Search results for: simulink simulation model
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 19613

Search results for: simulink simulation model

8873 Optimal Dynamic Regime for CO Oxidation Reaction Discovered by Policy-Gradient Reinforcement Learning Algorithm

Authors: Lifar M. S., Tereshchenko A. A., Bulgakov A. N., Guda S. A., Guda A. A., Soldatov A. V.

Abstract:

Metal nanoparticles are widely used as heterogeneous catalysts to activate adsorbed molecules and reduce the energy barrier of the reaction. Reaction product yield depends on the interplay between elementary processes - adsorption, activation, reaction, and desorption. These processes, in turn, depend on the inlet feed concentrations, temperature, and pressure. At stationary conditions, the active surface sites may be poisoned by reaction byproducts or blocked by thermodynamically adsorbed gaseous reagents. Thus, the yield of reaction products can significantly drop. On the contrary, the dynamic control accounts for the changes in the surface properties and adjusts reaction parameters accordingly. Therefore dynamic control may be more efficient than stationary control. In this work, a reinforcement learning algorithm has been applied to control the simulation of CO oxidation on a catalyst. The policy gradient algorithm is learned to maximize the CO₂ production rate based on the CO and O₂ flows at a given time step. Nonstationary solutions were found for the regime with surface deactivation. The maximal product yield was achieved for periodic variations of the gas flows, ensuring a balance between available adsorption sites and the concentration of activated intermediates. This methodology opens a perspective for the optimization of catalytic reactions under nonstationary conditions.

Keywords: artificial intelligence, catalyst, co oxidation, reinforcement learning, dynamic control

Procedia PDF Downloads 134
8872 2 Stage CMOS Regulated Cascode Distributed Amplifier Design Based On Inductive Coupling Technique in Submicron CMOS Process

Authors: Kittipong Tripetch, Nobuhiko Nakano

Abstract:

This paper proposes one stage and two stage CMOS Complementary Regulated Cascode Distributed Amplifier (CRCDA) design based on Inductive and Transformer coupling techniques. Usually, Distributed amplifier is based on inductor coupling between gate and gate of MOSFET and between drain and drain of MOSFET. But this paper propose some new idea, by coupling with differential primary windings of transformer between gate and gate of MOSFET first stage and second stage of regulated cascade amplifier and by coupling with differential secondary windings transformer of MOSFET between drain and drain of MOSFET first stage and second stage of regulated cascade amplifier. This paper also proposes polynomial modeling of Silicon Transformer passive equivalent circuit from Nanyang Technological University which is used to extract frequency response of transformer. Cadence simulation results are used to verify validity of transformer polynomial modeling which can be used to design distributed amplifier without Cadence. 4 parameters of scattering matrix of 2 port of the propose circuit is derived as a function of 4 parameters of impedance matrix.

Keywords: CMOS regulated cascode distributed amplifier, silicon transformer modeling with polynomial, low power consumption, distribute amplification technique

Procedia PDF Downloads 514
8871 Design & Development of a Static-Thrust Test-Bench for Aviation/UAV Based Piston Engines

Authors: Syed Muhammad Basit Ali, Usama Saleem, Irtiza Ali

Abstract:

Internal combustion engines have been pioneers in the aviation industry, use of piston engines for aircraft propulsion, from propeller-driven bi-planes to turbo-prop, commercial, and cargo airliners. To provide an adequate amount of thrust piston engine rotates the propeller at a specific rpm, allowing enough mass airflow. Thrust is the only forward-acting force of an aircraft that helps heavier than air bodies to fly, depending on the mathematical model and variables included in that with the correct measurement. Test-benches have been a bench-mark in the aerospace industry to analyse the results before a flight, having paramount significance in reliability and safety engineering, depending on the mathematical model and variables included in that with the correct measurement. Calculation of thrust from a piston engine also depends on environmental changes, the diameter of the propeller, and the density of air. The project would be centered on piston engines used in the aviation industry for light aircraft and UAVs. A static thrust test bench involves various units, each performing a designed purpose to monitor and display. Static thrust tests are performed on the ground, and safety concerns hold paramount importance. The execution of this study involves research, design, manufacturing, and results based on reverse engineering initiating from virtual design, analytical analysis, and simulations. The final evaluation of results gathered from various methods such as co-relation between conventional mass-spring and digital loadcell. On average, we received 17.5kg of thrust (25+ engine run-ups – around 40 hours of engine run), only 10% deviation from analytically calculated thrust –providing 90% accuracy.

Keywords: aviation, aeronautics, static thrust, test bench, aircraft maintenance

Procedia PDF Downloads 424
8870 Development and Validation of Thermal Stability in Complex System ABDM has two ASIC by NISA and COMSOL Tools

Authors: A. Oukaira, A. Lakhssassi, O. Ettahri

Abstract:

To make a good thermal management in an ABDM (Adapter Board Detector Module) card, we must first control temperature and its gradient from the first step in the design of integrated circuits ASIC of our complex system. In this paper, our main goal is to develop and validate the thermal stability in order to get an idea of the flow of heat around the ASIC in transient and thus address the thermal issues for integrated circuits at the ABDM card. However, we need heat sources simulations for ABDM card to establish its thermal mapping. This led us to perform simulations at each ASIC that will allow us to understand the thermal ABDM map and find real solutions for each one of our complex system that contains 36 ABDM map, taking into account the different layers around ASIC. To do a transient simulation under NISA, we had to build a function of power modulation in time TIMEAMP. The maximum power generated in the ASIC is 0.6 W. We divided the power uniformly in the volume of the ASIC. This power was applied for 5 seconds to visualize the evolution and distribution of heat around the ASIC. The DBC (Dirichlet Boundary conditions) method was applied around the ABDM at 25°C and just after these simulations in NISA tool we will validate them by COMSOL tool, wich is a numerical calculation software for a modular finite element for modeling a wide variety of physical phenomena characterizing a real problem. It will also be a design tool with its ability to handle 3D geometries for complex systems.

Keywords: ABDM, APD, thermal mapping, complex system

Procedia PDF Downloads 268
8869 Smallholder Farmers’ Adaptation Strategies and Socioeconomic Determinants of Climate Variability in Boset District, Oromia, Ethiopia

Authors: Hurgesa Hundera, Samuel Shibeshibikeko, Tarike Daba, Tesfaye Ganamo

Abstract:

The study aimed at examining the ongoing adaptation strategies used by smallholder farmers in response to climate variability in Boset district. It also assessed the socioeconomic factors that influence the choice of adaptation strategies of smallholder farmers to climate variability risk. For attaining the objectives of the study, both primary and secondary sources of data were employed. The primary data were obtained through a household questionnaire, key informant interviews, focus group discussions, and observations, while secondary data were acquired through desk review. Questionnaires were distributed and filled by 328 respondents, and they were identified through systematic random sampling technique. Descriptive statistics and binary logistic regression model were applied in this study as the main analytical methods. The findings of the study reveal that the sample households have utilized multiple adaptation strategies in response to climate variability, such as cropping early mature crops, planting drought resistant crops, growing mixed crops on the same farm lands, and others. The results of the binary logistic model revealed that education, sex, age, family size, off farm income, farm experience, access to climate information, access to farm input, and farm size were significant and key factors determining farmers’ choice of adaptation strategies to climate variability in the study area. To enable effective adaptation measures, Ministry of Agriculture and Natural Resource, with its regional bureaus and offices and concerned non–governmental organizations, should consider climate variability in their planning and budgeting in all levels of decision making.

