Search results for: Dirichlet second order boundary problem
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 20217

Search results for: Dirichlet second order boundary problem

19167 A Family of Second Derivative Methods for Numerical Integration of Stiff Initial Value Problems in Ordinary Differential Equations

Authors: Luke Ukpebor, C. E. Abhulimen

Abstract:

Stiff initial value problems in ordinary differential equations are problems for which a typical solution is rapidly decaying exponentially, and their numerical investigations are very tedious. Conventional numerical integration solvers cannot cope effectively with stiff problems as they lack adequate stability characteristics. In this article, we developed a new family of four-step second derivative exponentially fitted method of order six for the numerical integration of stiff initial value problem of general first order differential equations. In deriving our method, we employed the idea of breaking down the general multi-derivative multistep method into predator and corrector schemes which possess free parameters that allow for automatic fitting into exponential functions. The stability analysis of the method was discussed and the method was implemented with numerical examples. The result shows that the method is A-stable and competes favorably with existing methods in terms of efficiency and accuracy.

Keywords: A-stable, exponentially fitted, four step, predator-corrector, second derivative, stiff initial value problems

Procedia PDF Downloads 256
19166 A Hybrid Feature Selection and Deep Learning Algorithm for Cancer Disease Classification

Authors: Niousha Bagheri Khulenjani, Mohammad Saniee Abadeh

Abstract:

Learning from very big datasets is a significant problem for most present data mining and machine learning algorithms. MicroRNA (miRNA) is one of the important big genomic and non-coding datasets presenting the genome sequences. In this paper, a hybrid method for the classification of the miRNA data is proposed. Due to the variety of cancers and high number of genes, analyzing the miRNA dataset has been a challenging problem for researchers. The number of features corresponding to the number of samples is high and the data suffer from being imbalanced. The feature selection method has been used to select features having more ability to distinguish classes and eliminating obscures features. Afterward, a Convolutional Neural Network (CNN) classifier for classification of cancer types is utilized, which employs a Genetic Algorithm to highlight optimized hyper-parameters of CNN. In order to make the process of classification by CNN faster, Graphics Processing Unit (GPU) is recommended for calculating the mathematic equation in a parallel way. The proposed method is tested on a real-world dataset with 8,129 patients, 29 different types of tumors, and 1,046 miRNA biomarkers, taken from The Cancer Genome Atlas (TCGA) database.

Keywords: cancer classification, feature selection, deep learning, genetic algorithm

Procedia PDF Downloads 110
19165 Adapting the Chemical Reaction Optimization Algorithm to the Printed Circuit Board Drilling Problem

Authors: Taisir Eldos, Aws Kanan, Waleed Nazih, Ahmad Khatatbih

Abstract:

Chemical Reaction Optimization (CRO) is an optimization metaheuristic inspired by the nature of chemical reactions as a natural process of transforming the substances from unstable to stable states. Starting with some unstable molecules with excessive energy, a sequence of interactions takes the set to a state of minimum energy. Researchers reported successful application of the algorithm in solving some engineering problems, like the quadratic assignment problem, with superior performance when compared with other optimization algorithms. We adapted this optimization algorithm to the Printed Circuit Board Drilling Problem (PCBDP) towards reducing the drilling time and hence improving the PCB manufacturing throughput. Although the PCBDP can be viewed as instance of the popular Traveling Salesman Problem (TSP), it has some characteristics that would require special attention to the transactions that explore the solution landscape. Experimental test results using the standard CROToolBox are not promising for practically sized problems, while it could find optimal solutions for artificial problems and small benchmarks as a proof of concept.

Keywords: evolutionary algorithms, chemical reaction optimization, traveling salesman, board drilling

Procedia PDF Downloads 517
19164 Using Closed Frequent Itemsets for Hierarchical Document Clustering

Authors: Cheng-Jhe Lee, Chiun-Chieh Hsu

Abstract:

Due to the rapid development of the Internet and the increased availability of digital documents, the excessive information on the Internet has led to information overflow problem. In order to solve these problems for effective information retrieval, document clustering in text mining becomes a popular research topic. Clustering is the unsupervised classification of data items into groups without the need of training data. Many conventional document clustering methods perform inefficiently for large document collections because they were originally designed for relational database. Therefore they are impractical in real-world document clustering and require special handling for high dimensionality and high volume. We propose the FIHC (Frequent Itemset-based Hierarchical Clustering) method, which is a hierarchical clustering method developed for document clustering, where the intuition of FIHC is that there exist some common words for each cluster. FIHC uses such words to cluster documents and builds hierarchical topic tree. In this paper, we combine FIHC algorithm with ontology to solve the semantic problem and mine the meaning behind the words in documents. Furthermore, we use the closed frequent itemsets instead of only use frequent itemsets, which increases efficiency and scalability. The experimental results show that our method is more accurate than those of well-known document clustering algorithms.

