to obtain a hybrid nano-structure multi-stepped emulsion polymerization was applied. Such products could be used in, i.e., drug-delivery systems, biosensors, gas-sensors, electronic compounds, etc. Incorporation of a number of flexible comonomers weakens the dipolar interactions among CN and thereby decreases melting point or increases decomposition temperatures of the PAN based copolymers. Hence, it is important to consider the effect of comonomer on the properties of PAN-based copolymers. Acrylonitrile vinylacetate (AN–VAc ) copolymers have the significant effect to their thermal behavior and are also of interest as precursors in the production of high strength carbon fibers. AN is copolymerized with one or two comonomers, particularly with vinyl acetate The copolymer of AN and VAc can be used either as a plastic (VAc > 15 wt %) or as microfibers (VAc < 15 wt %). AN provides the copolymer with good processability, electrochemical and thermal stability; VAc provides the mechanical stability. The free radical copolymerization of AN and VAc copolymer and core Shell structure of polyprrole composites,and nanofibers of poly(m-anthranilic acid)/polyacrylonitrile blends were recently studied. Free radical copolymerization of acrylonitrile (AN) – with different comonomers, i.e. acrylates, and styrene was realized using ammonium persulfate (APS) in the presence of a surfactant and in-situ polymerization of conjugated polymers was performed in this reaction medium to obtain core-shell nano particles. Nanofibers of such nanoparticles were obtained by electrospinning. Morphological properties of nanofibers are investigated by scanning electron microscopy (SEM) and atomic force spectroscopy (AFM). Nanofibers are characterized using Fourier Transform Infrared - Attenuated Total Reflectance spectrometer (FTIR-ATR), Nuclear Magnetic Resonance Spectroscopy (1H-NMR), differential scanning calorimeter (DSC), thermal gravimetric analysis (TGA), and Electrochemical Impedance Spectroscopy. The electrochemical Impedance results of the nanofibers were fitted to an equivalent curcuit by modelling (ECM).Keywords: core shell nanoparticles, nanofibers, ascrylonitile copolymers, hybrid nanostructures
Procedia PDF Downloads 383232 Projected Uncertainties in Herbaceous Production Result from Unpredictable Rainfall Pattern and Livestock Grazing in a Humid Tropical Savanna Ecosystem
Authors: Daniel Osieko Okach, Joseph Otieno Ondier, Gerhard Rambold, John Tenhunen, Bernd Huwe, Dennis Otieno
Abstract:
Increased human activities such as grazing, logging, and agriculture alongside unpredictable rainfall patterns have been detrimental to the ecosystem service delivery, therefore compromising its productivity potential. This study aimed at simulating the impact of drought (50%) and enhanced rainfall (150%) on the future herbaceous CO2 uptake, biomass production and soil C:N dynamics in a humid savanna ecosystem influenced by livestock grazing. Rainfall pattern was predicted using manipulation experiments set up to reduce (50%) and increase (150%) ambient (100%) rainfall amounts in grazed and non-grazed plots. The impact of manipulated rainfall regime on herbaceous CO2 fluxes, biomass production and soil C:N dynamics was measured against volumetric soil water content (VWC) logged every 30 minutes using the 5TE (Decagon Devices Inc., Washington, USA) soil moisture sensors installed (at 20 cm soil depth) in every plots. Herbaceous biomass was estimated using destructive method augmented by standardized photographic imaging. CO2 fluxes were measured using the ecosystem chamber method and the gas analysed using LI-820 gas analyzer (USA). C:N ratio was calculated from the soil carbon and Nitrogen contents (analyzed using EA2400CHNS/O and EA2410 N elemental analyzers respectively) of different plots under study. The patterning of VWC was directly influenced by the rainfall amount with lower VWC observed in the grazed compared to the non-grazed plots. Rainfall variability, grazing and their interaction significantly affected changes in VWC (p < 0.05) and subsequently total biomass and CO2 fluxes. VWC had a strong influence on CO2 fluxes under 50% rainfall reduction in the grazed (r2 = 0.91; p < 0.05) and ambient rainfall in the ungrazed (r2 = 0.77; p < 0.05). The dependence of biomass on VWC across plots was enhanced under grazed (r2 = 0.78 - 0.87; p < 0.05) condition as compared to ungrazed (r2 = 0.44 - 0.85; p < 0.05). The C:N ratio was however not correlated to VWC across plots. This study provides insight on how the predicted trends in humid savanna will respond to changes influenced by rainfall variability and livestock grazing and consequently the sustainable management of such ecosystems.Keywords: CO2 fluxes, rainfall manipulation, soil properties, sustainability
Procedia PDF Downloads 134231 Modeling Biomass and Biodiversity across Environmental and Management Gradients in Temperate Grasslands with Deep Learning and Sentinel-1 and -2
Authors: Javier Muro, Anja Linstadter, Florian Manner, Lisa Schwarz, Stephan Wollauer, Paul Magdon, Gohar Ghazaryan, Olena Dubovyk
Abstract:
Monitoring the trade-off between biomass production and biodiversity in grasslands is critical to evaluate the effects of management practices across environmental gradients. New generations of remote sensing sensors and machine learning approaches can model grasslands’ characteristics with varying accuracies. However, studies often fail to cover a sufficiently broad range of environmental conditions, and evidence suggests that prediction models might be case specific. In this study, biomass production and biodiversity indices (species richness and Fishers’ α) are modeled in 150 grassland plots for three sites across Germany. These sites represent a North-South gradient and are characterized by distinct soil types, topographic properties, climatic conditions, and management intensities. Predictors used are derived from Sentinel-1 & 2 and a set of topoedaphic variables. The transferability of the models is tested by training and validating at different sites. The performance of feed-forward deep neural networks (DNN) is compared to a random forest algorithm. While biomass predictions across gradients and sites were acceptable (r2 0.5), predictions of biodiversity indices were poor (r2 0.14). DNN showed higher generalization capacity than random forest when predicting biomass across gradients and sites (relative root mean squared error of 0.5 for DNN vs. 0.85 for random forest). DNN also achieved high performance when using the Sentinel-2 surface reflectance data rather than different combinations of spectral indices, Sentinel-1 data, or topoedaphic variables, simplifying dimensionality. This study demonstrates the necessity of training biomass and biodiversity models using a broad range of environmental conditions and ensuring spatial independence to have realistic and transferable models where plot level information can be upscaled to landscape scale.Keywords: ecosystem services, grassland management, machine learning, remote sensing
Procedia PDF Downloads 218230 Automated Manual Handling Risk Assessments: Practitioner Experienced Determinants of Automated Risk Analysis and Reporting Being a Benefit or Distraction
Authors: S. Cowley, M. Lawrance, D. Bick, R. McCord