Keywords: adaptation strategies, boset district, climate variability, smallholder farmers

Procedia PDF Downloads 91
8868 Commercialization of Smallholder Rice Producers and Its Determinants in Ethiopia

Authors: Abebaw Assaye, Seiichi Sakurai, Marutama Atsush, Dawit Alemu

Abstract:

Rice is considered as a strategic agricultural commodity targeting national food security and import substitution in Ethiopia and diverse measures are put in place a number of initiatives to ensure the growth and development of rice sector in the country. This study assessed factors that influence smallholder farmers' level of rice commercialization in Ethiopia. The required data were generated from 594 randomly sampled rice producers using multi-stage sampling techniques from four major rice-producing regional states. Both descriptive and econometric methods were used to analyze the data. We adopted the ordered probit model to analyze factors determining output commercialization in the rice market. The ordered probit model result showed that the sex of the household head, educational status of the household head, credit use, proportion of irrigated land cultivated, membership in social groups, and land dedicated to rice production were found to influence significantly and positively the probability of being commercial-oriented. Conversely, the age of the household, total cultivated land, and distance to the main market were found to influence negatively. These findings suggest that promoting productivity-increasing technologies, development of irrigation facilities, strengthening of social institutions, and facilitating access to credit are crucial for enhancing the commercialization of rice in the study area. Since agricultural lands are limited, intensified farming through promoting improved rice technologies and mechanized farming could be an option to enhance marketable surplus and increase level of rice market particicpation.

Keywords: rice, commercialization, Tobit, ordered probit, Ethiopia

Procedia PDF Downloads 88
8867 Water Re-Use Optimization in a Sugar Platform Biorefinery Using Municipal Solid Waste

Authors: Leo Paul Vaurs, Sonia Heaven, Charles Banks

Abstract:

Municipal solid waste (MSW) is a virtually unlimited source of lignocellulosic material in the form of a waste paper/cardboard mixture which can be converted into fermentable sugars via cellulolytic enzyme hydrolysis in a biorefinery. The extraction of the lignocellulosic fraction and its preparation, however, are energy and water demanding processes. The waste water generated is a rich organic liquor with a high Chemical Oxygen Demand that can be partially cleaned while generating biogas in an Upflow Anaerobic Sludge Blanket bioreactor and be further re-used in the process. In this work, an experiment was designed to determine the critical contaminant concentrations in water affecting either anaerobic digestion or enzymatic hydrolysis by simulating multiple water re-circulations. It was found that re-using more than 16.5 times the same water could decrease the hydrolysis yield by up to 65 % and led to a complete granules desegregation. Due to the complexity of the water stream, the contaminant(s) responsible for the performance decrease could not be identified but it was suspected to be caused by sodium, potassium, lipid accumulation for the anaerobic digestion (AD) process and heavy metal build-up for enzymatic hydrolysis. The experimental data were incorporated into a Water Pinch technology based model that was used to optimize the water re-utilization in the modelled system to reduce fresh water requirement and wastewater generation while ensuring all processes performed at optimal level. Multiple scenarios were modelled in which sub-process requirements were evaluated in term of importance, operational costs and impact on the CAPEX. The best compromise between water usage, AD and enzymatic hydrolysis yield was determined for each assumed contaminant degradations by anaerobic granules. Results from the model will be used to build the first MSW based biorefinery in the USA.

Keywords: anaerobic digestion, enzymatic hydrolysis, municipal solid waste, water optimization

Procedia PDF Downloads 322
8866 Sensitivity Analysis and Solitary Wave Solutions to the (2+1)-Dimensional Boussinesq Equation in Dispersive Media

Authors: Naila Nasreen, Dianchen Lu

Abstract:

This paper explores the dynamical behavior of the (2+1)-dimensional Boussinesq equation, which is a nonlinear water wave equation and is used to model wave packets in dispersive media with weak nonlinearity. This equation depicts how long wave made in shallow water propagates due to the influence of gravity. The (2+1)- dimensional Boussinesq equation combines the two-way propagation of the classical Boussinesq equation with the dependence on a second spatial variable, as that occurs in the two-dimensional Kadomstev- Petviashvili equation. This equation provides a description of head- on collision of oblique waves and it possesses some interesting properties. The governing model is discussed by the assistance of Ricatti equation mapping method, a relatively integration tool. The solutions have been extracted in different forms the solitary wave solutions as well as hyperbolic and periodic solutions. Moreover, the sensitivity analysis is demonstrated for the designed dynamical structural system’s wave profiles, where the soliton wave velocity and wave number parameters regulate the water wave singularity. In addition to being helpful for elucidating nonlinear partial differential equations, the method in use gives previously extracted solutions and extracts fresh exact solutions. Assuming the right values for the parameters, various graph in different shapes are sketched to provide information about the visual format of the earned results. This paper’s findings support the efficacy of the approach taken in enhancing nonlinear dynamical behavior. We believe this research will be of interest to a wide variety of engineers that work with engineering models. Findings show the effectiveness simplicity, and generalizability of the chosen computational approach, even when applied to complicated systems in a variety of fields, especially in ocean engineering.

Keywords: (2+1)-dimensional Boussinesq equation, solitary wave solutions, Ricatti equation mapping approach, nonlinear phenomena

Procedia PDF Downloads 108
8865 Numerical Determination of Transition of Cup Height between Hydroforming Processes

Authors: H. Selcuk Halkacı, Mevlüt Türköz, Ekrem Öztürk, Murat Dilmec

Abstract:

Various attempts concerning the low formability issue for lightweight materials like aluminium and magnesium alloys are being investigated in many studies. Advanced forming processes such as hydroforming is one of these attempts. In last decades sheet hydroforming process has an increasing interest, particularly in the automotive and aerospace industries. This process has many advantages such as enhanced formability, the capability to form complex parts, higher dimensional accuracy and surface quality, reduction of tool costs and reduced die wear compared to the conventional sheet metal forming processes. There are two types of sheet hydroforming. One of them is hydromechanical deep drawing (HDD) that is a special drawing process in which pressurized fluid medium is used instead of one of the die half compared to the conventional deep drawing (CDD) process. Another one is sheet hydroforming with die (SHF-D) in which blank is formed with the act of fluid pressure and it takes the shape of die half. In this study, transition of cup height according to cup diameter between the processes was determined by performing simulation of the processes in Finite Element Analysis. Firstly SHF-D process was simulated for 40 mm cup diameter at different cup heights chancing from 10 mm to 30 mm and the cup height to diameter ratio value in which it is not possible to obtain a successful forming was determined. Then the same ratio was checked for a different cup diameter of 60 mm. Then thickness distributions of the cups formed by SHF-D and HDD processes were compared for the cup heights. Consequently, it was found that the thickness distribution in HDD process in the analyses was more uniform.