Keywords: FIHC, documents clustering, ontology, closed frequent itemset

Procedia PDF Downloads 397
19163 A Mathematical Model for Reliability Redundancy Optimization Problem of K-Out-Of-N: G System

Authors: Gak-Gyu Kim, Won Il Jung

Abstract:

According to a remarkable development of science and technology, function and role of the system of engineering fields has recently been diversified. The system has become increasingly more complex and precise, and thus, system designers intended to maximize reliability concentrate more effort at the design stage. This study deals with the reliability redundancy optimization problem (RROP) for k-out-of-n: G system configuration with cold standby and warm standby components. This paper further intends to present the optimal mathematical model through which the following three elements of (i) multiple components choices, (ii) redundant components quantity and (iii) the choice of redundancy strategies may be combined in order to maximize the reliability of the system. Therefore, we focus on the following three issues. First, we consider RROP that there exists warm standby state as well as cold standby state of the component. Second, as eliminating an approximation approach of the previous RROP studies, we construct a precise model for system reliability. Third, given transition time when the state of components changes, we present not simply a workable solution but the advanced method. For the wide applicability of RROPs, moreover, we use absorbing continuous time Markov chain and matrix analytic methods in the suggested mathematical model.

Keywords: RROP, matrix analytic methods, k-out-of-n: G system, MTTF, absorbing continuous time Markov Chain

Procedia PDF Downloads 253
19162 Localized and Time-Resolved Velocity Measurements of Pulsatile Flow in a Rectangular Channel

Authors: R. Blythman, N. Jeffers, T. Persoons, D. B. Murray

Abstract:

The exploitation of flow pulsation in micro- and mini-channels is a potentially useful technique for enhancing cooling of high-end photonics and electronics systems. It is thought that pulsation alters the thickness of the hydrodynamic and thermal boundary layers, and hence affects the overall thermal resistance of the heat sink. Although the fluid mechanics and heat transfer are inextricably linked, it can be useful to decouple the parameters to better understand the mechanisms underlying any heat transfer enhancement. Using two-dimensional, two-component particle image velocimetry, the current work intends to characterize the heat transfer mechanisms in pulsating flow with a mean Reynolds number of 48 by experimentally quantifying the hydrodynamics of a generic liquid-cooled channel geometry. Flows circulated through the test section by a gear pump are modulated using a controller to achieve sinusoidal flow pulsations with Womersley numbers of 7.45 and 2.36 and an amplitude ratio of 0.75. It is found that the transient characteristics of the measured velocity profiles are dependent on the speed of oscillation, in accordance with the analytical solution for flow in a rectangular channel. A large velocity overshoot is observed close to the wall at high frequencies, resulting from the interaction of near-wall viscous stresses and inertial effects of the main fluid body. The steep velocity gradients at the wall are indicative of augmented heat transfer, although the local flow reversal may reduce the upstream temperature difference in heat transfer applications. While unsteady effects remain evident at the lower frequency, the annular effect subsides and retreats from the wall. The shear rate at the wall is increased during the accelerating half-cycle and decreased during deceleration compared to steady flow, suggesting that the flow may experience both enhanced and diminished heat transfer during a single period. Hence, the thickness of the hydrodynamic boundary layer is reduced for positively moving flow during one half of the pulsation cycle at the investigated frequencies. It is expected that the size of the thermal boundary layer is similarly reduced during the cycle, leading to intervals of heat transfer enhancement.

Keywords: Heat transfer enhancement, particle image velocimetry, localized and time-resolved velocity, photonics and electronics cooling, pulsating flow, Richardson’s annular effect

Procedia PDF Downloads 345
19161 Industrial-Waste Management in Developing Countries: The Case of Algeria

Authors: L. Sefouhi, M. Djebabra

Abstract:

Industrial operations have been accompanied by a problem: industrial waste which may be toxic, ignitable, corrosive or reactive. If improperly managed, this waste can pose dangerous health and environmental consequences. The industrial waste management becomes a real problem for them. The oil industry is an important sector in Algeria, from exploration to development and marketing of hydrocarbons. For this sector, industrial wastes pose a big problem. The aim of the present study is to present in a systematic way the subject of industrial waste from the point-of-view of definitions in engineering and legislation. This analysis is necessary, as many different approaches and we will attempt to diagnose the current management of industrial waste, namely an inventory of deposits and methods of sorting, packing, storage, and a description of the different disposal routes. Thus, a proposal for a reasoned and responsible management of waste by avoiding a shift towards future expenses related to the disposal of such waste, and prevents pollution they cause to the environment.

