Search results for: energy absorbing capacity
1195 Comparative Study on Productivity, Chemical Composition and Yield Quality of Some Alternative Crops in Romanian Organic Farming
Authors: Maria Toader, Gheorghe Valentin Roman, Alina Maria Ionescu
Abstract:
Crops diversity and maintaining and enhancing the fertility of agricultural lands are basic principles of organic farming. With a wider range of crops in agroecosystem can improve the ability to control weeds, pests and diseases, and the performance of crops rotation and food safety. In this sense, the main objective of the research was to study the productivity and chemical composition of some alternative crops and their adaptability to soil and climatic conditions of the agricultural area in Southern Romania and to cultivation in the organic farming system. The alternative crops were: lentil (7 genotypes); five species of grain legumes (5 genotypes); four species of oil crops (5 genotypes). The seed production was, on average: 1343 kg/ha of lentil; 2500 kg/ha of field beans; 2400 kg/ha of chick peas and blackeyed peas; more than 2000 kg/ha of atzuki beans, over 1250 kg/ha of fenugreek; 2200 kg/ha of safflower; 570 kg/ha of oil pumpkin; 2150 kg/ha of oil flax; 1518 kg/ha of camelina. Regarding chemical composition, lentil seeds contained: 22.18% proteins, 3.03% lipids, 33.29% glucides, 4.00% minerals, and 259.97 kcal energy values. For field beans: 21.50% proteins, 4.40% lipids, 63.90% glucides, 5.85% minerals, 395.36 kcal energetic value. For chick peas: 21.23% proteins, 4.55% lipids, 53.00% glucides, 3.67% minerals, 348.22 kcal energetic value. For blackeyed peas: 23.30% proteins, 2.10% lipids, 68.10% glucides, 3.93% minerals, 350.14 kcal energetic value. For adzuki beans: 21.90% proteins, 2.60% lipids, 69.30% glucides, 4.10% minerals, 402.48 kcal energetic value. For fenugreek: 21.30% proteins, 4.65% lipids, 63.83% glucides, 5.69% minerals, 396.54 kcal energetic value. For safflower: 12.60% proteins, 28.37% lipids, 46.41% glucides, 3.60% minerals, 505.78 kcal energetic value. For camelina: 20.29% proteins, 31.68% lipids, 36.28% glucides, 4.29% minerals, 526.63 kcal energetic value. For oil pumpkin: 29.50% proteins, 36.92% lipids, 18.50% glucides, 5.41% minerals, 540.15 kcal energetic value. For oil flax: 22.56% proteins, 34.10% lipids, 27.73% glucides, 5.25% minerals, 558.45 kcal energetic value.Keywords: adaptability, alternative crops, chemical composition, organic farming productivity
Procedia PDF Downloads 5141194 Pupils' and Teachers' Perceptions and Experiences of Welsh Language Instruction
Authors: Mirain Rhys, Kevin Smith
Abstract:
In 2017, the Welsh Government introduced an ambitious, new strategy to increase the number of Welsh speakers in Wales to 1 million by 2050. The Welsh education system is a vitally important feature of this strategy. All children attending state schools in Wales learn Welsh as a second language until the age of 16 and are assessed at General Certificate of Secondary Education (GCSE) level. In 2013, a review of Welsh second language instruction in Key Stages 3 and 4 was completed. The report identified considerable gaps in teachers’ preparation and training for teaching Welsh; poor Welsh language ethos at many schools; and a general lack of resources to support the instruction of Welsh. Recommendations were made across a number of dimensions including curriculum content, pedagogical practice, and teacher assessment, training, and resources. With a new national curriculum currently in development, this study builds on this review and provides unprecedented detail into pupils’ and teachers’ perceptions of Welsh language instruction. The current research built on data taken from an existing capacity building research project on Welsh education, the Wales multi-cohort study (WMS). Quantitative data taken from WMS surveys with over 1200 pupils in schools in Wales indicated that Welsh language lessons were the least enjoyable subject among pupils. The current research aimed to unpick pupil experiences in order to add to the policy development context. To achieve this, forty-four pupils and four teachers in three schools from the larger WMS sample participated in focus groups. Participants from years 9, 11 and 13 who had indicated positive, negative and neutral attitudes towards the Welsh language in a previous WMS survey were selected. Questions were based on previous research exploring issues including, but not limited to pedagogy, policy, assessment, engagement and (teacher) training. A thematic analysis of the focus group recordings revealed that the majority of participants held positive views around keeping the language alive but did not want to take on responsibility for its maintenance. These views were almost entirely based on their experiences of learning Welsh at school, especially in relation to their perceived lack of choice and opinions around particular lesson strategies and assessment. Analysis of teacher interviews highlighted a distinct lack of resources (materials and staff alike) compared to modern foreign languages, which had a negative impact on student motivation and attitudes. Both staff and students indicated a need for more practical, oral language instruction which could lead to Welsh being used outside the classroom. The data corroborate many of the review’s previous findings, but what makes this research distinctive is the way in which pupils poignantly address generally misguided aims for Welsh language instruction, poor pedagogical practice and a general disconnect between Welsh instruction and its daily use in their lives. These findings emphasize the complexity of incorporating the educational sector in strategies for Welsh language maintenance and the complications arising from pedagogical training, support, and resources, as well as teacher and pupil perceptions of, and attitudes towards, teaching and learning Welsh.Keywords: bilingual education, language maintenance, language revitalisation, minority languages, Wales
Procedia PDF Downloads 1111193 Mixotropohic Growth of Chlorella sp. on Raw Food Processing Industrial Wastewater: Effect of COD Tolerance
Authors: Suvidha Gupta, R. A. Pandey, Sanjay Pawar
Abstract:
The effluents from various food processing industries are found with high BOD, COD, suspended solids, nitrate, and phosphate. Mixotrophic growth of microalgae using food processing industrial wastewater as an organic carbon source has emerged as more effective and energy intensive means for the nutrient removal and COD reduction. The present study details the treatment of non-sterilized unfiltered food processing industrial wastewater by microalgae for nutrient removal as well as to determine the tolerance to COD by taking different dilutions of wastewater. In addition, the effect of different inoculum percentages of microalgae on removal efficiency of the nutrients for given dilution has been studied. To see the effect of dilution and COD tolerance, the wastewater having initial COD 5000 mg/L (±5), nitrate 28 mg/L (±10), and phosphate 24 mg/L (±10) was diluted to get COD of 3000 mg/L and 1000 mg/L. The experiments were carried out in 1L conical flask by intermittent aeration with different inoculum percentage i.e. 10%, 20%, and 30% of Chlorella sp. isolated from nearby area of NEERI, Nagpur. The experiments were conducted for 6 days by providing 12:12 light- dark period and determined various parameters such as COD, TOC, NO3-- N, PO4-- P, and total solids on daily basis. Results revealed that, for 10% and 20% inoculum, over 90% COD and TOC reduction was obtained with wastewater containing COD of 3000 mg/L whereas over 80% COD and TOC reduction was obtained with wastewater containing COD of 1000 mg/L. Moreover, microalgae was found to tolerate wastewater containing COD 5000 mg/L and obtained over 60% and 80% reduction in COD and TOC respectively. The obtained results were found similar with 10% and 20% inoculum in all COD dilutions whereas for 30% inoculum over 60% COD and 70% TOC reduction was obtained. In case of nutrient removal, over 70% nitrate removal and 45% phosphate removal was obtained with 20% inoculum in all dilutions. The obtained results indicated that Microalgae assisted nutrient removal gives maximum COD and TOC reduction with 3000 mg/L COD and 20% inoculum. Hence, microalgae assisted wastewater treatment is not only effective for removal of nutrients but also can tolerate high COD up to 5000 mg/L and solid content.Keywords: Chlorella sp., chemical oxygen demand, food processing industrial wastewater, mixotrophic growth
Procedia PDF Downloads 3301192 Role of Civil Society Institutions in Promoting Peace and Pluralism in the Rural, Mountainous Region of Pakistan
Authors: Mir Afzal
Abstract:
Introduction: Pakistan is a country with an ever-increasing population of largely diverse ethnic, cultural, religious and sectarian divisions. Whereas diversity is seen as a strength in many societies, in Pakistan, it has become a source of conflict and more a weakness than a strength due to lack of understanding and divisions based on ethnic, cultural, political, religious, and sectarian branding. However, amid conflicts and militancy across the country, the rural, mountainous communities in the Northern Areas of Pakistan enjoy not only peace and harmony but also a continuous process of social and economic transformation supported by strong civil society institutions. These community-based institutions have organized the rural, mountainous people of diverse ethnic and religious backgrounds into village organizations, women organizations, and Local Support Organizations engaged in self-help development and peace building in the region. The Study and its Methodology: A qualitative study was conducted in one district of the Northern Pakistan to explore the contributions of the civil society institutions (CSIs) and community-based organizations to uplifting the educational and socio-economic conditions of the people with an ultimate aim of developing a thriving, peaceful and pluralistic society in this mountainous region. The study employed an eclectic set of tools, including interviews, focused group discussions, observations of CSIs’ interventions, and analysis of documents, to generate rich data on the overall role and contributions of CSIs in promoting peace and pluralism in the region. Significance of the Study: Common experiences and empirical studies reveal that such interventions by CSIs have not only contributed to the socio-economic, educational, health and cultural development of these regions but these interventions have really transformed the rural, mountainous people into organized and forward looking communities. However, how such interventions have contributed to promoting pluralism and appreciation for diversity in these regions had been an unexplored but significant area. Therefore this qualitative research study funded by the Higher Education Commission of Pakistan was carried out by the Aga Khan University Institute for Educational Development to explore the role and contributions of CSIs in promoting peace and pluralism and appreciations for diversity in one district of Northern Pakistan which is home to people of different ethnic, religious, cultural and social backgrounds. Findings and Conclusions: The study has a comprehensive list of findings and conclusions covering various aspects of CSIs and their contributions to the transformation and peaceful co-existence of rural communities in the regions. However, this paper discusses only four major contributions of CSIs, namely enhancing economic capacity, community mobilization and organization, increasing access and quality of education, and building partnerships. It also discusses the factors influencing the role of CSIs, the issues, implications, and recommendations for CSIs, policy makers, donors and development agencies, and researchers. The paper concludes that by strengthening strong networks of CSIs and community based organizations, Pakistan will not only uplift its socio-economic attainments but it will also be able to address the critical challenges of terrorism, sectarianism, and other divisions and conflicts in its various regions.Keywords: civil society, Pakistan, peace, rural
Procedia PDF Downloads 5201191 Online Faculty Professional Development: An Approach to the Design Process
Authors: Marie Bountrogianni, Leonora Zefi, Krystle Phirangee, Naza Djafarova
Abstract:
Faculty development is critical for any institution as it impacts students’ learning experiences and faculty performance with regards to course delivery. With that in mind, The Chang School at Ryerson University embarked on an initiative to develop a comprehensive, relevant faculty development program for online faculty and instructors. Teaching Adult Learners Online (TALO) is a professional development program designed to build capacity among online teaching faculty to enhance communication/facilitation skills for online instruction and establish a Community of Practice to allow for opportunities for online faculty to network and exchange ideas and experiences. TALO is comprised of four online modules and each module provides three hours of learning materials. The topics focus on online teaching and learning experience, principles and practices, opportunities and challenges in online assessments as well as course design and development. TALO offers a unique experience for online instructors who are placed in the role of a student and an instructor through interactivities involving discussions, hands-on assignments, peer mentoring while experimenting with technological tools available for their online teaching. Through exchanges and informal peer mentoring, a small interdisciplinary community of practice has started to take shape. Successful participants have to meet four requirements for completion: i) participate actively in online discussions and activities, ii) develop a communication plan for the course they are teaching, iii) design one learning activity/or media component, iv) design one online learning module. This study adopted a mixed methods exploratory sequential design. For the qualitative phase of this study, a thorough literature review was conducted on what constitutes effective faculty development programs. Based on that review, the design team identified desired competencies for online teaching/facilitation and course design. Once the competencies were identified, a focus group interview with The Chang School teaching community was conducted as a needs assessment and to validate the competencies. In the quantitative phase, questionnaires were distributed to instructors and faculty after the program was launched to continue ongoing evaluation and revisions, in hopes of further improving the program to meet the teaching community’s needs. Four faculty members participated in a one-hour focus group interview. Major findings from the focus group interview revealed that for the training program, faculty wanted i) to better engage students online, ii) to enhance their online teaching with specific strategies, iii) to explore different ways to assess students online. 91 faculty members completed the questionnaire in which findings indicated that: i) the majority of faculty stated that they gained the necessary skills to demonstrate instructor presence through communication and use of technological tools provided, ii) increased faculty confidence with course management strategies, iii) learning from peers is most effective – the Community of Practice is strengthened and valued even more as program alumni become facilitators. Although this professional development program is not mandatory for online instructors, since its launch in Fall 2014, over 152 online instructors have successfully completed the program. A Community of Practice emerged as a result of the program and participants continue to exchange thoughts and ideas about online teaching and learning.Keywords: community of practice, customized, faculty development, inclusive design
Procedia PDF Downloads 1721190 Reinforcing Effects of Natural Micro-Particles on the Dynamic Impact Behaviour of Hybrid Bio-Composites Made of Short Kevlar Fibers Reinforced Thermoplastic Composite Armor
Authors: Edison E. Haro, Akindele G. Odeshi, Jerzy A. Szpunar
Abstract:
Hybrid bio-composites are developed for use in protective armor through positive hybridization offered by reinforcement of high-density polyethylene (HDPE) with Kevlar short fibers and palm wood micro-fillers. The manufacturing process involved a combination of extrusion and compression molding techniques. The mechanical behavior of Kevlar fiber reinforced HDPE with and without palm wood filler additions are compared. The effect of the weight fraction of the added palm wood micro-fillers is also determined. The Young modulus was found to increase as the weight fraction of organic micro-particles increased. However, the flexural strength decreased with increasing weight fraction of added micro-fillers. The interfacial interactions between the components were investigated using scanning electron microscopy. The influence of the size, random alignment and distribution of the natural micro-particles was evaluated. Ballistic impact and dynamic shock loading tests were performed to determine the optimum proportion of Kevlar short fibers and organic micro-fillers needed to improve impact strength of the HDPE. These results indicate a positive hybridization by deposition of organic micro-fillers on the surface of short Kevlar fibers used in reinforcing the thermoplastic matrix leading to enhancement of the mechanical strength and dynamic impact behavior of these materials. Therefore, these hybrid bio-composites can be promising materials for different applications against high velocity impacts.Keywords: hybrid bio-composites, organic nano-fillers, dynamic shocking loading, ballistic impacts, energy absorption
Procedia PDF Downloads 1111189 Applications of Polyvagal Theory for Trauma in Clinical Practice: Auricular Acupuncture and Herbology
Authors: Aurora Sheehy, Caitlin Prince
Abstract:
Within current orthodox medical protocols, trauma and mental health issues are deemed to reside within the realm of cognitive or psychological therapists and are marginalised in these areas, in part due to limited drugs option available, mostly manipulating neurotransmitters or sedating patients to reduce symptoms. By contrast, this research presents examples from the clinical practice of how trauma can be assessed and treated physiologically. Adverse Childhood Experiences (ACEs) are a tally of different types of abuse and neglect. It has been used as a measurable and reliable predictor of the likelihood of the development of autoimmune disease. It is a direct way to demonstrate reliably the health impact of traumatic life experiences. A second assessment tool is Allostatic Load, which refers to the cumulative effects that chronic stress has on mental and physical health. It records the decline of an individual’s physiological capacity to cope with their experience. It uses a specific grouping of serum testing and physical measures. It includes an assessment of neuroendocrine, cardiovascular, immune and metabolic systems. Allostatic load demonstrates the health impact that trauma has throughout the body. It forms part of an initial intake assessment in clinical practice and could also be used in research to evaluate treatment. Examining medicinal plants for their physiological, neurological and somatic effects through the lens of Polyvagal theory offers new opportunities for trauma treatments. In situations where Polyvagal theory recommends activities and exercises to enable parasympathetic activation, many herbs that affect Effector Memory T (TEM) cells also enact these responses. Traditional or Indigenous European herbs show the potential to support the polyvagal tone, through multiple mechanisms. As the ventral vagal nerve reaches almost every major organ, plants that have actions on these tissues can be understood via their polyvagal actions, such as monoterpenes as agents to improve respiratory vagal tone, cyanogenic glycosides to reset polyvagal tone, volatile oils rich in phenyl methyl esters improve both sympathetic and parasympathetic tone, bitters activate gut function and can strongly promote parasympathetic regulation. Auricular Acupuncture uses a system of somatotopic mapping of the auricular surface overlaid with an image of an inverted foetus with each body organ and system featured. Given that the concha of the auricle is the only place on the body where the Vagus Nerve neurons reach the surface of the skin, several investigators have evaluated non-invasive, transcutaneous electrical nerve stimulation (TENS) at auricular points. Drawn from an interdisciplinary evidence base and developed through clinical practice, these assessment and treatment tools are examples of practitioners in the field innovating out of necessity for the best outcomes for patients. This paper draws on case studies to direct future research.Keywords: polyvagal, auricular acupuncture, trauma, herbs
Procedia PDF Downloads 911188 Understanding Stock-Out of Pharmaceuticals in Timor-Leste: A Case Study in Identifying Factors Impacting on Pharmaceutical Quantification in Timor-Leste
Authors: Lourenco Camnahas, Eileen Willis, Greg Fisher, Jessie Gunson, Pascale Dettwiller, Charlene Thornton
Abstract:
Stock-out of pharmaceuticals is a common issue at all level of health services in Timor-Leste, a small post-conflict country. This lead to the research questions: what are the current methods used to quantify pharmaceutical supplies; what factors contribute to the on-going pharmaceutical stock-out? The study examined factors that influence the pharmaceutical supply chain system. Methodology: Privett and Goncalvez dependency model has been adopted for the design of the qualitative interviews. The model examines pharmaceutical supply chain management at three management levels: management of individual pharmaceutical items, health facilities, and health systems. The interviews were conducted in order to collect information on inventory management, logistics management information system (LMIS) and the provision of pharmaceuticals. Andersen' behavioural model for healthcare utilization also informed the interview schedule, specifically factors linked to environment (healthcare system and external environment) and the population (enabling factors). Forty health professionals (bureaucrats, clinicians) and six senior officers from a United Nations Agency, a global multilateral agency and a local non-governmental organization were interviewed on their perceptions of factors (healthcare system/supply chain and wider environment) impacting on stock out. Additionally, policy documents for the entire healthcare system, along with population data were collected. Findings: An analysis using Pozzebon’s critical interpretation identified a range of difficulties within the system from poor coordination to failure to adhere to policy guidelines along with major difficulties with inventory management, quantification, forecasting, and budgetary constraints. Weak logistics management information system, lack of capacity in inventory management, monitoring and supervision are additional organizational factors that also contributed to the issue. There were various methods of quantification of pharmaceuticals applied in the government sector, and non-governmental organizations. Lack of reliable data is one of the major problems in the pharmaceutical provision. Global Fund has the best quantification methods fed by consumption data and malaria cases. There are other issues that worsen stock-out: political intervention, work ethic and basic infrastructure such as unreliable internet connectivity. Major issues impacting on pharmaceutical quantification have been identified. However, current data collection identified limitations within the Andersen model; specifically, a failure to take account of predictors in the healthcare system and the environment (culture/politics/social. The next step is to (a) compare models used by three non-governmental agencies with the government model; (b) to run the Andersen explanatory model for pharmaceutical expenditure for 2 to 5 drug items used by these three development partners in order to see how it correlates with the present model in terms of quantification and forecasting the needs; (c) to repeat objectives (a) and (b) using the government model; (d) to draw a conclusion about the strength.Keywords: inventory management, pharmaceutical forecasting and quantification, pharmaceutical stock-out, pharmaceutical supply chain management
Procedia PDF Downloads 2421187 Simulation and Characterization of Compact Magnetic Proton Recoil Spectrometer for Fast Neutron Spectra Measurements
Authors: Xingyu Peng, Qingyuan Hu, Xuebin Zhu, Xi Yuan
Abstract:
Neutron spectrometry has contributed much to the development of nuclear physics since 1932 and has also become an importance tool in several other fields, notably nuclear technology, fusion plasma diagnostics and radiation protection. Compared with neutron fluxes, neutron spectra can provide more detailed information on the internal physical process of neutron sources, such as fast neutron reactors, fusion plasma, fission-fusion hybrid reactors, and so on. However, high performance neutron spectrometer is not so commonly available as it requires the use of large and complex instrumentation. This work describes the development and characterization of a compact magnetic proton recoil (MPR) spectrometer for high-resolution measurements of fast neutron spectra. The compact MPR spectrometer is featured by its large recoil angle, small size permanent analysis magnet, short beam transport line and dual-purpose detector array for both steady state and pulsed neutron spectra measurement. A 3-dimensional electromagnetic particle transport code is developed to simulate the response function of the spectrometer. Simulation results illustrate that the performance of the spectrometer is mainly determined by n-p recoil foil and proton apertures, and an overall energy resolution of 3% is achieved for 14 MeV neutrons. Dedicated experiments using alpha source and mono-energetic neutron beam are employed to verify the simulated response function of the compact MPR spectrometer. These experimental results show a good agreement with the simulated ones, which indicates that the simulation code possesses good accuracy and reliability. The compact MPR spectrometer described in this work is a valuable tool for fast neutron spectra measurements for the fission or fusion devices.Keywords: neutron spectrometry, magnetic proton recoil spectrometer, neutron spectra, fast neutron
Procedia PDF Downloads 2011186 Ni Mixed Oxides Type-Spinel for Energy: Application in Dry Reforming of Methane for Syngas (H2 and CO) Production
Authors: Bedarnia Ishak
Abstract:
In the recent years, the dry reforming of methane has received considerable attention from an environmental view point because it consumes and eliminates two gases (CH4 and CO2) responsible for global warming by greenhouse effect. Many catalysts containing noble metal (Rh, Ru, Pd, Pt and Ir) or transition metal (Ni, Co and Fe) have been reported to be active in this reaction. Compared to noble metals, Ni-materials are cheap but very easily deactivated by coking. Ni-based mixed oxides structurally well-defined like perovskites and spinels are being studied because they possibly make solid solutions and allow to vary the composition and thus the performances properties. In this work, nano-sized nickel ferrite oxides are synthesized using three different methods: Co-precipitation (CP), hydrothermal (HT) and sol gel (SG) methods and characterized by XRD, Raman, XPS, BET, TPR, SEM-EDX and TEM-EDX. XRD patterns of all synthesized oxides showed the presence of NiFe2O4 spinel, confirmed by Raman spectroscopy. Hematite was present only in CP sample. Depending on the synthesis method, the surface area, particle size, as well as the surface Ni/Fe atomic ratio (XPS) and the behavior upon reduction varied. The materials were tested in methane dry reforming with CO2 at 1 atm and 650-800 °C. The catalytic activity of the spinel samples was not very high (XCH4 = 5-20 mol% and XCO2 = 25-40 mol %) when no pre-reduction step was carried out. A significant contribution of RWGS explained the low values of H2/CO ratio obtained. The reoxidation step of the catalyst carried out after reaction showed little amounts of coke deposition. The reducing pretreatment was particularly efficient in the case of SG (XCH4 = 80 mol% and XCO2 = 92 mol%, at 800 °C), with H2/CO > 1. In conclusion, the influence of preparation was strong for most samples and the catalytic behavior could be interpreted by considering the distribution of cations among octahedral (Oh) and tetrahedral (Td) sites as in (Ni2+1-xFe3+x) Td (Ni2+xFe3+2-x) OhO2-4 influenced the reducibility of materials and thus their catalytic performance.Keywords: NiFe2O4, dry reforming of methane, spinel oxide, oxide zenc