Abstract:
Technology that automates manual handling (musculoskeletal disorder or MSD) risk assessments is increasingly available to ergonomists, engineers, generalist health and safety practitioners alike. The risk assessment process is generally based on the use of wearable motion sensors that capture information about worker movements for real-time or for posthoc analysis. Traditionally, MSD risk assessment is undertaken with the assistance of a checklist such as that from the SafeWork Australia code of practice, the expert assessor observing the task and ideally engaging with the worker in a discussion about the detail. Automation enables the non-expert to complete assessments and does not always require the assessor to be there. This clearly has cost and time benefits for the practitioner but is it an improvement on the assessment by the human. Human risk assessments draw on the knowledge and expertise of the assessor but, like all risk assessments, are highly subjective. The complexity of the checklists and models used in the process can be off-putting and sometimes will lead to the assessment becoming the focus and the end rather than a means to an end; the focus on risk control is lost. Automated risk assessment handles the complexity of the assessment for the assessor and delivers a simple risk score that enables decision-making regarding risk control. Being machine-based, they are objective and will deliver the same each time they assess an identical task. However, the WHS professional needs to know that this emergent technology asks the right questions and delivers the right answers. Whether it improves the risk assessment process and results or simply distances the professional from the task and the worker. They need clarity as to whether automation of manual task risk analysis and reporting leads to risk control or to a focus on the worker. Critically, they need evidence as to whether automation in this area of hazard management leads to better risk control or just a bigger collection of assessments. Practitioner experienced determinants of this automated manual task risk analysis and reporting being a benefit or distraction will address an understanding of emergent risk assessment technology, its use and things to consider when making decisions about adopting and applying these technologies.Keywords: automated, manual-handling, risk-assessment, machine-based
Procedia PDF Downloads 119229 Study on Control Techniques for Adaptive Impact Mitigation
Authors: Rami Faraj, Cezary Graczykowski, Błażej Popławski, Grzegorz Mikułowski, Rafał Wiszowaty
Abstract:
Progress in the field of sensors, electronics and computing results in more and more often applications of adaptive techniques for dynamic response mitigation. When it comes to systems excited with mechanical impacts, the control system has to take into account the significant limitations of actuators responsible for system adaptation. The paper provides a comprehensive discussion of the problem of appropriate design and implementation of adaptation techniques and mechanisms. Two case studies are presented in order to compare completely different adaptation schemes. The first example concerns a double-chamber pneumatic shock absorber with a fast piezo-electric valve and parameters corresponding to the suspension of a small unmanned aerial vehicle, whereas the second considered system is a safety air cushion applied for evacuation of people from heights during a fire. For both systems, it is possible to ensure adaptive performance, but a realization of the system’s adaptation is completely different. The reason for this is technical limitations corresponding to specific types of shock-absorbing devices and their parameters. Impact mitigation using a pneumatic shock absorber corresponds to much higher pressures and small mass flow rates, which can be achieved with minimal change of valve opening. In turn, mass flow rates in safety air cushions relate to gas release areas counted in thousands of sq. cm. Because of these facts, both shock-absorbing systems are controlled based on completely different approaches. Pneumatic shock-absorber takes advantage of real-time control with valve opening recalculated at least every millisecond. In contrast, safety air cushion is controlled using the semi-passive technique, where adaptation is provided using prediction of the entire impact mitigation process. Similarities of both approaches, including applied models, algorithms and equipment, are discussed. The entire study is supported by numerical simulations and experimental tests, which prove the effectiveness of both adaptive impact mitigation techniques.Keywords: adaptive control, adaptive system, impact mitigation, pneumatic system, shock-absorber
Procedia PDF Downloads 90228 Artificial Neural Network Based Model for Detecting Attacks in Smart Grid Cloud
Authors: Sandeep Mehmi, Harsh Verma, A. L. Sangal
Abstract:
Ever since the idea of using computing services as commodity that can be delivered like other utilities e.g. electric and telephone has been floated, the scientific fraternity has diverted their research towards a new area called utility computing. New paradigms like cluster computing and grid computing came into existence while edging closer to utility computing. With the advent of internet the demand of anytime, anywhere access of the resources that could be provisioned dynamically as a service, gave rise to the next generation computing paradigm known as cloud computing. Today, cloud computing has become one of the most aggressively growing computer paradigm, resulting in growing rate of applications in area of IT outsourcing. Besides catering the computational and storage demands, cloud computing has economically benefitted almost all the fields, education, research, entertainment, medical, banking, military operations, weather forecasting, business and finance to name a few. Smart grid is another discipline that direly needs to be benefitted from the cloud computing advantages. Smart grid system is a new technology that has revolutionized the power sector by automating the transmission and distribution system and integration of smart devices. Cloud based smart grid can fulfill the storage requirement of unstructured and uncorrelated data generated by smart sensors as well as computational needs for self-healing, load balancing and demand response features. But, security issues such as confidentiality, integrity, availability, accountability and privacy need to be resolved for the development of smart grid cloud. In recent years, a number of intrusion prevention techniques have been proposed in the cloud, but hackers/intruders still manage to bypass the security of the cloud. Therefore, precise intrusion detection systems need to be developed in order to secure the critical information infrastructure like smart grid cloud. Considering the success of artificial neural networks in building robust intrusion detection, this research proposes an artificial neural network based model for detecting attacks in smart grid cloud.Keywords: artificial neural networks, cloud computing, intrusion detection systems, security issues, smart grid
Procedia PDF Downloads 318227 An Open-Source Guidance System for an Autonomous Planter Robot in Precision Agriculture