Keywords: industrial waste, environment, management, pollution, risks

Procedia PDF Downloads 336
19160 Stochastic Fleet Sizing and Routing in Drone Delivery

Authors: Amin Karimi, Lele Zhang, Mark Fackrell

Abstract:

Rural-to-urban population migrations are a global phenomenon, with projections indicating that by 2050, 68% of the world's population will inhabit densely populated urban centers. Concurrently, the popularity of e-commerce shopping has surged, evidenced by a 51% increase in total e-commerce sales from 2017 to 2021. Consequently, distribution and logistics systems, integral to effective supply chain management, confront escalating hurdles in efficiently delivering and distributing products within bustling urban environments. Additionally, events like environmental challenges and the COVID-19 pandemic have indicated that decision-makers are facing numerous sources of uncertainty. Therefore, to design an efficient and reliable logistics system, uncertainty must be considered. In this study, it examine fleet sizing and routing while considering uncertainty in demand rate. Fleet sizing is typically a strategic-level decision, while routing is an operational-level one. In this study, a carrier must make two types of decisions: strategic-level decisions regarding the number and types of drones to be purchased, and operational-level decisions regarding planning routes based on available fleet and realized demand. If the available fleets are insufficient to serve some customers, the carrier must outsource that delivery at a relatively high cost, calculated per order. With this hierarchy of decisions, it can model the problem using two-stage stochastic programming. The first-stage decisions involve planning the number and type of drones to be purchased, while the second-stage decisions involve planning routes. To solve this model, it employ logic-based benders decomposition, which decomposes the problem into a master problem and a set of sub-problems. The master problem becomes a mixed integer programming model to find the best fleet sizing decisions, and the sub-problems become capacitated vehicle routing problems considering battery status. Additionally, it assume a heterogeneous fleet based on load and battery capacity, and it consider that battery health deteriorates over time as it plan for multiple periods.

Keywords: drone-delivery, stochastic demand, VRP, fleet sizing

Procedia PDF Downloads 55
19159 An Automated R-Peak Detection Method Using Common Vector Approach

Authors: Ali Kirkbas

Abstract:

R peaks in an electrocardiogram (ECG) are signs of cardiac activity in individuals that reveal valuable information about cardiac abnormalities, which can lead to mortalities in some cases. This paper examines the problem of detecting R-peaks in ECG signals, which is a two-class pattern classification problem in fact. To handle this problem with a reliable high accuracy, we propose to use the common vector approach which is a successful machine learning algorithm. The dataset used in the proposed method is obtained from MIT-BIH, which is publicly available. The results are compared with the other popular methods under the performance metrics. The obtained results show that the proposed method shows good performance than that of the other. methods compared in the meaning of diagnosis accuracy and simplicity which can be operated on wearable devices.

Keywords: ECG, R-peak classification, common vector approach, machine learning

Procedia PDF Downloads 62
19158 A Problem-Based Learning Approach in a Writing Classroom: Tutors’ Experiences and Perceptions

Authors: Muhammad Mukhtar Aliyu

Abstract:

This study investigated tutors’ experiences and perceptions of a problem-based learning approach (PBL) in a writing classroom. The study involved two Nigerian lecturers who facilitated an intact class of second-year students in an English composition course for the period of 12 weeks. Semi-structured interviews were employed to collect data of the study. The lecturers were interviewed before and after the implementation of the PBL process. The overall findings of the study show that the lecturers had positive perceptions of the use of PBL in a writing classroom. Specifically, the findings reveal the lecturers’ positive experiences and perception of the group activities. Finally, the paper gives some pedagogical implications which would give insight for better implementation of the PBL approach.

Keywords: experiences and perception, Nigeria, problem-based learning approach, writing classroom

Procedia PDF Downloads 167
19157 Application of Low-order Modeling Techniques and Neural-Network Based Models for System Identification

Authors: Venkatesh Pulletikurthi, Karthik B. Ariyur, Luciano Castillo

Abstract:

The system identification from the turbulence wakes will lead to the tactical advantage to prepare and also, to predict the trajectory of the opponents’ movements. A low-order modeling technique, POD, is used to predict the object based on the wake pattern and compared with pre-trained image recognition neural network (NN) to classify the wake patterns into objects. It is demonstrated that low-order modeling, POD, is able to predict the objects better compared to pretrained NN by ~30%.