Keywords: finite element analysis, HDD, hydroforming sheet metal forming, SHF-D

Procedia PDF Downloads 433
8864 The Role of University in High-Level Human Capital Cultivation in China’s West Greater Bay Area

Authors: Rochelle Yun Ge

Abstract:

University has played an active role in the country’s development in China. There has been an increasing research interest on the development of higher education cooperation, talent cultivation and attraction, and innovation in the regional development. The Triple Helix model, which indicates that regional innovation and development can be engendered by collaboration among university, industry and government, is often adopted as research framework. The research using triple helix model emphasizes the active and often leading role of university in knowledge-based economy. Within this framework, universities are conceptualized as key institutions of knowledge production, transmission and transference potentially making critical contributions to regional development. Recent research almost uniformly consistent in indicating the high-level research labours (i.e., doctoral, post-doctoral researchers and academics) as important actors in the innovation ecosystem with their cross-geographical human capital and resources presented. In 2019, the development of the Guangdong-Hong Kong-Macao Greater Bay Area (GBA) was officially launched as an important strategy by the Chinese government to boost the regional development of the Pearl River Delta and to support the realization of “One Belt One Road” strategy. Human Capital formation is at the center of this plan. One of the strategic goals of the GBA development is set to evolve into an international educational hub and innovation center with high-level talents. A number of policies have been issued to attract and cultivate human resources in different GBA cities, in particular for the high-level R&D (research and development) talents such as doctoral and post-doctoral researchers. To better understand the development of high-level talents hub in the GBA, more empirical considerations should be given to explore the approaches of talents cultivation and attraction in the GBA. What remains to explore is the ways to better attract, train, support and retain these talents in the cross-systems context. This paper aims to investigate the role of university in human capital development under China’s national agenda of GBA integration through the lens of universities and actors. Two flagship comprehensive universities are selected to be the cases and 30 interviews with university officials, research leaders, post-doctors and doctoral candidates are used for analysis. In particular, we look at in what ways have universities aligned their strategies and practices to the Chinese government’s GBA development strategy? What strategies and practices have been developed by universities for the cultivation and attraction of high-level research labor? And what impacts the universities have made for the regional development? The main arguments of this research highlights the specific ways in which universities in smaller sub-regions can collaborate in high-level human capital formation and the role policy can play in facilitating such collaborations.

Keywords: university, human capital, regional development, triple-helix model

Procedia PDF Downloads 115
8863 Modeling Sorption and Permeation in the Separation of Benzene/ Cyclohexane Mixtures through Styrene-Butadiene Rubber Crosslinked Membranes

Authors: Hassiba Benguergoura, Kamal Chanane, Sâad Moulay

Abstract:

Pervaporation (PV), a membrane-based separation technology, has gained much attention because of its energy saving capability and low-cost, especially for separation of azeotropic or close-boiling liquid mixtures. There are two crucial issues for industrial application of pervaporation process. The first is developing membrane material and tailoring membrane structure to obtain high pervaporation performances. The second is modeling pervaporation transport to better understand of the above-mentioned structure–pervaporation relationship. Many models were proposed to predict the mass transfer process, among them, solution-diffusion model is most widely used in describing pervaporation transport including preferential sorption, diffusion and evaporation steps. For modeling pervaporation transport, the permeation flux, which depends on the solubility and diffusivity of components in the membrane, should be obtained first. Traditionally, the solubility was calculated according to the Flory–Huggins theory. Separation of the benzene (Bz)/cyclohexane (Cx) mixture is industrially significant. Numerous papers have been focused on the Bz/Cx system to assess the PV properties of membrane materials. Membranes with both high permeability and selectivity are desirable for practical application. Several new polymers have been prepared to get both high permeability and selectivity. Styrene-butadiene rubbers (SBR), dense membranes cross-linked by chloromethylation were used in the separation of benzene/cyclohexane mixtures. The impact of chloromethylation reaction as a new method of cross-linking SBR on the pervaporation performance have been reported. In contrast to the vulcanization with sulfur, the cross-linking takes places on styrene units of polymeric chains via a methylene bridge. The partial pervaporative (PV) fluxes of benzene/cyclohexane mixtures in styrene-butadiene rubber (SBR) were predicted using Fick's first law. The predicted partial fluxes and the PV separation factor agreed well with the experimental data by integrating Fick's law over the benzene concentration. The effects of feed concentration and operating temperature on the predicted permeation flux by this proposed model are investigated. The predicted permeation fluxes are in good agreement with experimental data at lower benzene concentration in feed, but at higher benzene concentration, the model overestimated permeation flux. The predicted and experimental permeation fluxes all increase with operating temperature increasing. Solvent sorption levels for benzene/ cyclohexane mixtures in a SBR membrane were determined experimentally. The results showed that the solvent sorption levels were strongly affected by the feed composition. The Flory- Huggins equation generates higher R-square coefficient for the sorption selectivity.

Keywords: benzene, cyclohexane, pervaporation, permeation, sorption modeling, SBR

Procedia PDF Downloads 333
8862 Comparati̇ve Study of Pi̇xel and Object-Based Image Classificati̇on Techni̇ques for Extracti̇on of Land Use/Land Cover Informati̇on

Authors: Mahesh Kumar Jat, Manisha Choudhary

Abstract:

Rapid population and economic growth resulted in changes in large-scale land use land cover (LULC) changes. Changes in the biophysical properties of the Earth's surface and its impact on climate are of primary concern nowadays. Different approaches, ranging from location-based relationships or modelling earth surface - atmospheric interaction through modelling techniques like surface energy balance (SEB) have been used in the recent past to examine the relationship between changes in Earth surface land cover and climatic characteristics like temperature and precipitation. A remote sensing-based model i.e., Surface Energy Balance Algorithm for Land (SEBAL), has been used to estimate the surface heat fluxes over Mahi Bajaj Sagar catchment (India) from 2001 to 2020. Landsat ETM and OLI satellite data are used to model the SEB of the area. Changes in observed precipitation and temperature, obtained from India Meteorological Department (IMD) have been correlated with changes in surface heat fluxes to understand the relative contributions of LULC change in changing these climatic variables. Results indicate a noticeable impact of LULC changes on climatic variables, which are aligned with respective changes in SEB components. Results suggest that precipitation increases at a rate of 20 mm/year. The maximum and minimum temperature decreases and increases at 0.007 ℃ /year and 0.02 ℃ /year, respectively. The average temperature increases at 0.009 ℃ /year. Changes in latent heat flux and sensible heat flux positively correlate with precipitation and temperature, respectively. Variation in surface heat fluxes influences the climate parameters and is an adequate reason for climate change. So, SEB modelling is helpful to understand the LULC change and its impact on climate.