Authors: Nardjes Hamini, Mohamed Bachir Yagoubi
Abstract:
Precision agriculture has revolutionized farming by enabling farmers to monitor their crops remotely in real-time. By utilizing technologies such as sensors, farmers can detect the state of growth, hydration levels, and nutritional status and even identify diseases affecting their crops. With this information, farmers can make informed decisions regarding irrigation, fertilization, and pesticide application. Automated agricultural tasks, such as plowing, seeding, planting, and harvesting, are carried out by autonomous robots and have helped reduce costs and increase production. Despite the advantages of precision agriculture, its high cost makes it inaccessible to small and medium-sized farms. To address this issue, this paper presents an open-source guidance system for an autonomous planter robot. The system is composed of a Raspberry Pi-type nanocomputer equipped with Wi-Fi, a GPS module, a gyroscope, and a power supply module. The accompanying application allows users to enter and calibrate maps with at least four coordinates, enabling the localized contour of the parcel to be captured. The application comprises several modules, such as the mission entry module, which traces the planting trajectory and points, and the action plan entry module, which creates an ordered list of pre-established tasks such as loading, following the plan, returning to the garage, and entering sleep mode. A remote control module enables users to control the robot manually, visualize its location on the map, and use a real-time camera. Wi-Fi coverage is provided by an outdoor access point, covering a 2km circle. This open-source system offers a low-cost alternative for small and medium-sized farms, enabling them to benefit from the advantages of precision agriculture.Keywords: autonomous robot, guidance system, low-cost, medium farms, open-source system, planter robot, precision agriculture, real-time monitoring, remote control, small farms
Procedia PDF Downloads 110226 A Literature Study on IoT Based Monitoring System for Smart Agriculture
Authors: Sonu Rana, Jyoti Verma, A. K. Gautam
Abstract:
In most developing countries like India, the majority of the population heavily relies on agriculture for their livelihood. The yield of agriculture is heavily dependent on uncertain weather conditions like a monsoon, soil fertility, availability of irrigation facilities and fertilizers as well as support from the government. The agricultural yield is quite less compared to the effort put in due to inefficient agricultural facilities and obsolete farming practices on the one hand and lack of knowledge on the other hand, and ultimately agricultural community does not prosper. It is therefore essential for the farmers to improve their harvest yield by the acquisition of related data such as soil condition, temperature, humidity, availability of irrigation facilities, availability of, manure, etc., and adopt smart farming techniques using modern agricultural equipment. Nowadays, using IOT technology in agriculture is the best solution to improve the yield with fewer efforts and economic costs. The primary focus of this work-related is IoT technology in the agriculture field. By using IoT all the parameters would be monitored by mounting sensors in an agriculture field held at different places, will collect real-time data, and could be transmitted by a transmitting device like an antenna. To improve the system, IoT will interact with other useful systems like Wireless Sensor Networks. IoT is exploring every aspect, so the radio frequency spectrum is getting crowded due to the increasing demand for wireless applications. Therefore, Federal Communications Commission is reallocating the spectrum for various wireless applications. An antenna is also an integral part of the newly designed IoT devices. The main aim is to propose a new antenna structure used for IoT agricultural applications and compatible with this new unlicensed frequency band. The main focus of this paper is to present work related to these technologies in the agriculture field. This also presented their challenges & benefits. It can help in understanding the job of data by using IoT and correspondence advancements in the horticulture division. This will help to motivate and educate the unskilled farmers to comprehend the best bits of knowledge given by the huge information investigation utilizing smart technology.Keywords: smart agriculture, IoT, agriculture technology, data analytics, smart technology
Procedia PDF Downloads 116225 Developing Manufacturing Process for the Graphene Sensors
Authors: Abdullah Faqihi, John Hedley
Abstract:
Biosensors play a significant role in the healthcare sectors, scientific and technological progress. Developing electrodes that are easy to manufacture and deliver better electrochemical performance is advantageous for diagnostics and biosensing. They can be implemented extensively in various analytical tasks such as drug discovery, food safety, medical diagnostics, process controls, security and defence, in addition to environmental monitoring. Development of biosensors aims to create high-performance electrochemical electrodes for diagnostics and biosensing. A biosensor is a device that inspects the biological and chemical reactions generated by the biological sample. A biosensor carries out biological detection via a linked transducer and transmits the biological response into an electrical signal; stability, selectivity, and sensitivity are the dynamic and static characteristics that affect and dictate the quality and performance of biosensors. In this research, a developed experimental study for laser scribing technique for graphene oxide inside a vacuum chamber for processing of graphene oxide is presented. The processing of graphene oxide (GO) was achieved using the laser scribing technique. The effect of the laser scribing on the reduction of GO was investigated under two conditions: atmosphere and vacuum. GO solvent was coated onto a LightScribe DVD. The laser scribing technique was applied to reduce GO layers to generate rGO. The micro-details for the morphological structures of rGO and GO were visualised using scanning electron microscopy (SEM) and Raman spectroscopy so that they could be examined. The first electrode was a traditional graphene-based electrode model, made under normal atmospheric conditions, whereas the second model was a developed graphene electrode fabricated under a vacuum state using a vacuum chamber. The purpose was to control the vacuum conditions, such as the air pressure and the temperature during the fabrication process. The parameters to be assessed include the layer thickness and the continuous environment. Results presented show high accuracy and repeatability achieving low cost productivity.Keywords: laser scribing, lightscribe DVD, graphene oxide, scanning electron microscopy
Procedia PDF Downloads 120224 Study of the Uncertainty Behaviour for the Specific Total Enthalpy of the Hypersonic Plasma Wind Tunnel Scirocco at Italian Aerospace Research Center
Authors: Adolfo Martucci, Iulian Mihai
Abstract:
By means of the expansion through a Conical Nozzle and the low pressure inside the Test Chamber, a large hypersonic stable flow takes place for a duration of up to 30 minutes. Downstream the Test Chamber, the diffuser has the function of reducing the flow velocity to subsonic values, and as a consequence, the temperature increases again. In order to cool down the flow, a heat exchanger is present at the end of the diffuser. The Vacuum System generates the necessary vacuum conditions for the correct hypersonic flow generation, and the DeNOx system, which follows the Vacuum System, reduces the nitrogen oxide concentrations created inside the plasma flow behind the limits imposed by Italian law. This very large, powerful, and complex facility allows researchers and engineers to reproduce entire re-entry trajectories of space vehicles into the atmosphere. One of the most important parameters for a hypersonic flowfield representative of re-entry conditions is the specific total enthalpy. This is the whole energy content of the fluid, and it represents how severe could be the conditions around a spacecraft re-entering from a space mission or, in our case, inside a hypersonic wind tunnel. It is possible to reach very high values of enthalpy (up to 45 MJ/kg) that, together with the large allowable size of the models, represent huge possibilities for making on-ground experiments regarding the atmospheric re-entry field. The maximum nozzle exit section diameter is 1950 mm, where values of Mach number very much higher than 1 can be reached. The specific total enthalpy is evaluated by means of a number of measurements, each of them concurring with its value and its uncertainty. The scope of the present paper is the evaluation of the sensibility of the uncertainty of the specific total enthalpy versus all the parameters and measurements involved. The sensors that, if improved, could give the highest advantages have so been individuated. Several simulations in Python with the METAS library and by means of Monte Carlo simulations are presented together with the obtained results and discussions about them.Keywords: hypersonic, uncertainty, enthalpy, simulations
Procedia PDF Downloads 97223 Automatic Furrow Detection for Precision Agriculture
Authors: Manpreet Kaur, Cheol-Hong Min
Abstract:
The increasing advancement in the robotics equipped with machine vision sensors applied to precision agriculture is a demanding solution for various problems in the agricultural farms. An important issue related with the machine vision system concerns crop row and weed detection. This paper proposes an automatic furrow detection system based on real-time processing for identifying crop rows in maize fields in the presence of weed. This vision system is designed to be installed on the farming vehicles, that is, submitted to gyros, vibration and other undesired movements. The images are captured under image perspective, being affected by above undesired effects. The goal is to identify crop rows for vehicle navigation which includes weed removal, where weeds are identified as plants outside the crop rows. The images quality is affected by different lighting conditions and gaps along the crop rows due to lack of germination and wrong plantation. The proposed image processing method consists of four different processes. First, image segmentation based on HSV (Hue, Saturation, Value) decision tree. The proposed algorithm used HSV color space to discriminate crops, weeds and soil. The region of interest is defined by filtering each of the HSV channels between maximum and minimum threshold values. Then the noises in the images were eliminated by the means of hybrid median filter. Further, mathematical morphological processes, i.e., erosion to remove smaller objects followed by dilation to gradually enlarge the boundaries of regions of foreground pixels was applied. It enhances the image contrast. To accurately detect the position of crop rows, the region of interest is defined by creating a binary mask. The edge detection and Hough transform were applied to detect lines represented in polar coordinates and furrow directions as accumulations on the angle axis in the Hough space. The experimental results show that the method is effective.Keywords: furrow detection, morphological, HSV, Hough transform
Procedia PDF Downloads 231222 Improved Non-Ideal Effects in AlGaN/GaN-Based Ion-Sensitive Field-Effect Transistors
Authors: Wei-Chou Hsu, Ching-Sung Lee, Han-Yin Liu
Abstract:
This work uses H2O2 oxidation technique to improve the pH sensitivity of the AlGaN/GaN-based ion-sensitive field-effect transistors (ISFETs). 10-nm-thick Al2O3 was grown on the surface of the AlGaN. It was found that the pH sensitivity was improved from 41.6 mV/pH to 55.2 mV/pH. Since the H2O2-grown Al2O3 was served as a passivation layer and the problem of Fermi-level pinning was suppressed for the ISFET with the H2O2 oxidation process. Hysteresis effect in the ISFET with the H2O2 treatment also became insignificant. The hysteresis effect was observed by dipping the ISFETs into different pH value solutions and comparing the voltage difference between the initial and final conditions. The hysteresis voltage (Vhys) of the ISFET with the H2O2 oxidation process was improved from 8.7 mV to 4.8 mV. The hysteresis effect is related to the buried binding sites which are related to the material defects like threading dislocations in the AlGaN/GaN heterostructure which was grown by the hetero-epitaxy technique. The H2O2-grown Al2O3 passivate these material defects and the Al2O3 has less material defects. The long-term stability of the ISFET is estimated by the drift effect measurement. The drift measurement was conducted by dipping the ISFETs into a specific pH value solution for 12 hours and the ISFETs were operating at a specific quiescent point. The drift rate is estimated by the drift voltage divided by the total measuring time. It was found that the drift rate of the ISFET was improved from 10.1 mV/hour to 1.91 mV/hour in the pH 7 solution, from 14.06 mV/hour to 6.38 mV/pH in the pH 2 solution, and from 12.8 mV/hour to 5.48 mV/hour in the pH 12 solution. The drift effect results from the capacitance variation in the electric double layer. The H2O2-grown Al2O3 provides an additional capacitance connection in series with the electric double layer. Therefore, the capacitance variation of the electric double layer became insignificant. Generally, the H2O2 oxidation process is a simple, fast, and cost-effective method for the AlGaN/GaN-based ISFET. Furthermore, the performance of the AlGaN/GaN ISFET was improved effectively and the non-ideal effects were suppressed.Keywords: AlGaN/GaN, Al2O3, hysteresis effect, drift effect, reliability, passivation, pH sensors
Procedia PDF Downloads 325221 Empirical Analysis of the Effect of Cloud Movement in a Basic Off-Grid Photovoltaic System: Case Study Using Transient Response of DC-DC Converters
Authors: Asowata Osamede, Christo Pienaar, Johan Bekker
Abstract:
Mismatch in electrical energy (power) or outage from commercial providers, in general, does not promote development to the public and private sector, these basically limit the development of industries. The necessity for a well-structured photovoltaic (PV) system is of importance for an efficient and cost-effective monitoring system. The major renewable energy potential on earth is provided from solar radiation and solar photovoltaics (PV) are considered a promising technological solution to support the global transformation to a low-carbon economy and reduction on the dependence on fossil fuels. Solar arrays which consist of various PV module should be operated at the maximum power point in order to reduce the overall cost of the system. So power regulation and conditioning circuits should be incorporated in the set-up of a PV system. Power regulation circuits used in PV systems include maximum power point trackers, DC-DC converters and solar chargers. Inappropriate choice of power conditioning device in a basic off-grid PV system can attribute to power loss, hence the need for a right choice of power conditioning device to be coupled with the system of the essence. This paper presents the design and implementation of a power conditioning devices in order to improve the overall yield from the availability of solar energy and the system’s total efficiency. The power conditioning devices taken into consideration in the project includes the Buck and Boost DC-DC converters as well as solar chargers with MPPT. A logging interface circuit (LIC) is designed and employed into the system. The LIC is designed on a printed circuit board. It basically has DC current signalling sensors, specifically the LTS 6-NP. The LIC is consequently required to program the voltages in the system (these include the PV voltage and the power conditioning device voltage). The voltage is structured in such a way that it can be accommodated by the data logger. Preliminary results which include availability of power as well as power loss in the system and efficiency will be presented and this would be used to draw the final conclusion.Keywords: tilt and orientation angles, solar chargers, PV panels, storage devices, direct solar radiation
Procedia PDF Downloads 135220 UV-Enhanced Room-Temperature Gas-Sensing Properties of ZnO-SnO2 Nanocomposites Obtained by Hydrothermal Treatment
Authors: Luís F. da Silva, Ariadne C. Catto, Osmando F. Lopes, Khalifa Aguir, Valmor R. Mastelaro, Caue Ribeiro, Elson Longo
Abstract:
Gas detection is important for controlling industrial, and vehicle emissions, agricultural residues, and environmental control. In last decades, several semiconducting oxides have been used to detect dangerous or toxic gases. The excellent gas-sensing performance of these devices have been observed at high temperatures (~250 °C), which forbids the use for the detection of flammable and explosive gases. In this way, ultraviolet light activated gas sensors have been a simple and promising alternative to achieve room temperature sensitivity. Among the semiconductor oxides which exhibit a good performance as gas sensor, the zinc oxide (ZnO) and tin oxide (SnO2) have been highlighted. Nevertheless, their poor selectivity is the main disadvantage for application as gas sensor devices. Recently, heterostructures combining these two semiconductors (ZnO-SnO2) have been studied as an alternative way to enhance the gas sensor performance (sensitivity, selectivity, and stability). In this work, we investigated the influence of mass ratio Zn:Sn on the properties of ZnO-SnO2 nanocomposites prepared by hydrothermal treatment for 4 hours at 200 °C. The crystalline phase, surface, and morphological features were characterized by X-ray diffraction (XRD), high-resolution transmission electron (HR-TEM), and X-ray photoelectron spectroscopy (XPS) measurements. The gas sensor measurements were carried out at room-temperature under ultraviolet (UV) light irradiation using different ozone levels (0.06 to 0.61 ppm). The XRD measurements indicate the presence of ZnO and SnO2 crystalline phases, without the evidence of solid solution formation. HR-TEM analysis revealed that a good contact between the SnO2 nanoparticles and the ZnO nanorods, which are very important since interface characteristics between nanostructures are considered as challenge to development new and efficient heterostructures. Electrical measurements proved that the best ozone gas-sensing performance is obtained for ZnO:SnO2 (50:50) nanocomposite under UV light irradiation. Its sensitivity was around 6 times higher when compared to SnO2 pure, a traditional ozone gas sensor. These results demonstrate the potential of ZnO-SnO2 heterojunctions for the detection of ozone gas at room-temperature when irradiated with UV light irradiation.Keywords: hydrothermal, zno-sno2, ozone sensor, uv-activation, room-temperature
Procedia PDF Downloads 284219 Interference of Mild Drought Stress on Estimation of Nitrogen Status in Winter Wheat by Some Vegetation Indices
Authors: H. Tavakoli, S. S. Mohtasebi, R. Alimardani, R. Gebbers
Abstract:
Nitrogen (N) is one of the most important agricultural inputs affecting crop growth, yield and quality in rain-fed cereal production. N demand of crops varies spatially across fields due to spatial differences in soil conditions. In addition, the response of a crop to the fertilizer applications is heavily reliant on plant available water. Matching N supply to water availability is thus essential to achieve an optimal crop response. The objective of this study was to determine effect of drought stress on estimation of nitrogen status of winter wheat by some vegetation indices. During the 2012 growing season, a field experiment was conducted at the Bundessortenamt (German Plant Variety Office) Marquardt experimental station which is located in the village of Marquardt about 5 km northwest of Potsdam, Germany (52°27' N, 12°57' E). The experiment was designed as a randomized split block design with two replications. Treatments consisted of four N fertilization rates (0, 60, 120 and 240 kg N ha-1, in total) and two water regimes (irrigated (Irr) and non-irrigated (NIrr)) in total of 16 plots with dimension of 4.5 × 9.0 m. The indices were calculated using readings of a spectroradiometer made of tec5 components. The main parts were two “Zeiss MMS1 nir enh” diode-array sensors with a nominal rage of 300 to 1150 nm with less than 10 nm resolutions and an effective range of 400 to 1000 nm. The following vegetation indices were calculated: NDVI, GNDVI, SR, MSR, NDRE, RDVI, REIP, SAVI, OSAVI, MSAVI, and PRI. All the experiments were conducted during the growing season in different plant growth stages including: stem elongation (BBCH=32-41), booting stage (BBCH=43), inflorescence emergence, heading (BBCH=56-58), flowering (BBCH=65-69), and development of fruit (BBCH=71). According to the results obtained, among the indices, NDRE and REIP were less affected by drought stress and can provide reliable wheat nitrogen status information, regardless of water status of the plant. They also showed strong relations with nitrogen status of winter wheat.Keywords: nitrogen status, drought stress, vegetation indices, precision agriculture
Procedia PDF Downloads 319218 A Literature Review of Precision Agriculture: Applications of Diagnostic Diseases in Corn, Potato, and Rice Based on Artificial Intelligence
Authors: Carolina Zambrana, Grover Zurita
Abstract:
The food loss production that occurs in deficient agricultural production is one of the major problems worldwide. This puts the population's food security and the efficiency of farming investments at risk. It is to be expected that this food security will be achieved with the own and efficient production of each country. It will have an impact on the well-being of its population and, thus, also on food sovereignty. The production losses in quantity and quality occur due to the lack of efficient detection of diseases at an early stage. It is very difficult to solve the agriculture efficiency using traditional methods since it takes a long time to be carried out due to detection imprecision of the main diseases, especially when the production areas are extensive. Therefore, the main objective of this research study is to perform a systematic literature review, of the latest five years, of Precision Agriculture (PA) to be able to understand the state of the art of the set of new technologies, procedures, and optimization processes with Artificial Intelligence (AI). This study will focus on Corns, Potatoes, and Rice diagnostic diseases. The extensive literature review will be performed on Elsevier, Scopus, and IEEE databases. In addition, this research will focus on advanced digital imaging processing and the development of software and hardware for PA. The convolution neural network will be handling special attention due to its outstanding diagnostic results. Moreover, the studied data will be incorporated with artificial intelligence algorithms for the automatic diagnosis of crop quality. Finally, precision agriculture with technology applied to the agricultural sector allows the land to be exploited efficiently. This system requires sensors, drones, data acquisition cards, and global positioning systems. This research seeks to merge different areas of science, control engineering, electronics, digital image processing, and artificial intelligence for the development, in the near future, of a low-cost image measurement system that allows the optimization of crops with AI.Keywords: precision agriculture, convolutional neural network, deep learning, artificial intelligence
Procedia PDF Downloads 79217 Embedded Visual Perception for Autonomous Agricultural Machines Using Lightweight Convolutional Neural Networks
Authors: René A. Sørensen, Søren Skovsen, Peter Christiansen, Henrik Karstoft
Abstract:
Autonomous agricultural machines act in stochastic surroundings and therefore, must be able to perceive the surroundings in real time. This perception can be achieved using image sensors combined with advanced machine learning, in particular Deep Learning. Deep convolutional neural networks excel in labeling and perceiving color images and since the cost of high-quality RGB-cameras is low, the hardware cost of good perception depends heavily on memory and computation power. This paper investigates the possibility of designing lightweight convolutional neural networks for semantic segmentation (pixel wise classification) with reduced hardware requirements, to allow for embedded usage in autonomous agricultural machines. Using compression techniques, a lightweight convolutional neural network is designed to perform real-time semantic segmentation on an embedded platform. The network is trained on two large datasets, ImageNet and Pascal Context, to recognize up to 400 individual classes. The 400 classes are remapped into agricultural superclasses (e.g. human, animal, sky, road, field, shelterbelt and obstacle) and the ability to provide accurate real-time perception of agricultural surroundings is studied. The network is applied to the case of autonomous grass mowing using the NVIDIA Tegra X1 embedded platform. Feeding case-specific images to the network results in a fully segmented map of the superclasses in the image. As the network is still being designed and optimized, only a qualitative analysis of the method is complete at the abstract submission deadline. Proceeding this deadline, the finalized design is quantitatively evaluated on 20 annotated grass mowing images. Lightweight convolutional neural networks for semantic segmentation can be implemented on an embedded platform and show competitive performance with regards to accuracy and speed. It is feasible to provide cost-efficient perceptive capabilities related to semantic segmentation for autonomous agricultural machines.Keywords: autonomous agricultural machines, deep learning, safety, visual perception
Procedia PDF Downloads 396216 Submarines Unmanned Vehicle for Underwater Exploration and Monitoring System in Indonesia
Authors: Nabila Dwi Agustin, Ria Septitis Mentari, Nugroho Adi Sasongko
Abstract:
Indonesia is experiencing a crisis in the development of defense equipment. Most of Indonesia's defense equipment must import its parts from other countries. Moreover, the area of Indonesia is 2/3 of its territory is the sea areas. For the protection of marine areas, Indonesia relies solely on submarines in monitoring conditions and whether or not intruders enter their territory. In fact, we know the submarine has a large size so that the expenses are getting bigger, the time it takes longer and needs a big maneuver to operate the submarine. Indeed, the submarine can only be operated for deeper seas. Many other countries enter the underwater world of Indonesia but Indonesia could not do anything due to the limitations of underwater monitoring system. At the same time, reconnaissance and monitor for shallow seas cannot be done by submarine. Equipment that can be used for surveillance of shallow underwater areas shall be made. This study reviewed the current research and development initiative of the submarine unmanned vehicle (SUV) or unmanned undersea vehicle (UUV) in Indonesia. This can explore underwater without the need for an operator to operate in it, but we can monitor it from a long distance. UUV has several advantages that size can be reduced as we desired, rechargeable ship batteries, has a detection sonar commonly found on a submarine and agile movement to detect at shallow sea depth. In the sonar sensors consisted of MEMS (Micro Electro Mechanical System), the sonar system runs more efficiently and effectively to monitor the target. UUV that has been developed will be very useful if the equipment is used around the outlying islands and outer from Indonesia especially the island frequented by foreign submarines without us know. The impact of this may not be felt now but it will allow foreign countries to attack Indonesia from within for the future. In addition, UUV needs to be equipped with a anti-radar system so that submarines of other countries crossing borders cannot detect it and Indonesia anti-submarine vessels can take further security measures. As the recommendation, Indonesia should take decisive steps in the state border rules, especially submarines of other countries that deliberately cross the borders of the state. This decisive action not only by word alone but also action as well. Indonesia government should show the strength and sovereignty as the entire society unites and applies the principle of universal peace.Keywords: submarine unmanned vehicle, submarine, development of defense equipment, the border of Indonesia
Procedia PDF Downloads 146215 The Psychometric Properties of an Instrument to Estimate Performance in Ball Tasks Objectively
Authors: Kougioumtzis Konstantin, Rylander Pär, Karlsteen Magnus