Procedia PDF Downloads 2801185 Development of Wave-Dissipating Block Installation Simulation for Inexperienced Worker Training
Authors: Hao Min Chuah, Tatsuya Yamazaki, Ryosui Iwasawa, Tatsumi Suto
Abstract:
In recent years, with the advancement of digital technology, the movement to introduce so-called ICT (Information and Communication Technology), such as computer technology and network technology, to civil engineering construction sites and construction sites is accelerating. As part of this movement, attempts are being made in various situations to reproduce actual sites inside computers and use them for designing and construction planning, as well as for training inexperienced engineers. The installation of wave-dissipating blocks on coasts, etc., is a type of work that has been carried out by skilled workers based on their years of experience and is one of the tasks that is difficult for inexperienced workers to carry out on site. Wave-dissipating blocks are structures that are designed to protect coasts, beaches, and so on from erosion by reducing the energy of ocean waves. Wave-dissipating blocks usually weigh more than 1 t and are installed by being suspended by a crane, so it would be time-consuming and costly for inexperienced workers to train on-site. In this paper, therefore, a block installation simulator is developed based on Unity 3D, a game development engine. The simulator computes porosity. Porosity is defined as the ratio of the total volume of the wave breaker blocks inside the structure to the final shape of the ideal structure. Using the evaluation of porosity, the simulator can determine how well the user is able to install the blocks. The voxelization technique is used to calculate the porosity of the structure, simplifying the calculations. Other techniques, such as raycasting and box overlapping, are employed for accurate simulation. In the near future, the simulator will install an automatic block installation algorithm based on combinatorial optimization solutions and compare the user-demonstrated block installation and the appropriate installation solved by the algorithm.Keywords: 3D simulator, porosity, user interface, voxelization, wave-dissipating blocks
Procedia PDF Downloads 1011184 Hydrodynamics of Periphyton Biofilters in Recirculating Aquaculture
Authors: Adam N. Bell, Sarina J. Ergas, Michael Nystrom, Nathan P. Brennan, Kevan L. Main
Abstract:
Integrated Multi-Trophic Aquaculture systems (IMTA) have the potential to improve the sustainability of seafood production, generate organic fertilizer and feed, remove waste discharges and reduce energy use. IMTA can include periphyton biofilters where algae and microbes grow on surfaces, along with caught detritus and amphipods. Periphyton biofilters provide many advantages: nitrification, denitrification, primary production and ecological diversity. The goal of this study was to determine how biofilter hydraulic residence time (τ) effects periphyton biomass production, dissolved oxygen (DO) and nutrient removal. A pilot scale recirculating aquaculture system (RAS) was designed, constructed and operated at different hydraulic residence times (τ= 1, 2, 4, 6, 8 hours per tank). For each τ, a conservative tracer study was conducted to investigate system hydrodynamics. Data on periphyton weights, pH, nitrogen species, phosphorus, temperature and DO were collected. The tracer study for τ =1 hour revealed that the normalized time < τ, indicating short-circuiting. Periphyton biomass production rate was relatively unaffected by τ (R_e<1 for all τ). Average ammonia nitrogen removal was > 75% for all trials. Nitrate and nitrite did not accumulate in the RAS for τ≥4 hours due to enhanced denitrification in anoxic zones. For τ≥4 hours DO concentration was at a maximum of 4 mg L-1 after 14:00, and decreased to 0 mg L-1 during nighttime. At τ=1 hour, the RAS stayed > 2 mg L-1 and DO was more evenly distributed. For the validation trial, the culture tank was stocked with Centropomus undecimalis (common snook) and the system was operated at τ= 1 hr. Preliminary results showed that a RAS with an integrated periphyton biofilter could support fish health with low nutrient concentrations DO > 6 mg L-1.Keywords: sustainable aquaculture, resource recovery, nitrogen, microalgae, hydrodynamics, integrated multi-trophic aquaculture
Procedia PDF Downloads 1281183 Treatment of Neuronal Defects by Bone Marrow Stem Cells Differentiation to Neuronal Cells Cultured on Gelatin-PLGA Scaffolds Coated with Nano-Particles
Authors: Alireza Shams, Ali Zamanian, Atefehe Shamosi, Farnaz Ghorbani
Abstract:
Introduction: Although the application of a new strategy remains a remarkable challenge for treatment of disabilities due to neuronal defects, progress in Nanomedicine and tissue engineering, suggesting the new medical methods. One of the promising strategies for reconstruction and regeneration of nervous tissue is replacing of lost or damaged cells by specific scaffolds after Compressive, ischemic and traumatic injuries of central nervous system. Furthermore, ultrastructure, composition, and arrangement of tissue scaffolds are effective on cell grafts. We followed implantation and differentiation of mesenchyme stem cells to neural cells on Gelatin Polylactic-co-glycolic acid (PLGA) scaffolds coated with iron nanoparticles. The aim of this study was to evaluate the capability of stem cells to differentiate into motor neuron-like cells under topographical cues and morphogenic factors. Methods and Materials: Bone marrow mesenchymal stem cells (BMMSCs) was obtained by primary cell culturing of adult rat bone marrow got from femur bone by flushing method. BMMSCs were incubated with DMEM/F12 (Gibco), 15% FBS and 100 U/ml pen/strep as media. Then, BMMSCs seeded on Gel/PLGA scaffolds and tissue culture (TCP) polystyrene embedded and incorporated by Fe Nano particles (FeNPs) (Fe3o4 oxide (M w= 270.30 gr/mol.). For neuronal differentiation, 2×10 5 BMMSCs were seeded on Gel/PLGA/FeNPs scaffolds was cultured for 7 days and 0.5 µ mol. Retinoic acid, 100 µ mol. Ascorbic acid,10 ng/ml. Basic fibroblast growth factor (Sigma, USA), 250 μM Iso butyl methyl xanthine, 100 μM 2-mercaptoethanol, and 0.2 % B27 (Invitrogen, USA) added to media. Proliferation of BMMSCs was assessed by using MTT assay for cell survival. The morphology of BMMSCs and scaffolds was investigated by scanning electron microscopy analysis. Expression of neuron-specific markers was studied by immunohistochemistry method. Data were analyzed by analysis of variance, and statistical significance was determined by Turkey’s test. Results: Our results revealed that differentiation and survival of BMMSCs into motor neuron-like cells on Gel/PLGA/FeNPs as a biocompatible and biodegradable scaffolds were better than those cultured in Gel/PLGA in absence of FeNPs and TCP scaffolds. FeNPs had raised physical power but decreased capacity absorption of scaffolds. Well defined oriented pores in scaffolds due to FeNPs may activate differentiation and synchronized cells as a mechanoreceptor. Induction effects of magnetic FeNPs by One way flow of channels in scaffolds help to lead the cells and can facilitate direction of their growth processes. Discussion: Progression of biological properties of BMMSCs and the effects of FeNPs spreading under magnetic field was evaluated in this investigation. In vitro study showed that the Gel/PLGA/FeNPs scaffold provided a suitable structure for motor neuron-like cells differentiation. This could be a promising candidate for enhancing repair and regeneration in neural defects. Dynamic and static magnetic field for inducing and construction of cells can provide better results for further experimental studies.Keywords: differentiation, mesenchymal stem cells, nano particles, neuronal defects, Scaffolds
Procedia PDF Downloads 1651182 Radioactivity Assessment of Sediments in Negombo Lagoon Sri Lanka
Authors: H. M. N. L. Handagiripathira
Abstract:
The distributions of naturally occurring and anthropogenic radioactive materials were determined in surface sediments taken at 27 different locations along the bank of Negombo Lagoon in Sri Lanka. Hydrographic parameters of lagoon water and the grain size analyses of the sediment samples were also carried out for this study. The conductivity of the adjacent water was varied from 13.6 mS/cm to 55.4 mS/cm near to the southern end and the northern end of the lagoon, respectively, and equally salinity levels varied from 7.2 psu to 32.1 psu. The average pH in the water was 7.6 and average water temperature was 28.7 °C. The grain size analysis emphasized the mass fractions of the samples as sand (60.9%), fine sand (30.6%) and fine silt+clay (1.3%) in the sampling locations. The surface sediment samples of wet weight, 1 kg each from upper 5-10 cm layer, were oven dried at 105 °C for 24 hours to get a constant weight, homogenized and sieved through a 2 mm sieve (IAEA technical series no. 295). The radioactivity concentrations were determined using gamma spectrometry technique. Ultra Low Background Broad Energy High Purity Ge Detector, BEGe (Model BE5030, Canberra) was used for radioactivity measurement with Canberra Industries' Laboratory Source-less Calibration Software (LabSOCS) mathematical efficiency calibration approach and Geometry composer software. The mean activity concentration was found to be 24 ± 4, 67 ± 9, 181 ± 10, 59 ± 8, 3.5 ± 0.4 and 0.47 ± 0.08 Bq/kg for 238U, 232Th, 40K, 210Pb, 235U and 137Cs respectively. The mean absorbed dose rate in air, radium equivalent activity, external hazard index, annual gonadal dose equivalent and annual effective dose equivalent were 60.8 nGy/h, 137.3 Bq/kg, 0.4, 425.3 mSv/year and 74.6 mSv/year, respectively. The results of this study will provide baseline information on the natural and artificial radioactive isotopes and environmental pollution associated with information on radiological risk.Keywords: gamma spectrometry, lagoon, radioactivity, sediments
Procedia PDF Downloads 1381181 Enriched Education: The Classroom as a Learning Network through Video Game Narrative Development
Authors: Wayne DeFehr
Abstract:
This study is rooted in a pedagogical approach that emphasizes student engagement as fundamental to meaningful learning in the classroom. This approach creates a paradigmatic shift, from a teaching practice that reinforces the teacher’s central authority to a practice that disperses that authority among the students in the classroom through networks that they themselves develop. The methodology of this study about creating optimal conditions for learning in the classroom includes providing a conceptual framework within which the students work, as well as providing clearly stated expectations for work standards, content quality, group methodology, and learning outcomes. These learning conditions are nurtured in a variety of ways. First, nearly every class includes a lecture from the professor with key concepts that students need in order to complete their work successfully. Secondly, students build on this scholarly material by forming their own networks, where students face each other and engage with each other in order to collaborate their way to solving a particular problem relating to the course content. Thirdly, students are given short, medium, and long-term goals. Short term goals relate to the week’s topic and involve workshopping particular issues relating to that stage of the course. The medium-term goals involve students submitting term assignments that are evaluated according to a well-defined rubric. And finally, long-term goals are achieved by creating a capstone project, which is celebrated and shared with classmates and interested friends on the final day of the course. The essential conclusions of the study are drawn from courses that focus on video game narrative. Enthusiastic student engagement is created not only with the dynamic energy and expertise of the instructor, but also with the inter-dependence of the students on each other to build knowledge, acquire skills, and achieve successful results.Keywords: collaboration, education, learning networks, video games
Procedia PDF Downloads 1151180 The Renewal of Chinese Urban Village on Cultural Ecology: Hubei Village as an Example
Authors: Shaojun Zheng, Lei Xu, Yunzi Wang
Abstract:
The main purpose of the research is to use the cultural ecology to analyze the renewal of Shenzhen urban village in the process of China's urbanization and to evaluate and guide the renewal, which will combine the society value and economic efficiency and activate urban villages. The urban village has a long history. There are also many old buildings, various residents, and a strong connection with the surrounding environment. Cultural ecology, which uses the knowledge of ecology to study culture, provides us a cultural perspective in the renewal. We take Hubei village in Shenzhen as our example. By using cultural ecology, we find a new way dealing with the relationship between culture and other factors. It helps us to give the buildings and space the culture meanings from different scales. It enables us to find a unique development pattern of urban village. After analyzing several famous cultural blocks cases, we find it is possible to connect the unique culture of urban village with the renovation of its buildings, community, and commerce. We propose the following strategies with specific target: 1. Building renovation: We repair and rebuild the origin buildings as little as possible, and retain the original urban space tissue as much as possible to keep the original sense of place and the cultural atmosphere. 2. Community upgrade: We reshape the village stream, fix the original function, add event which will activate people to complete the existing cultural circle 3. District commerce: We implant food and drink district, boutique commercial, and creative industries, to make full use of the historical atmosphere of the site to enhance the culture feelings For the renewal of a seemingly chaotic mixed urban village, it is important to break out from the conventional practices of building shopping malls or residential towers. Without creating those building landmarks, cultural ecology activates the urban village by exploiting its unique culture, which makes the old and new combine and becomes a new stream of energy, forming the new cultural, commercial and stylish landmark of the city.Keywords: cultural ecology, urban village, renewal, combination
Procedia PDF Downloads 3901179 Modeling Vegetation Phenological Characteristics of Terrestrial Ecosystems
Authors: Zongyao Sha
Abstract:
Green vegetation plays a vital role in energy flows and matter cycles in terrestrial ecosystems, and vegetation phenology may not only be influenced by but also impose active feedback on climate changes. The phenological events of vegetation, such as the start of the season (SOS), end of the season (EOS), and length of the season (LOS), can respond to climate changes and affect gross primary productivity (GPP). Here we coupled satellite remote sensing imagery with FLUXNET observations to systematically map the shift of SOS, EOS, and LOS in global vegetated areas and explored their response to climate fluctuations and feedback on GPP during the last two decades. Results indicated that SOS advanced significantly, at an average rate of 0.19 days/year at a global scale, particularly in the northern hemisphere above the middle latitude (≥30°N) and that EOS was slightly delayed during the past two decades, resulting in prolonged LOS in 72.5% of the vegetated area. The climate factors, including seasonal temperature and precipitation, are attributed to the shifts in vegetation phenology but with a high spatial and temporal difference. The study revealed interactions between vegetation phenology and climate changes. Both temperature and precipitation affect vegetation phenology. Higher temperature as a direct consequence of global warming advanced vegetation green-up date. On the other hand, 75.9% and 20.2% of the vegetated area showed a positive correlation and significant positive correlation between annual GPP and length of vegetation growing season (LOS), likely indicating an enhancing effect on vegetation productivity and thus increased carbon uptake from the shifted vegetation phenology. Our study highlights a comprehensive view of the vegetation phenology changes of the global terrestrial ecosystems during the last two decades. The interactions between the shifted vegetation phenology and climate changes may provide useful information for better understanding the future trajectory of global climate changes. The feedback on GPP from the shifted vegetation phenology may serve as an adaptation mechanism for terrestrial ecosystems to mitigate global warming through improved carbon uptake from the atmosphere.Keywords: vegetation phenology, growing season, NPP, correlation analysis
Procedia PDF Downloads 1001178 Chemical and Physical Properties and Biocompatibility of Ti–6Al–4V Produced by Electron Beam Rapid Manufacturing and Selective Laser Melting for Biomedical Applications
Authors: Bing–Jing Zhao, Chang-Kui Liu, Hong Wang, Min Hu
Abstract:
Electron beam rapid manufacturing (EBRM) or Selective laser melting is an additive manufacturing process that uses 3D CAD data as a digital information source and energy in the form of a high-power laser beam or electron beam to create three-dimensional metal parts by fusing fine metallic powders together.Object:The present study was conducted to evaluate the mechanical properties ,the phase transformation,the corrosivity and the biocompatibility of Ti-6Al-4V by EBRM,SLM and forging technique.Method: Ti-6Al-4V alloy standard test pieces were manufactured by EBRM, SLM and forging technique according to AMS4999,GB/T228 and ISO 10993.The mechanical properties were analyzed by universal test machine. The phase transformation was analyzed by X-ray diffraction and scanning electron microscopy. The corrosivity was analyzed by electrochemical method. The biocompatibility was analyzed by co-culturing with mesenchymal stem cell and analyzed by scanning electron microscopy (SEM) and alkaline phosphatase assay (ALP) to evaluate cell adhesion and differentiation, respectively. Results: The mechanical properties, the phase transformation, the corrosivity and the biocompatibility of Ti-6Al-4V by EBRM、SLM were similar to forging and meet the mechanical property requirements of AMS4999 standard. aphase microstructure for the EBM production contrast to the a’phase microstructure of the SLM product. Mesenchymal stem cell adhesion and differentiation were well. Conclusion: The property of the Ti-6Al-4V alloy manufactured by EBRM and SLM technique can meet the medical standard from this study. But some further study should be proceeded in order to applying well in clinical practice.Keywords: 3D printing, Electron Beam Rapid Manufacturing (EBRM), Selective Laser Melting (SLM), Computer Aided Design (CAD)
Procedia PDF Downloads 4531177 Influence of UV Aging on the Mechanical Properties of Polycarbonate
Authors: S. Redjala, N. Ait Hocine, M. Gratton, N. Poirot, R. Ferhoum, S. Azem
Abstract:
Polycarbonate (PC) is a promising polymer with high transparency in the range of the visible spectrum and is used in various fields, for example medical, electronic, automotive. Its low weight, chemical inertia, high impact resistance and relatively low cost are of major importance. In recent decades, some materials such as metals and ceramics have been replaced by polymers because of their superior advantages. However, some characteristics of the polymers are highly modified under the effect of ultraviolet (UV) radiation and temperature. The changes induced in the material by such aging depend on the exposure time, the wavelength of the UV radiation and the temperature level. The UV energy is sufficient to break the chemical bonds leading to a cleavage of the molecular chains. This causes changes in the mechanical, thermal, optical and morphological properties of the material. The present work is focused on the study of the effects of aging under ultraviolet (UV) radiation and under different temperature values on the physical-chemical and mechanical properties of a PC. Thus, various investigations, such as FTIR and XRD analyses, SEM and optical microscopy observations, micro-hardness measurements and monotonic and cyclic tensile tests, were carried out on the PC in the initial state and after aging. Results have shown the impact of aging on the properties of the PC studied. In fact, the MEB highlighted changes in the superficial morphology of the material by the presence of cracks and material de-bonding in the form of debris. The FTIR spectra reveal an attenuation of the peaks like the hydroxyl (OH) groups located at 3520 cm-1. The XRD lines shift towards a larger angle, reaching a maximum of 3°. In addition, Vickers micro-hardness measurements show that aging affects the surface and the core of the material, which results in different mechanical behaviours under monotonic and cyclic tensile tests. This study pointed out effects of aging on the macroscopic properties of the PC studied, in relationship with its microstructural changes.Keywords: mechanical properties, physical-chemical properties, polycarbonate, UV aging, temperature aging
Procedia PDF Downloads 1401176 Two Dimensional Steady State Modeling of Temperature Profile and Heat Transfer of Electrohydrodynamically Enhanced Micro Heat Pipe
Authors: H. Shokouhmand, M. Tajerian
Abstract:
A numerical investigation of laminar forced convection flows through a square cross section micro heat pipe by applying electrohydrodynamic (EHD) field has been studied. In the present study, pentane is selected as working fluid. Temperature and velocity profiles and heat transfer enhancement in the micro heat pipe by using EHD field at the two-dimensional and single phase fluid flow in steady state regime have been numerically calculated. At this model, only Coulomb force is considered. The study has been carried out for the Reynolds number 10 to 100 and EHD force field up to 8 KV. Coupled, non-linear equations governed on the model (continuity, momentum, and energy equations) have been solved simultaneously by CFD numerical methods. Steady state behavior of affecting parameters, e.g. friction factor, average temperature, Nusselt number and heat transfer enhancement criteria, have been evaluated. It has been observed that by increasing Reynolds number, the effect of EHD force became more significant and for smaller Reynolds numbers the rate of heat transfer enhancement criteria is increased. By obtaining and plotting the mentioned parameters, it has been shown that the EHD field enhances the heat transfer process. The numerical results show that by increasing EHD force field the absolute value of Nusselt number and friction factor increases and average temperature of fluid flow decreases. But the increasing rate of Nusselt number is greater than increasing value of friction factor, which makes applying EHD force field for heat transfer enhancement in micro heat pipes acceptable and applicable. The numerical results of model are in good agreement with the experimental results available in the literature.Keywords: micro heat pipe, electrohydrodynamic force, Nusselt number, average temperature, friction factor
Procedia PDF Downloads 2681175 Promises versus Realities: A Critical Assessment of the Integrated Design Process
Authors: Firdous Nizar, Carmela Cucuzzella
Abstract:
This paper explores how the integrated design process (IDP) was adopted for an architectural project. The IDP is a relatively new approach to collaborative design in architectural design projects in Canada. It has gained much traction recently as the closest possible approach to the successful management of low energy building projects and has been advocated as a productive method for multi-disciplinary collaboration within complex projects. This study is based on the premise that there are explicit and implicit dimensions of power within the integrated design process (IDP) in the green building industry that may or may not lead to irreconcilable differences in a process that demands consensus. To gain insight on the potential gap between the theoretical promises and practical realities of the IDP, a review of existing IDP literature is compared with a case study analysis of a competition-based architectural project in Canada, a first to incorporate the IDP in its overall design format. This paper aims to address the undertheorized power relations of the IDP in a real project. It presents a critical assessment through the lens of the combined theories of deliberative democracy by Jürgen Habermas, with that of agonistic pluralism by political theorist Chantal Mouffe. These two theories are intended to more appropriately embrace the conflictual situations in collaborative environments, and shed light on the relationships of power, between engineers, city officials, architects, and designers in this conventional consensus-based model. In addition, propositions for a shift in approach that embraces conflictual differences among its participants are put forth based on concepts of critical spatial practice by Markus Meissen. As IDP is a relatively new design process, it requires much deliberation on its structure from the theoretical framework built in this paper in order to unlock its true potential.Keywords: agonistic pluralism, critical spatial practice, deliberative democracy, integrated design process
Procedia PDF Downloads 1711174 Spherical Organic Particle (SOP) Emissions from Fixed-Bed Residential Coal-Burning Devices
Authors: Tafadzwa Makonese, Harold Annegarn, Patricia Forbes
Abstract:
Residential coal combustion is one of the largest sources of carbonaceous aerosols in the Highveld region of South Africa, significantly affecting the local and regional climate. In this study, we investigated single coal burning particles emitted when using different fire-ignition techniques (top-lit up-draft vs bottom-lit up-draft) and air ventilation rates (defined by the number of air holes above and below the fire grate) in selected informal braziers. Aerosol samples were collected on nucleopore filters at the SeTAR Centre Laboratory, University of Johannesburg. Individual particles (~700) were investigated using a scanning electron microscope equipped with an energy-dispersive X-ray spectroscopy (EDS). Two distinct forms of spherical organic particles (SOPs) were identified, one less oxidized than the other. The particles were further classified into "electronically" dark and bright, according to China et al. [2014]. EDS analysis showed that 70% of the dark spherical organic particles balls had higher (~60%) relative oxygen content than in the bright SOPs. We quantify the morphology of spherical organic particles and classify them into four categories: ~50% are bare single particles; ~35% particles are aggregated and form diffusion accretion chains; 10% have inclusions; and 5% are deformed due to impaction on filter material during sampling. We conclude that there are two distinct kinds of coal burning spherical organic particles and that dark SOPs are less volatile than bright SOPs. We also show that these spherical organic particles are similar in nature and characteristics to tar balls observed in biomass combustion, and that they have the potential to absorb sunlight thereby affecting the earth’s radiative budget and climate. This study provides insights on the mixing states, morphology, and possible formation mechanisms of these organic particles from residential coal combustion in informal stoves.Keywords: spherical organic particles, residential coal combustion, fixed-bed, aerosols, morphology, stoves