Keywords: remote sensing, GIS, object based, classification

Procedia PDF Downloads 137
8861 Power Allocation Algorithm for Orthogonal Frequency Division Multiplexing Based Cognitive Radio Networks

Authors: Bircan Demiral

Abstract:

Cognitive radio (CR) is the promising technology that addresses the spectrum scarcity problem for future wireless communications. Orthogonal Frequency Division Multiplexing (OFDM) technology provides more power band ratios for cognitive radio networks (CRNs). While CR is a solution to the spectrum scarcity, it also brings up the capacity problem. In this paper, a novel power allocation algorithm that aims at maximizing the sum capacity in the OFDM based cognitive radio networks is proposed. Proposed allocation algorithm is based on the previously developed water-filling algorithm. To reduce the computational complexity calculating in water filling algorithm, proposed algorithm allocates the total power according to each subcarrier. The power allocated to the subcarriers increases sum capacity. To see this increase, Matlab program was used, and the proposed power allocation was compared with average power allocation, water filling and general power allocation algorithms. The water filling algorithm performed worse than the proposed algorithm while it performed better than the other two algorithms. The proposed algorithm is better than other algorithms in terms of capacity increase. In addition the effect of the change in the number of subcarriers on capacity was discussed. Simulation results show that the increase in the number of subcarrier increases the capacity.

Keywords: cognitive radio network, OFDM, power allocation, water filling

Procedia PDF Downloads 143
8860 The Effect of Recycling on Price Volatility of Critical Metals in the EU (2010-2019): An Application of Multivariate GARCH Family Models

Authors: Marc Evenst Jn Jacques, Sophie Bernard

Abstract:

Electrical and electronic applications, as well as rechargeable batteries, are common in any economy. They also contain a number of important and valuable metals. It is critical to investigate the impact of these new materials or volume sources on the metal market dynamics. This paper investigates the impact of responsible recycling within the European region on metal price volatility. As far as we know, no empirical studies have been conducted to assess the role of metal recycling in metal market price volatility. The goal of this paper is to test the claim that metal recycling helps to cushion price volatility. A set of circular economy indicators/variables, namely, 1) annual total trade values of recycled metals, 2) annual volume of scrap traded and 3) circular material use rate, and 4) information about recycling, are used to estimate the volatility of monthly spot prices of regular metals. A combination of the GARCH-MIDAS model for mixed frequency data sampling and a simple GARCH (1,1) model for the same frequency variables was adopted to examine the potential links between each variable and price volatility. We discovered that from 2010 to 2019, except for Nickel, scrap consumption (Millions of tons), Scrap Trade Values, and Recycled Material use rate had no significant impact on the price volatility of standard metals (Aluminum, Lead) and precious metals (Gold and Platinum). Worldwide interest in recycling has no impact on returns or volatility. Specific interest in metal recycling did have a link to the mean return equation for Aluminum, Gold and to the volatility equation for lead and Nickel.

Keywords: recycling, circular economy, price volatility, GARCH, mixed data sampling

Procedia PDF Downloads 62
8859 Discrete Element Modeling of the Effect of Particle Shape on Creep Behavior of Rockfills

Authors: Yunjia Wang, Zhihong Zhao, Erxiang Song

Abstract:

Rockfills are widely used in civil engineering, such as dams, railways, and airport foundations in mountain areas. A significant long-term post-construction settlement may affect the serviceability or even the safety of rockfill infrastructures. The creep behavior of rockfills is influenced by a number of factors, such as particle size, strength and shape, water condition and stress level. However, the effect of particle shape on rockfill creep still remains poorly understood, which deserves a careful investigation. Particle-based discrete element method (DEM) was used to simulate the creep behavior of rockfills under different boundary conditions. Both angular and rounded particles were considered in this numerical study, in order to investigate the influence of particle shape. The preliminary results showed that angular particles experience more breakages and larger creep strains under one-dimensional compression than rounded particles. On the contrary, larger creep strains were observed in he rounded specimens in the direct shear test. The mechanism responsible for this difference is that the possibility of the existence of key particle in rounded particles is higher than that in angular particles. The above simulations demonstrate that the influence of particle shape on the creep behavior of rockfills can be simulated by DEM properly. The method of DEM simulation may facilitate our understanding of deformation properties of rockfill materials.

Keywords: rockfills, creep behavior, particle crushing, discrete element method, boundary conditions

Procedia PDF Downloads 314
8858 Unveiling the Dynamics of Preservice Teachers’ Engagement with Mathematical Modeling through Model Eliciting Activities: A Comprehensive Exploration of Acceptance and Resistance Towards Modeling and Its Pedagogy

Authors: Ozgul Kartal, Wade Tillett, Lyn D. English

Abstract:

Despite its global significance in curricula, mathematical modeling encounters persistent disparities in recognition and emphasis within regular mathematics classrooms and teacher education across countries with diverse educational and cultural traditions, including variations in the perceived role of mathematical modeling. Over the past two decades, increased attention has been given to the integration of mathematical modeling into national curriculum standards in the U.S. and other countries. Therefore, the mathematics education research community has dedicated significant efforts to investigate various aspects associated with the teaching and learning of mathematical modeling, primarily focusing on exploring the applicability of modeling in schools and assessing students', teachers', and preservice teachers' (PTs) competencies and engagement in modeling cycles and processes. However, limited attention has been directed toward examining potential resistance hindering teachers and PTs from effectively implementing mathematical modeling. This study focuses on how PTs, without prior modeling experience, resist and/or embrace mathematical modeling and its pedagogy as they learn about models and modeling perspectives, navigate the modeling process, design and implement their modeling activities and lesson plans, and experience the pedagogy enabling modeling. Model eliciting activities (MEAs) were employed due to their high potential to support the development of mathematical modeling pedagogy. The mathematical modeling module was integrated into a mathematics methods course to explore how PTs embraced or resisted mathematical modeling and its pedagogy. The module design included reading, reflecting, engaging in modeling, assessing models, creating a modeling task (MEA), and designing a modeling lesson employing an MEA. Twelve senior undergraduate students participated, and data collection involved video recordings, written prompts, lesson plans, and reflections. An open coding analysis revealed acceptance and resistance toward teaching mathematical modeling. The study identified four overarching themes, including both acceptance and resistance: pedagogy, affordance of modeling (tasks), modeling actions, and adjusting modeling. In the category of pedagogy, PTs displayed acceptance based on potential pedagogical benefits and resistance due to various concerns. The affordance of modeling (tasks) category emerged from instances when PTs showed acceptance or resistance while discussing the nature and quality of modeling tasks, often debating whether modeling is considered mathematics. PTs demonstrated both acceptance and resistance in their modeling actions, engaging in modeling cycles as students and designing/implementing MEAs as teachers. The adjusting modeling category captured instances where PTs accepted or resisted maintaining the qualities and nature of the modeling experience or converted modeling into a typical structured mathematics experience for students. While PTs displayed a mix of acceptance and resistance in their modeling actions, limitations were observed in embracing complexity and adhering to model principles. The study provides valuable insights into the challenges and opportunities of integrating mathematical modeling into teacher education, emphasizing the importance of addressing pedagogical concerns and providing support for effective implementation. In conclusion, this research offers a comprehensive understanding of PTs' engagement with modeling, advocating for a more focused discussion on the distinct nature and significance of mathematical modeling in the broader curriculum to establish a foundation for effective teacher education programs.