Keywords: the bluff body wakes, low-order modeling, neural network, system identification

Procedia PDF Downloads 179
19156 Pruning Algorithm for the Minimum Rule Reduct Generation

Authors: Sahin Emrah Amrahov, Fatih Aybar, Serhat Dogan

Abstract:

In this paper we consider the rule reduct generation problem. Rule Reduct Generation (RG) and Modified Rule Generation (MRG) algorithms, that are used to solve this problem, are well-known. Alternative to these algorithms, we develop Pruning Rule Generation (PRG) algorithm. We compare the PRG algorithm with RG and MRG.

Keywords: rough sets, decision rules, rule induction, classification

Procedia PDF Downloads 525
19155 Proximal Method of Solving Split System of Minimization Problem

Authors: Anteneh Getachew Gebrie, Rabian Wangkeeree

Abstract:

The purpose of this paper is to introduce iterative algorithm solving split system of minimization problem given as a task of finding a common minimizer point of finite family of proper, lower semicontinuous convex functions and whose image under a bounded linear operator is also common minimizer point of another finite family of proper, lower semicontinuous convex functions. We obtain strong convergence of the sequence generated by our algorithm under some suitable conditions on the parameters. The iterative schemes are developed with a way of selecting the step sizes such that the information of operator norm is not necessary. Some applications and numerical experiment is given to analyse the efficiency of our algorithm.

Keywords: Hilbert Space, minimization problems, Moreau-Yosida approximate, split feasibility problem

Procedia PDF Downloads 142
19154 A Parametric Study on Aerodynamic Performance of Tyre Using CFD

Authors: Sowntharya L.

Abstract:

Aerodynamics is the most important factor when it comes to resistive forces such as lift, drag and side forces acting on the vehicle. In passenger vehicles, reducing the drag will not only unlock the door for higher achievable speed but will also reduce the fuel consumption of the vehicle. Generally, tyre contributes significantly to the overall aerodynamics of the vehicle. Hence, understanding the air-flow behaviour around the tyre is vital to optimize the aerodynamic performance in the early stage of design process. Nowadays, aerodynamic simulation employing Computational Fluid Dynamics (CFD) is gaining more importance as it reduces the number of physical wind-tunnel experiments during vehicle development process. This research develops a methodology to predict aerodynamic drag of a standalone tyre using Numerical CFD Solver and to validate the same using a wind tunnel experiment. A parametric study was carried out on different tread pattern tyres such as slick, circumferential groove & patterned tyre in stationary and rotating boundary conditions. In order to represent wheel rotation contact with the ground, moving reference frame (MRF) approach was used in this study. Aerodynamic parameters such as drag lift & air flow behaviour around the tire were simulated and compared with experimental results.

Keywords: aerodynamics, CFD, drag, MRF, wind-tunnel

Procedia PDF Downloads 192
19153 Advance Hybrid Manufacturing Supply Chain System to Get Benefits of Push and Pull Systems

Authors: Akhtar Nawaz, Sahar Noor, Iftikhar Hussain

Abstract:

This paper considers advanced hybrid manufacturing planning both push and pull system in which each customer order has a due date by demand forecast and customer orders. We present a tool for model for tool development that requires an absolute due dates and customer orders in a manufacturing supply chain. It is vital for the manufacturing companies to face the problem of variations in demands, increase in varieties by maintaining safety stock and to minimize components obsolescence and uselessness. High inventory cost and low delivery lead time is expected in push type of system and on contrary high delivery lead time and low inventory cost is predicted in the pull type. For this tool for model we need an MRP system for the push and pull environment and control of inventories in push parts and lead time in the pull part. To retain process data quickly, completely and to improve responsiveness and minimize inventory cost, a tool is required to deal with the high product variance and short cycle parts. In practice, planning and scheduling are interrelated and should be solved simultaneously with supply chain to ensure that the due dates of customer orders are met. The proposed tool for model considers alternative process plans for job types, with precedence constraints for job operations. Such a tool for model has not been treated in the literature. To solve the model, tool was developed, so a new technique was required to deal with the issue of high product variance and short life cycles in assemble to order.

Keywords: hybrid manufacturing system, supply chain system, make to order, make to stock, assemble to order

Procedia PDF Downloads 563
19152 Mathematical Programming Models for Portfolio Optimization Problem: A Review

Authors: Mazura Mokhtar, Adibah Shuib, Daud Mohamad

Abstract:

Portfolio optimization problem has received a lot of attention from both researchers and practitioners over the last six decades. This paper provides an overview of the current state of research in portfolio optimization with the support of mathematical programming techniques. On top of that, this paper also surveys the solution algorithms for solving portfolio optimization models classifying them according to their nature in heuristic and exact methods. To serve these purposes, 40 related articles appearing in the international journal from 2003 to 2013 have been gathered and analyzed. Based on the literature review, it has been observed that stochastic programming and goal programming constitute the highest number of mathematical programming techniques employed to tackle the portfolio optimization problem. It is hoped that the paper can meet the needs of researchers and practitioners for easy references of portfolio optimization.