Abstract:
Ball skills as a subset of fundamental motor skills are predictors for performance in sports. Currently, most tools evaluate ball skills utilizing subjective ratings. The aim of this study was to examine the psychometric properties of a newly developed instrument to objectively measure ball handling skills (BHS-test) utilizing digital instrument. Participants were a convenience sample of 213 adolescents (age M = 17.1 years, SD =3.6; 55% females, 45% males) recruited from upper secondary schools and invited to a sports hall for the assessment. The 8-item instrument incorporated both accuracy-based ball skill tests and repetitive-performance tests with a ball. Testers counted performance manually in the four tests (one throwing and three juggling tasks). Furthermore, assessment was technologically enhanced in the other four tests utilizing a ball machine, a Kinect camera and balls with motion sensors (one balancing and three rolling tasks). 3D printing technology was used to construct equipment, while all results were administered digitally with smart phones/tablets, computers and a specially constructed application to send data to a server. The instrument was deemed reliable (α = .77) and principal component analysis was used in a random subset (53 of the participants). Furthermore, latent variable modeling was employed to confirm the structure with the remaining subset (160 of the participants). The analysis showed good factorial-related validity with one factor explaining 57.90 % of the total variance. Four loadings were larger than .80, two more exceeded .76 and the other two were .65 and .49. The one factor solution was confirmed by a first order model with one general factor and an excellent fit between model and data (χ² = 16.12, DF = 20; RMSEA = .00, CI90 .00–.05; CFI = 1.00; SRMR = .02). The loadings on the general factor ranged between .65 and .83. Our findings indicate good reliability and construct validity for the BHS-test. To develop the instrument further, more studies are needed with various age-groups, e.g. children. We suggest using the BHS-test for diagnostic or assessment purpose for talent development and sports participation interventions that focus on ball games.Keywords: ball-handling skills, ball-handling ability, technologically-enhanced measurements, assessment
Procedia PDF Downloads 94214 IoT Based Soil Moisture Monitoring System for Indoor Plants
Authors: Gul Rahim Rahimi
Abstract:
The IoT-based soil moisture monitoring system for indoor plants is designed to address the challenges of maintaining optimal moisture levels in soil for plant growth and health. The system utilizes sensor technology to collect real-time data on soil moisture levels, which is then processed and analyzed using machine learning algorithms. This allows for accurate and timely monitoring of soil moisture levels, ensuring plants receive the appropriate amount of water to thrive. The main objectives of the system are twofold: to keep plants fresh and healthy by preventing water deficiency and to provide users with comprehensive insights into the water content of the soil on a daily and hourly basis. By monitoring soil moisture levels, users can identify patterns and trends in water consumption, allowing for more informed decision-making regarding watering schedules and plant care. The scope of the system extends to the agriculture industry, where it can be utilized to minimize the efforts required by farmers to monitor soil moisture levels manually. By automating the process of soil moisture monitoring, farmers can optimize water usage, improve crop yields, and reduce the risk of plant diseases associated with over or under-watering. Key technologies employed in the system include the Capacitive Soil Moisture Sensor V1.2 for accurate soil moisture measurement, the Node MCU ESP8266-12E Board for data transmission and communication, and the Arduino framework for programming and development. Additionally, machine learning algorithms are utilized to analyze the collected data and provide actionable insights. Cloud storage is utilized to store and manage the data collected from multiple sensors, allowing for easy access and retrieval of information. Overall, the IoT-based soil moisture monitoring system offers a scalable and efficient solution for indoor plant care, with potential applications in agriculture and beyond. By harnessing the power of IoT and machine learning, the system empowers users to make informed decisions about plant watering, leading to healthier and more vibrant indoor environments.Keywords: IoT-based, soil moisture monitoring, indoor plants, water management
Procedia PDF Downloads 51213 Experimental and Numerical Investigation of Micro-Welding Process and Applications in Digital Manufacturing
Authors: Khaled Al-Badani, Andrew Norbury, Essam Elmshawet, Glynn Rotwell, Ian Jenkinson , James Ren
Abstract:
Micro welding procedures are widely used for joining materials, developing duplex components or functional surfaces, through various methods such as Micro Discharge Welding or Spot Welding process, which can be found in the engineering, aerospace, automotive, biochemical, biomedical and numerous other industries. The relationship between the material properties, structure and processing is very important to improve the structural integrity and the final performance of the welded joints. This includes controlling the shape and the size of the welding nugget, state of the heat affected zone, residual stress, etc. Nowadays, modern high volume productions require the welding of much versatile shapes/sizes and material systems that are suitable for various applications. Hence, an improved understanding of the micro welding process and the digital tools, which are based on computational numerical modelling linking key welding parameters, dimensional attributes and functional performance of the weldment, would directly benefit the industry in developing products that meet current and future market demands. This paper will introduce recent work on developing an integrated experimental and numerical modelling code for micro welding techniques. This includes similar and dissimilar materials for both ferrous and non-ferrous metals, at different scales. The paper will also produce a comparative study, concerning the differences between the micro discharge welding process and the spot welding technique, in regards to the size effect of the welding zone and the changes in the material structure. Numerical modelling method for the micro welding processes and its effects on the material properties, during melting and cooling progression at different scales, will also be presented. Finally, the applications of the integrated numerical modelling and the material development for the digital manufacturing of welding, is discussed with references to typical application cases such as sensors (thermocouples), energy (heat exchanger) and automotive structures (duplex steel structures).Keywords: computer modelling, droplet formation, material distortion, materials forming, welding
Procedia PDF Downloads 255212 Solar Panel Design Aspects and Challenges for a Lunar Mission
Authors: Mannika Garg, N. Srinivas Murthy, Sunish Nair
Abstract:
TeamIndus is only Indian team participated in the Google Lunar X Prize (GLXP). GLXP is an incentive prize space competition which is organized by the XPrize Foundation and sponsored by Google. The main objective of the mission is to soft land a rover on the moon surface, travel minimum displacement of 500 meters and transmit HD and NRT videos and images to the Earth. Team Indus is designing a Lunar Lander which carries Rover with it and deliver onto the surface of the moon with a soft landing. For lander to survive throughout the mission, energy is required to operate all attitude control sensors, actuators, heaters and other necessary components. Photovoltaic solar array systems are the most common and primary source of power generation for any spacecraft. The scope of this paper is to provide a system-level approach for designing the solar array systems of the lander to generate required power to accomplish the mission. For this mission, the direction of design effort is to higher efficiency, high reliability and high specific power. Towards this approach, highly efficient multi-junction cells have been considered. The design is influenced by other constraints also like; mission profile, chosen spacecraft attitude, overall lander configuration, cost effectiveness and sizing requirements. This paper also addresses the various solar array design challenges such as operating temperature, shadowing, radiation environment and mission life and strategy of supporting required power levels (peak and average). The challenge to generate sufficient power at the time of surface touchdown, due to low sun elevation (El) and azimuth (Az) angle which depends on Lunar landing site, has also been showcased in this paper. To achieve this goal, energy balance analysis has been carried out to study the impact of the above-mentioned factors and to meet the requirements and has been discussed in this paper.Keywords: energy balance analysis, multi junction solar cells, photovoltaic, reliability, spacecraft attitude
Procedia PDF Downloads 230211 Analysis on the Feasibility of Landsat 8 Imagery for Water Quality Parameters Assessment in an Oligotrophic Mediterranean Lake
Authors: V. Markogianni, D. Kalivas, G. Petropoulos, E. Dimitriou
Abstract:
Lake water quality monitoring in combination with the use of earth observation products constitutes a major component in many water quality monitoring programs. Landsat 8 images of Trichonis Lake (Greece) acquired on 30/10/2013 and 30/08/2014 were used in order to explore the possibility of Landsat 8 to estimate water quality parameters and particularly CDOM absorption at specific wavelengths, chlorophyll-a and nutrient concentrations in this oligotrophic freshwater body, characterized by inexistent quantitative, temporal and spatial variability. Water samples have been collected at 22 different stations, on late August of 2014 and the satellite image of the same date was used to statistically correlate the in-situ measurements with various combinations of Landsat 8 bands in order to develop algorithms that best describe those relationships and calculate accurately the aforementioned water quality components. Optimal models were applied to the image of late October of 2013 and the validation of the results was conducted through their comparison with the respective available in-situ data of 2013. Initial results indicated the limited ability of the Landsat 8 sensor to accurately estimate water quality components in an oligotrophic waterbody. As resulted by the validation process, ammonium concentrations were proved to be the most accurately estimated component (R = 0.7), followed by chl-a concentration (R = 0.5) and the CDOM absorption at 420 nm (R = 0.3). In-situ nitrate, nitrite, phosphate and total nitrogen concentrations of 2014 were measured as lower than the detection limit of the instrument used, hence no statistical elaboration was conducted. On the other hand, multiple linear regression among reflectance measures and total phosphorus concentrations resulted in low and statistical insignificant correlations. Our results were concurrent with other studies in international literature, indicating that estimations for eutrophic and mesotrophic lakes are more accurate than oligotrophic, owing to the lack of suspended particles that are detectable by satellite sensors. Nevertheless, although those predictive models, developed and applied to Trichonis oligotrophic lake are less accurate, may still be useful indicators of its water quality deterioration.Keywords: landsat 8, oligotrophic lake, remote sensing, water quality
Procedia PDF Downloads 396210 The Effects of Addition of Chloride Ions on the Properties of ZnO Nanostructures Grown by Electrochemical Deposition
Authors: L. Mentar, O. Baka, A. Azizi
Abstract:
Zinc oxide as a wide band semiconductor materials, especially nanostructured materials, have potential applications in large-area such as electronics, sensors, photovoltaic cells, photonics, optical devices and optoelectronics due to their unique electrical and optical properties and surface properties. The feasibility of ZnO for these applications is due to the successful synthesis of diverse ZnO nanostructures, including nanorings, nanobows, nanohelixes, nanosprings, nanobelts, nanotubes, nanopropellers, nanodisks, and nanocombs, by different method. Among various synthesis methods, electrochemical deposition represents a simple and inexpensive solution based method for synthesis of semiconductor nanostructures. In this study, the electrodeposition method was used to produce zinc oxide (ZnO) nanostructures on fluorine-doped tin oxide (FTO)-coated conducting glass substrate as TCO from chloride bath. We present a systematic study on the effects of the concentration of chloride anion on the properties of ZnO. The influence of KCl concentrations on the electrodeposition process, morphological, structural and optical properties of ZnO nanostructures was examined. In this research electrochemical deposition of ZnO nanostructures is investigated using conventional electrochemical measurements (cyclic voltammetry and Mott-Schottky), scanning electron microscopy (SEM), and X-ray diffraction (XRD) techniques. The potentials of electrodeposition of ZnO were determined using the cyclic voltammetry. From the Mott-Schottky measurements, the flat-band potential and the donor density for the ZnO nanostructure are determined. SEM images shows different size and morphology of the nanostructures and depends greatly on the KCl concentrations. The morphology of ZnO nanostructures is determined by the corporated action between [Zn(NO3)2] and [Cl-].Very netted hexagonal grains are observed for the nanostructures deposited at 0.1M of KCl. XRD studies revealed that the all deposited films were polycrystalline in nature with wurtzite phase. The electrodeposited thin films are found to have preferred oriented along (002) plane of the wurtzite structure of ZnO with c-axis normal to the substrate surface for sample at different concentrations of KCl. UV-Visible spectra showed a significant optical transmission (~80%), which decreased with low Cl-1 concentrations. The energy band gap values have been estimated to be between 3.52 and 3.80 eV.Keywords: electrodeposition, ZnO, chloride ions, Mott-Schottky, SEM, XRD
Procedia PDF Downloads 290