Keywords: mathematical modeling, model eliciting activities, modeling pedagogy, secondary teacher education

Procedia PDF Downloads 68
8857 Analyzing Façade Scenarios and Daylight Levels in the Reid Building: A Reflective Case Study on the Designed Daylight under Overcast Sky

Authors: Eman Mayah, Raid Hanna

Abstract:

This study presents the use of daylight in the case study of the Reid building at the Glasgow School of Art in the city of Glasgow, UK. In Nordic countries, daylight is one of the main considerations within building design, especially in the face of long, lightless winters. A shortage of daylight, contributing to dark and gloomy conditions, necessitates that designs incorporate strong daylight performance. As such, the building in question is designed to capture natural light for varying needs, where studios are located on the North and South façades. The study’s approach presents an analysis of different façade scenarios, where daylight from the North is observed, analyzed and compared with the daylight from the South façade for various design studios in the building. The findings then are correlated with the results of daylight levels from the daylight simulation program (Autodesk Ecotect Analysis) for the investigated studios. The study finds there to be a dramatic difference in daylight nature and levels between the North and South façades, where orientation, obstructions and designed façade fenestrations have major effects on the findings. The study concludes that some of the studios positioned on the North façade do not have a desirable quality of diffused northern light, due to the outside building’s obstructions, area and volume of the studio and the shadow effect of the designed mezzanine floor in the studios.

Keywords: daylight levels, educational building, Façade fenestration, overcast weather

Procedia PDF Downloads 413
8856 Localized Detection of ᴅ-Serine by Using an Enzymatic Amperometric Biosensor and Scanning Electrochemical Microscopy

Authors: David Polcari, Samuel C. Perry, Loredano Pollegioni, Matthias Geissler, Janine Mauzeroll

Abstract:

ᴅ-serine acts as an endogenous co-agonist for N-methyl-ᴅ-aspartate receptors in neuronal synapses. This makes it a key component in the development and function of a healthy brain, especially given its role in several neurodegenerative diseases such as Alzheimer’s disease and dementia. Despite such clear research motivations, the primary site and mechanism of ᴅ-serine release is still currently unclear. For this reason, we are developing a biosensor for the detection of ᴅ-serine utilizing a microelectrode in combination with a ᴅ-amino acid oxidase enzyme, which produces stoichiometric quantities of hydrogen peroxide in response to ᴅ-serine. For the fabrication of a biosensor with good selectivity, we use a permselective poly(meta-phenylenediamine) film to ensure only the target molecule is reacted, according to the size exclusion principle. In this work, we investigated the effect of the electrodeposition conditions used on the biosensor’s response time and selectivity. Careful optimization of the fabrication process allowed for enhanced biosensor response time. This allowed for the real time sensing of ᴅ-serine in a bulk solution, and also provided in means to map the efflux of ᴅ-serine in real time. This was done using scanning electrochemical microscopy (SECM) with the optimized biosensor to measure localized release of ᴅ-serine from an agar filled glass capillary sealed in an epoxy puck, which acted as a model system. The SECM area scan simultaneously provided information regarding the rate of ᴅ-serine flux from the model substrate, as well as the size of the substrate itself. This SECM methodology, which provides high spatial and temporal resolution, could be useful to investigate the primary site and mechanism of ᴅ-serine release in other biological samples.

Keywords: ᴅ-serine, enzymatic biosensor, microelectrode, scanning electrochemical microscopy

Procedia PDF Downloads 229
8855 Solution-Focused Wellness: An Evidence-Based Approach to Wellness Promotion

Authors: James Beauchemin

Abstract:

Research indicates that college students are experiencing mental health challenges of greater severity, and an increased number of students are seeking help. Contributing to the compromised wellness of the college student population are the prevalence of unhealthy lifestyle habits and behaviors such as alcohol consumption, tobacco use, dietary concerns, risky sexual behaviors, and lack of physical activity. Alternative approaches are needed for this population that emphasize prevention and holistic lifestyle change that mitigate mental health and wellness challenges and alleviate strain on campus resources. This presentation will introduce a Solution-Focused Wellness (SFW) intervention model and examine wellness domains solution-focused strategies to promote personal well-being, and provide supporting research from multiple studies that illustrate intervention effectiveness with a collegiate population. Given the subjective and personal nature of wellness, a therapeutic approach that provides the opportunity for individuals to conceptualize and operationalize wellness themselves is critical to facilitating lasting wellness-based change. Solution-Focused Brief Therapy (SFBT) is a strength-based modality defined by its emphasis on constructing solutions rather than focusing on problems and the assumption that clients have the resources and capacity to change. SFBT has demonstrated effectiveness as a brief therapeutic intervention with the college population in groups and related to health and wellness. By integrating SFBT strategies with personal wellness, a brief intervention was developed to support college students in establishing lifestyles trends consistent with their conceptualizations of wellness. Research supports the effectiveness of a SFW model in improving college student wellness in both face-to-face and web-based formats. Outcomes of controlled and longitudinal studies will be presented, demonstrating significant improvements in perceptions of stress, life satisfaction, happiness, mental health, well-being, and resilience. Overall, there is compelling evidence that utilization of a Solution-Focused Brief Therapy approach with college students can help to improve personal wellness and establish healthy lifestyle trends, providing an effective prevention-focused strategy for college counseling centers and wellness centers to employ. Primary research objectives include: 1)establish an evidence-based approach to facilitating wellness pro motion among the college student population, 2) examine the effectiveness of a Solution-Focused Wellness (SFW) intervention model in decreasing stress, improving personal wellness, mental health, life satisfaction, and resiliency,3) investigate intervention impacts over time (e.g. 6-week post-intervention), and 4) demonstrate SFW intervention utility in wellness promotion and associated outcomes when compared with no-treatment control, and alternative intervention approaches.