Keywords: portfolio optimization, mathematical programming, multi-objective programming, solution approaches

Procedia PDF Downloads 346
19151 Analysis of Two Methods to Estimation Stochastic Demand in the Vehicle Routing Problem

Authors: Fatemeh Torfi

Abstract:

Estimation of stochastic demand in physical distribution in general and efficient transport routs management in particular is emerging as a crucial factor in urban planning domain. It is particularly important in some municipalities such as Tehran where a sound demand management calls for a realistic analysis of the routing system. The methodology involved critically investigating a fuzzy least-squares linear regression approach (FLLRs) to estimate the stochastic demands in the vehicle routing problem (VRP) bearing in mind the customer's preferences order. A FLLR method is proposed in solving the VRP with stochastic demands. Approximate-distance fuzzy least-squares (ADFL) estimator ADFL estimator is applied to original data taken from a case study. The SSR values of the ADFL estimator and real demand are obtained and then compared to SSR values of the nominal demand and real demand. Empirical results showed that the proposed methods can be viable in solving problems under circumstances of having vague and imprecise performance ratings. The results further proved that application of the ADFL was realistic and efficient estimator to face the stochastic demand challenges in vehicle routing system management and solve relevant problems.

Keywords: fuzzy least-squares, stochastic, location, routing problems

Procedia PDF Downloads 433
19150 Rewriting, Reframing, and Restructuring the Story: A Narrative and Solution Focused Therapy Approach to Family Therapy

Authors: Eman Tadros

Abstract:

Solution Focused Therapy sheds a positive light on a client’s problem(s) by instilling hope, focusing on the connection with the client, and describing the problem in a way to display change being possible. Solution focused therapists highlight clients’ positive strengths, reframe what clients say, do, or believe in a positive statement, action, or belief. Narrative Therapy focuses on the stories individuals tell about their past in which shape their current and future lives. Changing the language used aids clients in reevaluating their values and views of themselves, this then constructs a more positive way of thinking about their story. Both therapies are based on treating each client as an individual with a problem rather than that the individual is a problem and being able to give power back to the client. The purpose of these ideologies is to open a client to alternative understandings. This paper displays how clinicians can empower and identify their clients’ positive strengths and resiliency factors. Narrative and Solution-Focused Techniques will be integrated to instill positivity and empowerment in clients. Techniques such as deconstruction, collaboration, complimenting, miracle/exception/scaling questioning will be analyzed and modeled. Furthermore, bridging Solution Focused Therapy and Narrative Therapy gives a voice to unheard client(s).

Keywords: solution focused therapy, narrative therapy, empowerment, resilience

Procedia PDF Downloads 237
19149 The Development of Research Based Model to Enhance Critical Thinking, Cognitive Skills and Culture and Local Wisdom Knowledge of Undergraduate Students

Authors: Nithipattara Balsiri

Abstract:

The purposes of this research was to develop instructional model by using research-based learning enhancing critical thinking, cognitive skills, and culture and local wisdom knowledge of undergraduate students. The sample consisted of 307 undergraduate students. Critical thinking and cognitive skills test were employed for data collection. Second-order confirmatory factor analysis, t-test, and one-way analysis of variance were employed for data analysis using SPSS and LISREL programs. The major research results were as follows; 1) the instructional model by using research-based learning enhancing critical thinking, cognitive skills, and culture and local wisdom knowledge should be consists of 6 sequential steps, namely (1) the setting research problem (2) the setting research hypothesis (3) the data collection (4) the data analysis (5) the research result conclusion (6) the application for problem solving, and 2) after the treatment undergraduate students possessed a higher scores in critical thinking and cognitive skills than before treatment at the 0.05 level of significance.

Keywords: critical thinking, cognitive skills, culture and local wisdom knowledge

Procedia PDF Downloads 364
19148 System Identification in Presence of Outliers

Authors: Chao Yu, Qing-Guo Wang, Dan Zhang

Abstract:

The outlier detection problem for dynamic systems is formulated as a matrix decomposition problem with low-rank, sparse matrices and further recast as a semidefinite programming (SDP) problem. A fast algorithm is presented to solve the resulting problem while keeping the solution matrix structure and it can greatly reduce the computational cost over the standard interior-point method. The computational burden is further reduced by proper construction of subsets of the raw data without violating low rank property of the involved matrix. The proposed method can make exact detection of outliers in case of no or little noise in output observations. In case of significant noise, a novel approach based on under-sampling with averaging is developed to denoise while retaining the saliency of outliers and so-filtered data enables successful outlier detection with the proposed method while the existing filtering methods fail. Use of recovered “clean” data from the proposed method can give much better parameter estimation compared with that based on the raw data.