Procedia PDF Downloads 4651173 Effect of Microstructure and Texture of Magnesium Alloy Due to Addition of Pb
Authors: Yebeen Ji, Jimin Yun, Kwonhoo Kim
Abstract:
Magnesium alloys were limited for industrial applications due to having a limited slip system and high plastic anisotropy. It has been known that specific textures were formed during processing (rolling, etc.), and These textures cause poor formability. To solve these problems, many researchers have studied controlling texture by adding rare-earth elements. However, the high cost limits their use; therefore, alternatives are needed to replace them. Although Pb addition doesn’t directly improve magnesium properties, it has been known to suppress the diffusion of other alloying elements and reduce grain boundary energy. These characteristics are similar to the additions of rare-earth elements, and a similar texture behavior is expected as well. However, there is insufficient research on this. Therefore, this study investigates the behavior of texture and microstructure development after adding Pb to magnesium. This study compared and analyzed AZ61 alloy and Mg-15wt%Pb alloy to determine the effect of adding solute elements. The alloy was hot rolled and annealed to form a single phase and initial texture. Afterward, the specimen was set to contraction and elongate parallel to the rolling surface and the rolling direction and then subjected to high-temperature plane strain compression under the conditions of 723K and 0.05/s. Microstructural analysis and texture measurements were performed by SEM-EBSD. The peak stress in the true strain-stress curve after compression was higher in AZ61, but the shape of the flow curve was similar for both alloys. For both alloys, continuous dynamic recrystallization was confirmed to occur during the compression process. The basal texture developed parallel to the compressed surface, and the pole density was lower in the Mg-15wt%Pb alloy. It is confirmed that this change in behavior is because the orientation distribution of recrystallized grains has a more random orientation compared to the parent grains when Pb is added.Keywords: Mg, texture, Pb, DRX
Procedia PDF Downloads 481172 Ni Mixed Oxides Type-Spinel for Energy: Application in Dry Reforming of Methane for Syngas (H2 & Co) Production
Authors: Bouhenni Mohamed Saif El Islam
Abstract:
In the recent years, the dry reforming of methane has received considerable attention from an environmental view point because it consumes and eliminates two gases (CH4 and CO2) responsible for global warming by greenhouse effect. Many catalysts containing noble metal (Rh, Ru, Pd, Pt and Ir) or transition metal (Ni, Co and Fe) have been reported to be active in this reaction. Compared to noble metals, Ni-materials are cheap but very easily deactivated by coking. Ni-based mixed oxides structurally well-defined like perovskites and spinels are being studied because they possibly make solid solutions and allow to vary the composition and thus the performances properties. In this work, nano-sized nickel ferrite oxides are synthesized using three different methods: Co-precipitation (CP), hydrothermal (HT) and sol gel (SG) methods and characterized by XRD, Raman, XPS, BET, TPR, SEM-EDX and TEM-EDX. XRD patterns of all synthesized oxides showed the presence of NiFe2O4 spinel, confirmed by Raman spectroscopy. Hematite was present only in CP sample. Depending on the synthesis method, the surface area, particle size, as well as the surface Ni/Fe atomic ratio (XPS) and the behavior upon reduction varied. The materials were tested in methane dry reforming with CO2 at 1 atm and 650-800 °C. The catalytic activity of the spinel samples was not very high (XCH4 = 5-20 mol% and XCO2 = 25-40 mol %) when no pre-reduction step was carried out. A significant contribution of RWGS explained the low values of H2/CO ratio obtained. The reoxidation step of the catalyst carried out after reaction showed little amounts of coke deposition. The reducing pretreatment was particularly efficient in the case of SG (XCH4 = 80 mol% and XCO2 = 92 mol%, at 800 °C), with H2/CO > 1. In conclusion, the influence of preparation was strong for most samples and the catalytic behavior could be interpreted by considering the distribution of cations among octahedral (Oh) and tetrahedral (Td) sites as in (Ni2+1-xFe3+x)Td (Ni2+xFe3+2-x)OhO2-4 influenced the reducibility of materials and thus their catalytic performance.Keywords: NiFe2O4, dry reforming of methane, spinel oxide, XCO2
Procedia PDF Downloads 3801171 Adaptability of Steel-Framed Industrialized Building System In Post-Service Life
Authors: Alireza Taghdiri, Sara Ghanbarzade Ghomi
Abstract:
Existing buildings are permanently subjected to change, continuously renovated and repaired in their long service life. Old buildings are destroyed and their material and components are recycled or reused for constructing new ones. In this process, the importance of sustainability principles for building construction is obviously known and great significance must be attached to the consumption of resources, resulting effects on the environment and economic costs. Utilization strategies for extending buildings service life and delay in destroying have a positive effect on environment protection. In addition, simpler alterability or expandability of buildings’ structures and reducing energy and natural resources consumption have benefits for users, producers and the environment. To solve these problems, by applying theories of open building, structural components of some conventional building systems have been analyzed and then, a new geometry adaptive building system is developed which can transform and support different imposed loads. In order to achieve this goal, various research methods and tools such as professional and scientific literatures review, comparative analysis, case study and computer simulation were applied and data interpretation was implemented using descriptive statistics and logical arguments. Therefore, hypothesis and proposed strategies were evaluated and an adaptable and reusable 2-dimensional building system was presented which can respond appropriately to dwellers and end-users needs and provide reusability of structural components of building system in new construction or function. Investigations showed that this incremental building system can be successfully applied in achieving the architectural design objectives and by small modifications on components and joints, it is easy to obtain different and adaptable load-optimized component alternatives for flexible spaces.Keywords: adaptability, durability, open building, service life, structural building system
Procedia PDF Downloads 4331170 Control Algorithm Design of Single-Phase Inverter For ZnO Breakdown Characteristics Tests
Authors: Kashif Habib, Zeeshan Ayyub
Abstract:
ZnO voltage dependent resistor was widely used as components of the electrical system for over-voltage protection. It has a wide application prospect in superconducting energy-removal, generator de-excitation, overvoltage protection of electrical & electronics equipment. At present, the research for the application of ZnO voltage dependent resistor stop, it uses just in the field of its nonlinear voltage current characteristic and overvoltage protection areas. There is no further study over the over-voltage breakdown characteristics, such as the combustion phenomena and the measure of the voltage/current when it breakdown, and the affect to its surrounding equipment. It is also a blind spot in its application. So, when we do the feature test of ZnO voltage dependent resistor, we need to design a reasonable test power supply, making the terminal voltage keep for sine wave, simulating the real use of PF voltage in power supply conditions. We put forward the solutions of using inverter to generate a controllable power. The paper mainly focuses on the breakdown characteristic test power supply of nonlinear ZnO voltage dependent resistor. According to the current mature switching power supply technology, we proposed power control system using the inverter as the core. The power mainly realize the sin-voltage output on the condition of three-phase PF-AC input, and 3 control modes (RMS, Peak, Average) of the current output. We choose TMS320F2812M as the control part of the hardware platform. It is used to convert the power from three-phase to a controlled single-phase sin-voltage through a rectifier, filter, and inverter. Design controller produce SPWM, to get the controlled voltage source via appropriate multi-loop control strategy, while execute data acquisition and display, system protection, start logic control, etc. The TMS320F2812M is able to complete the multi-loop control quickly and can be a good completion of the inverter output control.Keywords: ZnO, multi-loop control, SPWM, non-linear load