Keywords: wellness, college students, solution-focused, prevention

Procedia PDF Downloads 76
8854 Dynamic Analysis of a Moderately Thick Plate on Pasternak Type Foundation under Impact and Moving Loads

Authors: Neslihan Genckal, Reha Gursoy, Vedat Z. Dogan

Abstract:

In this study, dynamic responses of composite plates on elastic foundations subjected to impact and moving loads are investigated. The first order shear deformation (FSDT) theory is used for moderately thick plates. Pasternak-type (two-parameter) elastic foundation is assumed. Elastic foundation effects are integrated into the governing equations. It is assumed that plate is first hit by a mass as an impact type loading then the mass continues to move on the composite plate as a distributed moving loading, which resembles the aircraft landing on airport pavements. Impact and moving loadings are modeled by a mass-spring-damper system with a wheel. The wheel is assumed to be continuously in contact with the plate after impact. The governing partial differential equations of motion for displacements are converted into the ordinary differential equations in the time domain by using Galerkin’s method. Then, these sets of equations are solved by using the Runge-Kutta method. Several parameters such as vertical and horizontal velocities of the aircraft, volume fractions of the steel rebar in the reinforced concrete layer, and the different touchdown locations of the aircraft tire on the runway are considered in the numerical simulation. The results are compared with those of the ABAQUS, which is a commercial finite element code.

Keywords: elastic foundation, impact, moving load, thick plate

Procedia PDF Downloads 318
8853 Modelling Insider Attacks in Public Cloud

Authors: Roman Kulikov, Svetlana Kolesnikova

Abstract:

Last decade Cloud Computing technologies have been rapidly becoming ubiquitous. Each year more and more organizations, corporations, internet services and social networks trust their business sensitive information to Public Cloud. The data storage in Public Cloud is protected by security mechanisms such as firewalls, cryptography algorithms, backups, etc.. In this way, however, only outsider attacks can be prevented, whereas virtualization tools can be easily compromised by insider. The protection of Public Cloud’s critical elements from internal intruder remains extremely challenging. A hypervisor, also called a virtual machine manager, is a program that allows multiple operating systems (OS) to share a single hardware processor in Cloud Computing. One of the hypervisor's functions is to enforce access control policies. Furthermore, it prevents guest OS from disrupting each other and from accessing each other's memory or disk space. Hypervisor is the one of the most critical and vulnerable elements in Cloud Computing infrastructure. Nevertheless, it has been poorly protected from being compromised by insider. By exploiting certain vulnerabilities, privilege escalation can be easily achieved in insider attacks on hypervisor. In this way, an internal intruder, who has compromised one process, is able to gain control of the entire virtual machine. Thereafter, the consequences of insider attacks in Public Cloud might be more catastrophic and significant to virtual tools and sensitive data than of outsider attacks. So far, almost no preventive security countermeasures have been developed. There has been little attention paid for developing models to assist risks mitigation strategies. In this paper formal model of insider attacks on hypervisor is designed. Our analysis identifies critical hypervisor`s vulnerabilities that can be easily compromised by internal intruder. Consequently, possible conditions for successful attacks implementation are uncovered. Hence, development of preventive security countermeasures can be improved on the basis of the proposed model.

Keywords: insider attack, public cloud, cloud computing, hypervisor

Procedia PDF Downloads 366
8852 Speeding Up Lenia: A Comparative Study Between Existing Implementations and CUDA C++ with OpenGL Interop

Authors: L. Diogo, A. Legrand, J. Nguyen-Cao, J. Rogeau, S. Bornhofen

Abstract:

Lenia is a system of cellular automata with continuous states, space and time, which surprises not only with the emergence of interesting life-like structures but also with its beauty. This paper reports ongoing research on a GPU implementation of Lenia using CUDA C++ and OpenGL Interoperability. We demonstrate how CUDA as a low-level GPU programming paradigm allows optimizing performance and memory usage of the Lenia algorithm. A comparative analysis through experimental runs with existing implementations shows that the CUDA implementation outperforms the others by one order of magnitude or more. Cellular automata hold significant interest due to their ability to model complex phenomena in systems with simple rules and structures. They allow exploring emergent behavior such as self-organization and adaptation, and find applications in various fields, including computer science, physics, biology, and sociology. Unlike classic cellular automata which rely on discrete cells and values, Lenia generalizes the concept of cellular automata to continuous space, time and states, thus providing additional fluidity and richness in emerging phenomena. In the current literature, there are many implementations of Lenia utilizing various programming languages and visualization libraries. However, each implementation also presents certain drawbacks, which serve as motivation for further research and development. In particular, speed is a critical factor when studying Lenia, for several reasons. Rapid simulation allows researchers to observe the emergence of patterns and behaviors in more configurations, on bigger grids and over longer periods without annoying waiting times. Thereby, they enable the exploration and discovery of new species within the Lenia ecosystem more efficiently. Moreover, faster simulations are beneficial when we include additional time-consuming algorithms such as computer vision or machine learning to evolve and optimize specific Lenia configurations. We developed a Lenia implementation for GPU using the C++ and CUDA programming languages, and CUDA/OpenGL Interoperability for immediate rendering. The goal of our experiment is to benchmark this implementation compared to the existing ones in terms of speed, memory usage, configurability and scalability. In our comparison we focus on the most important Lenia implementations, selected for their prominence, accessibility and widespread use in the scientific community. The implementations include MATLAB, JavaScript, ShaderToy GLSL, Jupyter, Rust and R. The list is not exhaustive but provides a broad view of the principal current approaches and their respective strengths and weaknesses. Our comparison primarily considers computational performance and memory efficiency, as these factors are critical for large-scale simulations, but we also investigate the ease of use and configurability. The experimental runs conducted so far demonstrate that the CUDA C++ implementation outperforms the other implementations by one order of magnitude or more. The benefits of using the GPU become apparent especially with larger grids and convolution kernels. However, our research is still ongoing. We are currently exploring the impact of several software design choices and optimization techniques, such as convolution with Fast Fourier Transforms (FFT), various GPU memory management scenarios, and the trade-off between speed and accuracy using single versus double precision floating point arithmetic. The results will give valuable insights into the practice of parallel programming of the Lenia algorithm, and all conclusions will be thoroughly presented in the conference paper. The final version of our CUDA C++ implementation will be published on github and made freely accessible to the Alife community for further development.

Keywords: artificial life, cellular automaton, GPU optimization, Lenia, comparative analysis.

Procedia PDF Downloads 48
8851 Programmatic Actions of Social Welfare State in Service to Justice: Law, Society and the Third Sector

Authors: Bruno Valverde Chahaira, Matheus Jeronimo Low Lopes, Marta Beatriz Tanaka Ferdinandi

Abstract:

This paper proposes to dissect the meanings and / or directions of the State, in order, to present the State models to elaborate a conceptual framework about its function in the legal scope. To do so, it points out the possible contracts established between the State and the Society, since the general principles immanent in them can guide the models of society in force. From this orientation arise the contracts, whose purpose is by the effect to modify the status (the being and / or the opinion) of each of the subjects in presence - State and Society. In this logic, this paper announces the fiduciary contracts and “veredicção”(portuguese word) contracts, from the perspective of semiotics discourse (or greimasian). Therefore, studies focus on the issue of manifest language in unilateral and bilateral or reciprocal relations between the State and Society. Thus, under the biases of the model of the communicative situation and discourse, the guidelines of these contractual relations will be analyzed in order to see if there is a pragmatic sanction: positive when the contract is signed between the subjects (reward), or negative when the contract between they are broken (punishment). In this way, a third path emerges which, in this specific case, passes through the subject-third sector. In other words, the proposal, which is systemic in nature, is to analyze whether, since the contract of the welfare state is not carried out in the constitutional program on fundamental rights: education, health, housing, an others. Therefore, in the structure of the exchange demanded by the society according to its contractual obligations (others), the third way (Third Sector) advances in the empty space left by the State. In this line, it presents the modalities of action of the third sector in the social scope. Finally, the normative communication organization of these three subjects is sought in the pragmatic model of discourse, namely: State, Society and Third Sector, in an attempt to understand the constant dynamics in the Law and in the language of the relations established between them.