Keywords: outlier detection, system identification, matrix decomposition, low-rank matrix, sparsity, semidefinite programming, interior-point methods, denoising

Procedia PDF Downloads 305
19147 The Classical and Hellenistic Architectural Elements of the Temple of Echmun in Sidon

Authors: Amal Alatar

Abstract:

The paper focuses on the exploration of architectural characteristics and decorative elements of the temple of Echmun, emphasizing the socio-economic significance of Sidon during the Greek and Roman periods to understand the implications of their spread and development on the Phoenician cities, as well as reveal the symbolical and societal connotations that may have been connected with the buildings, in order to allow a well-founded examination of common characteristics. In general, studying Phoenician archaeology posed some problems. The main problem is that most major Phoenician settlements lay beneath modern urban centers. This situation often prevented or largely restricted full archaeological investigations; the publications are frequently not complete enough to determine the basic characteristics of the architectural elements. Another key problem is the political instability of the region, which affected the archaeological research in the Phoenician homeland for many years. Nevertheless, during the past decades, an ever-growing cache of data was acquired from the archaeological surroundings of the Phoenician sites. Both the architectural elements from the Greek and Roman period have never been studied as a group before. Surprisingly, they have been largely ignored, despite their apparent profusion throughout the cities. The Roman period of Sidon has generally been neglected in preference to earlier periods, where it is often difficult to distinguish between Roman, Bronze age, medieval and Ottoman structures.

Keywords: archaeology, classical, Hellenistic, Eshmun Temple, architecture, Sidon, Lebanon

Procedia PDF Downloads 99
19146 Assessment of the Root Causes of Marine Debris Problem in Lagos State

Authors: Chibuzo Okoye Daniels, Gillian Glegg, Lynda Rodwell

Abstract:

The continuously growing quantity of very slow degrading litter deliberately discarded into the coastal waters around Lagos as marine debris is obvious. What is not known is how to tackle this problem to reduce its prevalence and impact on the environment, economy and community. To identify ways of tackling the marine debris problem two case study areas (Ikoyi and Victoria Islands of Lagos State) were used to assess the root causes, the threat posed by marine debris in the coastal waters around Lagos and the efficacy of current instruments, programmes and initiatives that address marine debris in the study areas. The following methods were used: (1) Self-completed questionnaires for households and businesses within the study areas; (2) Semi-structured interviews with key stakeholders; (3) Observational studies of waste management from collection to disposal and waste management facilities for waste originating from land and maritime sources; (4) Beach surveys and marine debris surveys on shorelines and ports; and (5) Fishing for marine debris. Results of this study identified the following root causes: (1) Indiscriminate human activities and behaviors, and lack of awareness on the part of the main stakeholders and the public of the potential consequences of their actions; (2) Poor solid waste management practices; (3) Lack of strict legal frameworks addressing waste and marine debris problem; and (4) Disposal of non-degradable wastes into domestic sewer system and open streets drains. To effectively tackle marine debris problem in the study areas, adequate, appropriate and cost effective solutions to the above mentioned root causes needs to be identified and effectively transferred for implementation in the study areas.

Keywords: marine debris problem, Lagos state, litter, coastal waters

Procedia PDF Downloads 378
19145 A Hybrid Model of Goal, Integer and Constraint Programming for Single Machine Scheduling Problem with Sequence Dependent Setup Times: A Case Study in Aerospace Industry

Authors: Didem Can

Abstract:

Scheduling problems are one of the most fundamental issues of production systems. Many different approaches and models have been developed according to the production processes of the parts and the main purpose of the problem. In this study, one of the bottleneck stations of a company serving in the aerospace industry is analyzed and considered as a single machine scheduling problem with sequence-dependent setup times. The objective of the problem is assigning a large number of similar parts to the same shift -to reduce chemical waste- while minimizing the number of tardy jobs. The goal programming method will be used to achieve two different objectives simultaneously. The assignment of parts to the shift will be expressed using the integer programming method. Finally, the constraint programming method will be used as it provides a way to find a result in a short time by avoiding worse resulting feasible solutions with the defined variables set. The model to be established will be tested and evaluated with real data in the application part.