Procedia PDF Downloads 3241169 Yield and Composition of Bio-Oil from Co-Pyrolysis of Corn Cobs and Plastic Waste of HDPE in a Fixed Bed Reactor
Authors: Dijan Supramono, Eny Kusrini, Haisya Yuana
Abstract:
Pyrolysis, a thermal cracking process in inert environment, may be used to produce bio-oil from biomass and plastic waste thus accommodating the use of renewable energy. Abundant amount of biomass waste in Indonesia are not utilised and plastic wastes are not well processed for clean environment. The aim of present work was to evaluate effect of mass ratio of plastic material to biomass in the feed blend of corn cobs and high density polyethylene (HDPE) of co-pyrolysis on bio-oil yield and chemical composition of bio-oil products. The heating rate of the co-pyrolysis was kept low and residence time was in the order of seconds to accommodate high yield of oil originating from plastic pyrolysis. Corn cobs have high cellulose and hemicellulose content (84%) which is potential to produce bio-oil. The pyrolysis was conducted in a laboratory-scale using a fixed bed reactor with final temperature of 500°C, heating rate 5 °C/min, flow rate N2 750 mL/min, total weight of biomass and plastic material of 20 g, and hold time after peak temperature of 30 min. Set up of conditions of co-pyrolysis should lead to accommodating the production of oil originating from HDPE due to constraint of HDPE pyrolysis residence time. Mass ratio of plastics to biomass in the feed blend was varied 0:100, 25:75, 50:50, 75:25 and 100:0. It was found that by increasing HDPE content up to 100% in the feed blend, the yield of bio-oil at different mass ratios prescribed above were 28.05, 21.55, 14.55, 9.5, and 6.3wt%, respectively. Therefore, in the fixed bed reactor, producing bio-oil is constrained by low contribution of plastic feedstock to the pyrolysis liquid yield. Furthermore, for the same variation of the mass ratio, yields of the mixture of paraffins, olefins and cycloalkanes contained in bio-oil were of 0, 28.35, 40.75, 47.17, and 67.05wt%, respectively. Olefins and cycloalkanes are easily hydrogenised to produce paraffins, suitable to be used as bio-fuel. By increasing composition of HDPE in the feed blend, viscosity and pH of bio-oil change approaching to those of commercial diesel oil.Keywords: co-pyrolysis, corn cobs, fixed bed reactor, HDPE
Procedia PDF Downloads 3531168 The Effect of Restaurant Residuals on Performance of Japanese Quail
Authors: A. A. Saki, Y. Karimi, H. J. Najafabadi, P. Zamani, Z. Mostafaie
Abstract:
The restaurant residuals reasons such as competition between human and animal consumption of cereals, increasing environmental pollution and the high cost of production of livestock products is important. Therefore, in this restaurant residuals have a high nutritional value (protein and high energy) that it is possible can replace some of the poultry diets are especially Japanese quail. Today, the challenges of processing and consumption of these lesions occurring in modern industry would be confronting. Increasing costs, pressures, and problems associated with waste excretion, the need for re-evaluation and utilization of waste to livestock and poultry feed fortifies. This study aimed to investigate the effects of different levels of restaurant residuals on performance of 300 layer Japanese quails. This experiment included 5 treatments, 4 replicates, and 15 quails in each from 10 to 18 weeks age in a completely randomized design (CRD). The treatments consist of basal diet including corn and soybean meal (without residual restaurants), and treatments 2, 3, 4 and 5, includes a basal diet containing 5, 10, 15 and 20% of restaurant residuals, respectively. There were no significant effect of restaurant residuals levels on body weight (BW), feed conversion ratio (FCR), percentage of egg production (EP), egg mass (EM) between treatments (P > 0/05). However, feed intake (FI) of 5% restaurant residual was significantly higher than 20% treatment (P < 0/05). Egg weight (EW) was also higher by receiving 20% restaurant residuals compared with 10% in this respect (P < 0/05). Yolk weight (YW) of treatments containing 10 and 20% of the residual restaurant were significantly higher than control (P < 0/05). Eggs white weight (EWW) of 20 and 5% restaurants residual treatments were significantly increased compared by 10% (P < 0/05). Furthermore, EW, egg weight to shell surface area and egg surface area in 20% treatment were significantly higher than control and 10% treatment (P < 0/05). The overall results of this study have shown that restaurant residuals for laying quail diets in levels of 10 and 15 percent could be replaced with a part of the quail ration without any adverse effect.Keywords: by-product, laying quail, performance, restaurant residuals
Procedia PDF Downloads 1631167 Site Selection in Adaptive Reuse Architecture for Social Housing in Johannesburg, South Africa
Authors: Setapo Moloi, Jun-Ichiro Giorgos Tsutsumi
Abstract:
South Africa’s need for the provision of housing within its major city centres, specifically Gauteng Province (GP), is a major concern. Initiatives for converting misused/ unused buildings to suitable housing for residents who work in the city as well as prospective citizens are currently underway, one aspect that is needed currently, is the re-possession of these buildings repurposing, into housing communities for quality low cost mixed density housing and for this process to have minimal strain on existing infrastructure like energy, emission reduction etc. Unfortunately, there are instances in Johannesburg, the country’s economic capital, with 2017 estimates claiming that 700 buildings lay unused or misused due to issues that will be discussed in this paper, these then become hubs for illegal activity and are an unacceptable form of shelter. It can be argued that the provision of inner-city social housing is lacking, but not due to the unavailability of funding or usable land and buildings, but that these assets are not being used appropriately nor to their full potential. Currently the GP government has mandated the re-purposing of all buildings that meet their criteria (structural stability, feasibility, adaptability, etc.) with the intention of inviting interested parties to propose conversions of the buildings into densified social housing. Going forward, the proposed focus is creation of social housing communities within existing buildings which may be retrofitted with sustainable technologies, green design strategies and principles, aiming for the finished buildings to achieve ‘Net-Zero/Positive’ status. A Net-Zero building, according to The Green Building Council of South Africa (GBCSA) is a building which manages to produce resources it needs to function, and reduces wastage, emissions and demand of these resources during its lifespan. The categories which GBCSA includes are carbon, water, waste and ecology, this may include material selection, construction methods, etc.Keywords: adaptive reuse, conversion, net-zero, social housing, sustainable communities
Procedia PDF Downloads 1361166 A One-Dimensional Modeling Analysis of the Influence of Swirl and Tumble Coefficient in a Single-Cylinder Research Engine
Authors: Mateus Silva Mendonça, Wender Pereira de Oliveira, Gabriel Heleno de Paula Araújo, Hiago Tenório Teixeira Santana Rocha, Augusto César Teixeira Malaquias, José Guilherme Coelho Baeta
Abstract:
The stricter legislation and the greater demand of the population regard to gas emissions and their effects on the environment as well as on human health make the automotive industry reinforce research focused on reducing levels of contamination. This reduction can be achieved through the implementation of improvements in internal combustion engines in such a way that they promote the reduction of both specific fuel consumption and air pollutant emissions. These improvements can be obtained through numerical simulation, which is a technique that works together with experimental tests. The aim of this paper is to build, with support of the GT-Suite software, a one-dimensional model of a single-cylinder research engine to analyze the impact of the variation of swirl and tumble coefficients on the performance and on the air pollutant emissions of an engine. Initially, the discharge coefficient is calculated through the software Converge CFD 3D, given that it is an input parameter in GT-Power. Mesh sensitivity tests are made in 3D geometry built for this purpose, using the mass flow rate in the valve as a reference. In the one-dimensional simulation is adopted the non-predictive combustion model called Three Pressure Analysis (TPA) is, and then data such as mass trapped in cylinder, heat release rate, and accumulated released energy are calculated, aiming that the validation can be performed by comparing these data with those obtained experimentally. Finally, the swirl and tumble coefficients are introduced in their corresponding objects so that their influences can be observed when compared to the results obtained previously.Keywords: 1D simulation, single-cylinder research engine, swirl coefficient, three pressure analysis, tumble coefficient
Procedia PDF Downloads 105