Keywords: access to justice, state, social rights, third sector

Procedia PDF Downloads 146
8850 Document-level Sentiment Analysis: An Exploratory Case Study of Low-resource Language Urdu

Authors: Ammarah Irum, Muhammad Ali Tahir

Abstract:

Document-level sentiment analysis in Urdu is a challenging Natural Language Processing (NLP) task due to the difficulty of working with lengthy texts in a language with constrained resources. Deep learning models, which are complex neural network architectures, are well-suited to text-based applications in addition to data formats like audio, image, and video. To investigate the potential of deep learning for Urdu sentiment analysis, we implemented five different deep learning models, including Bidirectional Long Short Term Memory (BiLSTM), Convolutional Neural Network (CNN), Convolutional Neural Network with Bidirectional Long Short Term Memory (CNN-BiLSTM), and Bidirectional Encoder Representation from Transformer (BERT). In this study, we developed a hybrid deep learning model called BiLSTM-Single Layer Multi Filter Convolutional Neural Network (BiLSTM-SLMFCNN) by fusing BiLSTM and CNN architecture. The proposed and baseline techniques are applied on Urdu Customer Support data set and IMDB Urdu movie review data set by using pre-trained Urdu word embedding that are suitable for sentiment analysis at the document level. Results of these techniques are evaluated and our proposed model outperforms all other deep learning techniques for Urdu sentiment analysis. BiLSTM-SLMFCNN outperformed the baseline deep learning models and achieved 83%, 79%, 83% and 94% accuracy on small, medium and large sized IMDB Urdu movie review data set and Urdu Customer Support data set respectively.

Keywords: urdu sentiment analysis, deep learning, natural language processing, opinion mining, low-resource language

Procedia PDF Downloads 76
8849 Analysis of Differentially Expressed Genes in Spontaneously Occurring Canine Melanoma

Authors: Simona Perga, Chiara Beltramo, Floriana Fruscione, Isabella Martini, Federica Cavallo, Federica Riccardo, Paolo Buracco, Selina Iussich, Elisabetta Razzuoli, Katia Varello, Lorella Maniscalco, Elena Bozzetta, Angelo Ferrari, Paola Modesto

Abstract:

Introduction: Human and canine melanoma have common clinical, histologic characteristics making dogs a good model for comparative oncology. The identification of specific genes and a better understanding of the genetic landscape, signaling pathways, and tumor–microenvironmental interactions involved in the cancer onset and progression is essential for the development of therapeutic strategies against this tumor in both species. In the present study, the differential expression of genes in spontaneously occurring canine melanoma and in paired normal tissue was investigated by targeted RNAseq. Material and Methods: Total RNA was extracted from 17 canine malignant melanoma (CMM) samples and from five paired normal tissues stored in RNA-later. In order to capture the greater genetic variability, gene expression analysis was carried out using two panels (Qiagen): Human Immuno-Oncology (HIO) and Mouse-Immuno-Oncology (MIO) and the miSeq platform (Illumina). These kits allow the detection of the expression profile of 990 genes involved in the immune response against tumors in humans and mice. The data were analyzed through the CLCbio Genomics Workbench (Qiagen) software using the Canis lupus familiaris genome as a reference. Data analysis were carried out both comparing the biologic group (tumoral vs. healthy tissues) and comparing neoplastic tissue vs. paired healthy tissue; a Fold Change greater than two and a p-value less than 0.05 were set as the threshold to select interesting genes. Results and Discussion: Using HIO 63, down-regulated genes were detected; 13 of those were also down-regulated comparing neoplastic sample vs. paired healthy tissue. Eighteen genes were up-regulated, 14 of those were also down-regulated comparing neoplastic sample vs. paired healthy tissue. Using the MIO, 35 down regulated-genes were detected; only four of these were down-regulated, also comparing neoplastic sample vs. paired healthy tissue. Twelve genes were up-regulated in both types of analysis. Considering the two kits, the greatest variation in Fold Change was in up-regulated genes. Dogs displayed a greater genetic homology with humans than mice; moreover, the results have shown that the two kits are able to detect different genes. Most of these genes have specific cellular functions or belong to some enzymatic categories; some have already been described to be correlated to human melanoma and confirm the validity of the dog as a model for the study of molecular aspects of human melanoma.

Keywords: animal model, canine melanoma, gene expression, spontaneous tumors, targeted RNAseq

Procedia PDF Downloads 202
8848 An Inquiry into the Usage of Complex Systems Models to Examine the Effects of the Agent Interaction in a Political Economic Environment

Authors: Ujjwall Sai Sunder Uppuluri

Abstract:

Group theory is a powerful tool that researchers can use to provide a structural foundation for their Agent Based Models. These Agent Based models are argued by this paper to be the future of the Social Science Disciplines. More specifically, researchers can use them to apply evolutionary theory to the study of complex social systems. This paper illustrates one such example of how theoretically an Agent Based Model can be formulated from the application of Group Theory, Systems Dynamics, and Evolutionary Biology to analyze the strategies pursued by states to mitigate risk and maximize usage of resources to achieve the objective of economic growth. This example can be applied to other social phenomena and this makes group theory so useful to the analysis of complex systems, because the theory provides the mathematical formulaic proof for validating the complex system models that researchers build and this will be discussed by the paper. The aim of this research, is to also provide researchers with a framework that can be used to model political entities such as states on a 3-dimensional plane. The x-axis representing resources (tangible and intangible) available to them, y the risks, and z the objective. There also exist other states with different constraints pursuing different strategies to climb the mountain. This mountain’s environment is made up of risks the state faces and resource endowments. This mountain is also layered in the sense that it has multiple peaks that must be overcome to reach the tallest peak. A state that sticks to a single strategy or pursues a strategy that is not conducive to the climbing of that specific peak it has reached is not able to continue advancement. To overcome the obstacle in the state’s path, it must innovate. Based on the definition of a group, we can categorize each state as being its own group. Each state is a closed system, one which is made up of micro level agents who have their own vectors and pursue strategies (actions) to achieve some sub objectives. The state also has an identity, the inverse being anarchy and/or inaction. Finally, the agents making up a state interact with each other through competition and collaboration to mitigate risks and achieve sub objectives that fall within the primary objective. Thus, researchers can categorize the state as an organism that reflects the sum of the output of the interactions pursued by agents at the micro level. When states compete, they employ a strategy and that state which has the better strategy (reflected by the strategies pursued by her parts) is able to out-compete her counterpart to acquire some resource, mitigate some risk or fulfil some objective. This paper will attempt to illustrate how group theory combined with evolutionary theory and systems dynamics can allow researchers to model the long run development, evolution, and growth of political entities through the use of a bottom up approach.