Keywords: constraint programming, goal programming, integer programming, sequence-dependent setup, single machine scheduling

Procedia PDF Downloads 235
19144 Ranking of Inventory Policies Using Distance Based Approach Method

Authors: Gupta Amit, Kumar Ramesh, P. C. Tewari

Abstract:

Globalization is putting enormous pressure on the business organizations specially manufacturing one to rethink the supply chain in innovative manners. Inventory consumes major portion of total sale revenue. Effective and efficient inventory management plays a vital role for the successful functioning of any organization. Selection of inventory policy is one of the important purchasing activities. This paper focuses on selection and ranking of alternative inventory policies. A deterministic quantitative model-based on Distance Based Approach (DBA) method has been developed for evaluation and ranking of inventory policies. We have employed this concept first time for this type of the selection problem. Four inventory policies Economic Order Quantity (EOQ), Just in Time (JIT), Vendor Managed Inventory (VMI) and monthly policy are considered. Improper selection could affect a company’s competitiveness in terms of the productivity of its facilities and quality of its products. The ranking of inventory policies is a multi-criteria problem. There is a need to first identify the selection criteria and then processes the information with reference to relative importance of attributes for comparison. Criteria values for each inventory policy can be obtained either analytically or by using a simulation technique or they are linguistic subjective judgments defined by fuzzy sets, like, for example, the values of criteria. A methodology is developed and applied to rank the inventory policies.

Keywords: inventory policy, ranking, DBA, selection criteria

Procedia PDF Downloads 390
19143 A Multi-Tenant Problem Oriented Medical Record System for Representing Patient Care Cases using SOAP (Subjective-Objective-Assessment-Plan) Note

Authors: Sabah Mohammed, Jinan Fiaidhi, Darien Sawyer

Abstract:

Describing clinical cases according to a clinical charting standard that enforces interoperability and enables connected care services can save lives in the event of a medical emergency or provide efficient and effective interventions for the benefit of the patients through the integration of bedside and bench side clinical research. This article presented a multi-tenant extension to the problem-oriented medical record that we have prototyped previously upon using the GraphQL Application Programming Interface to represent the notion of a problem list. Our implemented extension enables physicians and patients to collaboratively describe the patient case via using multi chatbots to collaboratively describe the patient case using the SOAP charting standard. Our extension also connects the described SOAP patient case with the HL7 FHIR (Health Interoperability Resources) medical record for connecting the patient case to the bench data.

Keywords: problem-oriented medical record, graphQL, chatbots, SOAP

Procedia PDF Downloads 89
19142 Vibration Response of Soundboards of Classical Guitars

Authors: Meng Koon Lee, Mohammad Hosseini Fouladi, Satesh Narayana Namasivayam

Abstract:

Research is focused on the response of soundboards of Classical guitars at frequencies up to 5 kHz as the soundboard is a major contributor to acoustic radiation at high frequencies when compared to the bridge and sound hole. A thin rectangular plate of variable thickness that is simply-supported on all sides is used as an analytical model of the research. This model is used to study the response of the guitar soundboard as the latter can be considered as a modified form of a rectangular plate. Homotopy Perturbation Method (HPM) is selected as a mathematical method to obtain an analytical solution of the 4th-order parabolic partial differential equation of motion of the rectangular plate of constant thickness viewed as a linear problem. This procedure is generalized to the nonlinear problem of the rectangular plate with variable thickness and an analytical solution can also be obtained. Sound power is used as a parameter to investigate the acoustic radiation of soundboards made from spruce using various bracing patterns. The sound power of soundboards made from Malaysian softwood such as damar minyak, sempilor or podo are investigated to determine the viability of replacing spruce as future materials for soundboards of Classical guitars.

Keywords: rectangular plates, analytical solution, homotopy perturbation, natural frequencies

Procedia PDF Downloads 389
19141 Fall Avoidance Control of Wheeled Inverted Pendulum Type Robotic Wheelchair While Climbing Stairs

Authors: Nan Ding, Motoki Shino, Nobuyasu Tomokuni, Genki Murata

Abstract:

The wheelchair is the major means of transport for physically disabled people. However, it cannot overcome architectural barriers such as curbs and stairs. In this paper, the authors proposed a method to avoid falling down of a wheeled inverted pendulum type robotic wheelchair for climbing stairs. The problem of this system is that the feedback gain of the wheels cannot be set high due to modeling errors and gear backlash, which results in the movement of wheels. Therefore, the wheels slide down the stairs or collide with the side of the stairs, and finally the wheelchair falls down. To avoid falling down, the authors proposed a slider control strategy based on skyhook model in order to decrease the movement of wheels, and a rotary link control strategy based on the staircase dimensions in order to avoid collision or slide down. The effectiveness of the proposed fall avoidance control strategy was validated by ODE simulations and the prototype wheelchair.