Keywords: complex systems, evolutionary theory, group theory, international political economy

Procedia PDF Downloads 142
8847 Comparative Analysis of Single Versus Multi-IRS Assisted Multi-User Wireless Communication System

Authors: Ayalew Tadese Kibret, Belayneh Sisay Alemu, Amare Kassaw Yimer

Abstract:

Intelligent reflecting surfaces (IRSs) are considered to be a key enabling technology for sixth-generation (6G) wireless networks. IRSs are electromagnetic (EM) surfaces that are fabricated and have integrated electronics, electronically controlled processes, and particularly wireless communication features. IRSs operate without the need for complex signal processing and the encoding and decoding steps that improve the signal quality at the receiver. Improving vital performance parameters such as energy efficiency (EE) and spectral efficiency (SE) have frequently been the primary goals of research in order to meet the increasing requirements for advanced services in the future 6G communications. In this research, we conduct a comparative analysis on single and multi-IRS wireless communication networks using energy and spectrum efficiency. The energy efficiency versus user distance, energy efficiency versus signal to noise ratio, and spectral efficiency versus user distance are the basis for our result with 1, 2, 4, and 6 IRSs. According to the results of our simulation, in terms of energy and spectral efficiency, six IRS perform better than four, two, and single IRS. Overall, our results suggest that multi-IRS-assisted wireless communication systems outperform single IRS systems in terms of communication performance.

Keywords: sixth-generation (6G), wireless networks, intelligent reflecting surfaces, energy efficiency, spectral efficiency

Procedia PDF Downloads 32
8846 Implementation of Fuzzy Version of Block Backward Differentiation Formulas for Solving Fuzzy Differential Equations

Authors: Z. B. Ibrahim, N. Ismail, K. I. Othman

Abstract:

Fuzzy Differential Equations (FDEs) play an important role in modelling many real life phenomena. The FDEs are used to model the behaviour of the problems that are subjected to uncertainty, vague or imprecise information that constantly arise in mathematical models in various branches of science and engineering. These uncertainties have to be taken into account in order to obtain a more realistic model and many of these models are often difficult and sometimes impossible to obtain the analytic solutions. Thus, many authors have attempted to extend or modified the existing numerical methods developed for solving Ordinary Differential Equations (ODEs) into fuzzy version in order to suit for solving the FDEs. Therefore, in this paper, we proposed the development of a fuzzy version of three-point block method based on Block Backward Differentiation Formulas (FBBDF) for the numerical solution of first order FDEs. The three-point block FBBDF method are implemented in uniform step size produces three new approximations simultaneously at each integration step using the same back values. Newton iteration of the FBBDF is formulated and the implementation is based on the predictor and corrector formulas in the PECE mode. For greater efficiency of the block method, the coefficients of the FBBDF are stored at the start of the program. The proposed FBBDF is validated through numerical results on some standard problems found in the literature and comparisons are made with the existing fuzzy version of the Modified Simpson and Euler methods in terms of the accuracy of the approximated solutions. The numerical results show that the FBBDF method performs better in terms of accuracy when compared to the Euler method when solving the FDEs.

Keywords: block, backward differentiation formulas, first order, fuzzy differential equations

Procedia PDF Downloads 323
8845 Understanding the Complexities of Consumer Financial Spinning

Authors: Olivier Mesly

Abstract:

This research presents a conceptual framework termed “Consumer Financial Spinning” (CFS) to analyze consumer behavior in the financial/economic markets. This phenomenon occurs when consumers of high-stakes financial products accumulate unsustainable debt, leading them to detach from their initial financial hierarchy of needs, wealth-related goals, and preferences regarding their household portfolio of assets. The daring actions of these consumers, forming a dark financial triangle, are characterized by three behaviors: overconfidence, the use of rationed rationality, and deceitfulness. We show that we can incorporate CFS into the traditional CAPM and Markovitz’ portfolio optimization models to create a framework that explains such market phenomena as the global financial crisis, highlighting the antecedents and consequences of ill-conceived speculation. Because this is a conceptual paper, there is no methodology with respect to ground studies. However, we apply modeling principles derived from the data percolation methodology, which contains tenets explicating how to structure concepts. A simulation test of the proposed framework is conducted; it demonstrates the conditions under which the relationship between expected returns and risk may deviate from linearity. The analysis and conceptual findings are particularly relevant both theoretically and pragmatically as they shed light on the psychological conditions that drive intense speculation, which can lead to market turmoil. Armed with such understanding, regulators are better equipped to propose solutions before the economic problems become out of control.

Keywords: consumer financial spinning, rationality, deceitfulness, overconfidence, CAPM

Procedia PDF Downloads 52
8844 Enhancing Nursing Teams' Learning: The Role of Team Accountability and Team Resources

Authors: Sarit Rashkovits, Anat Drach- Zahavy

Abstract:

The research considers the unresolved question regarding the link between nursing team accountability and team learning and the resulted team performance in nursing teams. Empirical findings reveal disappointing evidence regarding improvement in healthcare safety and quality. Therefore, there is a need in advancing managerial knowledge regarding the factors that enhance constant healthcare teams' proactive improvement efforts, meaning team learning. We first aim to identify the organizational resources that are needed for team learning in nursing teams; second, to test the moderating role of nursing teams' learning resources in the team accountability-team learning link; and third, to test the moderated mediation model suggesting that nursing teams' accountability affects team performance by enhancing team learning when relevant resources are available to the team. We point on the intervening role of three team learning resources, namely time availability, team autonomy and performance data on the relation between team accountability and team learning and test the proposed moderated mediation model on 44 nursing teams (462 nurses and 44 nursing managers). The results showed that, as was expected, there was a positive significant link between team accountability and team learning and the subsequent team performance when time availability and team autonomy were high rather than low. Nevertheless, the positive team accountability- team learning link was significant when team performance feedback was low rather than high. Accordingly, there was a positive mediated effect of team accountability on team performance via team learning when either time availability or team autonomy were high and the availability of team performance data was low. Nevertheless, this mediated effect was negative when time availability and team autonomy were low and the availability of team performance data was high. We conclude that nurturing team accountability is not enough for achieving nursing teams' learning and the subsequent improved team performance. Rather there is need to provide nursing teams with adequate time, autonomy, and be cautious with performance feedback, as the latter may motivate nursing teams to repeat routine work strategies rather than explore improved ones.

Keywords: nursing teams' accountability, nursing teams' learning, performance feedback, teams' autonomy

Procedia PDF Downloads 268