Keywords: EPW, fall avoidance control, skyhook, wheeled inverted pendulum

Procedia PDF Downloads 331
19140 A Collaborative Problem Driven Approach to Design an HR Analytics Application

Authors: L. Atif, C. Rosenthal-Sabroux, M. Grundstein

Abstract:

The requirements engineering process is a crucial phase in the design of complex systems. The purpose of our research is to present a collaborative problem-driven requirements engineering approach that aims at improving the design of a Decision Support System as an Analytics application. This approach has been adopted to design a Human Resource management DSS. The Requirements Engineering process is presented as a series of guidelines for activities that must be implemented to assure that the final product satisfies end-users requirements and takes into account the limitations identified. For this, we know that a well-posed statement of the problem is “a problem whose crucial character arises from collectively produced estimation and a formulation found to be acceptable by all the parties”. Moreover, we know that DSSs were developed to help decision-makers solve their unstructured problems. So, we thus base our research off of the assumption that developing DSS, particularly for helping poorly structured or unstructured decisions, cannot be done without considering end-user decision problems, how to represent them collectively, decisions content, their meaning, and the decision-making process; thus, arise the field issues in a multidisciplinary perspective. Our approach addresses a problem-driven and collaborative approach to designing DSS technologies: It will reflect common end-user problems in the upstream design phase and in the downstream phase these problems will determine the design choices and potential technical solution. We will thus rely on a categorization of HR’s problems for a development mirroring the Analytics solution. This brings out a new data-driven DSS typology: Descriptive Analytics, Explicative or Diagnostic Analytics, Predictive Analytics, Prescriptive Analytics. In our research, identifying the problem takes place with design of the solution, so, we would have to resort a significant transformations of representations associated with the HR Analytics application to build an increasingly detailed representation of the goal to be achieved. Here, the collective cognition is reflected in the establishment of transfer functions of representations during the whole of the design process.

Keywords: DSS, collaborative design, problem-driven requirements, analytics application, HR decision making

Procedia PDF Downloads 294
19139 Towards Law Data Labelling Using Topic Modelling

Authors: Daniel Pinheiro Da Silva Junior, Aline Paes, Daniel De Oliveira, Christiano Lacerda Ghuerren, Marcio Duran

Abstract:

The Courts of Accounts are institutions responsible for overseeing and point out irregularities of Public Administration expenses. They have a high demand for processes to be analyzed, whose decisions must be grounded on severity laws. Despite the existing large amount of processes, there are several cases reporting similar subjects. Thus, previous decisions on already analyzed processes can be a precedent for current processes that refer to similar topics. Identifying similar topics is an open, yet essential task for identifying similarities between several processes. Since the actual amount of topics is considerably large, it is tedious and error-prone to identify topics using a pure manual approach. This paper presents a tool based on Machine Learning and Natural Language Processing to assists in building a labeled dataset. The tool relies on Topic Modelling with Latent Dirichlet Allocation to find the topics underlying a document followed by Jensen Shannon distance metric to generate a probability of similarity between documents pairs. Furthermore, in a case study with a corpus of decisions of the Rio de Janeiro State Court of Accounts, it was noted that data pre-processing plays an essential role in modeling relevant topics. Also, the combination of topic modeling and a calculated distance metric over document represented among generated topics has been proved useful in helping to construct a labeled base of similar and non-similar document pairs.

Keywords: courts of accounts, data labelling, document similarity, topic modeling

Procedia PDF Downloads 177
19138 New Approach for Minimizing Wavelength Fragmentation in Wavelength-Routed WDM Networks

Authors: Sami Baraketi, Jean Marie Garcia, Olivier Brun

Abstract:

Wavelength Division Multiplexing (WDM) is the dominant transport technology used in numerous high capacity backbone networks, based on optical infrastructures. Given the importance of costs (CapEx and OpEx) associated to these networks, resource management is becoming increasingly important, especially how the optical circuits, called “lightpaths”, are routed throughout the network. This requires the use of efficient algorithms which provide routing strategies with the lowest cost. We focus on the lightpath routing and wavelength assignment problem, known as the RWA problem, while optimizing wavelength fragmentation over the network. Wavelength fragmentation poses a serious challenge for network operators since it leads to the misuse of the wavelength spectrum, and then to the refusal of new lightpath requests. In this paper, we first establish a new Integer Linear Program (ILP) for the problem based on a node-link formulation. This formulation is based on a multilayer approach where the original network is decomposed into several network layers, each corresponding to a wavelength. Furthermore, we propose an efficient heuristic for the problem based on a greedy algorithm followed by a post-treatment procedure. The obtained results show that the optimal solution is often reached. We also compare our results with those of other RWA heuristic methods.

Keywords: WDM, lightpath, RWA, wavelength fragmentation, optimization, linear programming, heuristic

Procedia PDF Downloads 526