Search results for: residential energy
7992 Multi-Atlas Segmentation Based on Dynamic Energy Model: Application to Brain MR Images
Authors: Jie Huo, Jonathan Wu
Abstract:
Segmentation of anatomical structures in medical images is essential for scientific inquiry into the complex relationships between biological structure and clinical diagnosis, treatment and assessment. As a method of incorporating the prior knowledge and the anatomical structure similarity between a target image and atlases, multi-atlas segmentation has been successfully applied in segmenting a variety of medical images, including the brain, cardiac, and abdominal images. The basic idea of multi-atlas segmentation is to transfer the labels in atlases to the coordinate of the target image by matching the target patch to the atlas patch in the neighborhood. However, this technique is limited by the pairwise registration between target image and atlases. In this paper, a novel multi-atlas segmentation approach is proposed by introducing a dynamic energy model. First, the target is mapped to each atlas image by minimizing the dynamic energy function, then the segmentation of target image is generated by weighted fusion based on the energy. The method is tested on MICCAI 2012 Multi-Atlas Labeling Challenge dataset which includes 20 target images and 15 atlases images. The paper also analyzes the influence of different parameters of the dynamic energy model on the segmentation accuracy and measures the dice coefficient by using different feature terms with the energy model. The highest mean dice coefficient obtained with the proposed method is 0.861, which is competitive compared with the recently published method.Keywords: brain MRI segmentation, dynamic energy model, multi-atlas segmentation, energy minimization
Procedia PDF Downloads 3397991 Piezoelectric Micro-generator Characterization for Energy Harvesting Application
Authors: José E. Q. Souza, Marcio Fontana, Antonio C. C. Lima
Abstract:
This paper presents analysis and characterization of a piezoelectric micro-generator for energy harvesting application. A low-cost experimental prototype was designed to operate as piezoelectric micro-generator in the laboratory. An input acceleration of 9.8m/s2 using a sine signal (peak-to-peak voltage: 1V, offset voltage: 0V) at frequencies ranging from 10Hz to 160Hz generated a maximum average power of 432.4μW (linear mass position = 25mm) and an average power of 543.3μW (angular mass position = 35°). These promising results show that the prototype can be considered for low consumption load application as an energy harvesting micro-generator.Keywords: piezoelectric, micro-generator, energy harvesting, cantilever beam
Procedia PDF Downloads 4687990 Fuzzy Rules Based Improved BEENISH Protocol for Wireless Sensor Networks
Authors: Rishabh Sharma
Abstract:
The main design parameter of WSN (wireless sensor network) is the energy consumption. To compensate this parameter, hierarchical clustering is a technique that assists in extending duration of the networks life by efficiently consuming the energy. This paper focuses on dealing with the WSNs and the FIS (fuzzy interface system) which are deployed to enhance the BEENISH protocol. The node energy, mobility, pause time and density are considered for the selection of CH (cluster head). The simulation outcomes exhibited that the projected system outperforms the traditional system with regard to the energy utilization and number of packets transmitted to sink.Keywords: wireless sensor network, sink, sensor node, routing protocol, fuzzy rule, fuzzy inference system
Procedia PDF Downloads 1097989 The Influence of Microcapsulated Phase Change Materials on Thermal Performance of Geopolymer Concrete
Authors: Vinh Duy Cao, Shima Pilehvar, Anna M. Szczotok, Anna-Lena Kjøniksen
Abstract:
The total energy consumption is dramatically increasing on over the world, especially for building energy consumption where a significant proportion of energy is used for heating and cooling purposes. One of the solutions to reduce the energy consumption for the building is to improve construction techniques and enhance material technology. Recently, microcapsulated phase change materials (MPCM) with high energy storage capacity within the phase transition temperature of the materials is a potential method to conserve and save energy. A new composite materials with high energy storage capacity by mixing MPCM into concrete for passive building technology is the promising candidate to reduce the energy consumption. One of the most untilized building materials for mixing with MPCM is Portland cement concrete. However, the emission of carbon dioxide (CO2) due to producing cement which plays the important role in the global warming is the main drawback of PCC. Accordingly, an environmentally friendly building material, geopolymer, which is synthesized by the reaction between the industrial waste material (aluminosilicate) and a strong alkali activator, is a potential materials to mixing with MPCM. Especially, the effect of MPCM on the thermal and mechanical properties of geopolymer concrete (GPC) is very limited. In this study, high thermal energy storage capacity materials were fabricated by mixing MPCM into geopolymer concrete. This article would investigate the effect of MPCM concentration on thermal and mechanical properties of GPC. The target is to balance the effect of MPCM on improving the thermal performance and maintaining the compressive strength of the geopolymer concrete at an acceptable level for building application.Keywords: microencapsulated phase change materials, geopolymer concrete, energy storage capacity, thermal performance
Procedia PDF Downloads 3147988 Design of 100 kW Induction Generator for Wind Power Plant at Tamanjaya Village-Sukabumi
Authors: Andri Setiyoso, Agus Purwadi, Nanda Avianto Wicaksono
Abstract:
This paper present about induction generator design for 100kW power output capacity. Induction machine had been chosen because of the capability for energy conversion from electric energy to mechanical energy and vise-versa with operation on variable speed condition. Stator Controlled Induction Generator (SCIG) was applied as wind power plant in Desa Taman Jaya, Sukabumi, Indonesia. Generator was designed to generate power 100 kW with wind speed at 12 m/s and survival condition at speed 21 m/s.Keywords: wind energy, induction generator, Stator Controlled Induction Generator (SCIG), variable speed generator
Procedia PDF Downloads 5117987 The Failure and Energy Mechanism of Rock-Like Material with Single Flaw
Authors: Yu Chen
Abstract:
This paper investigates the influence of flaw on failure process of rock-like material under uniaxial compression. In laboratory, the uniaxial compression tests of intact specimens and a series of specimens within single flaw were conducted. The inclination angle of flaws includes 0°, 15°, 30°, 45°, 60°, 75° and 90°. Based on the laboratory tests, the corresponding models of numerical simulation were built and loaded in PFC2D. After analysing the crack initiation and failure modes, deformation field, and energy mechanism for both laboratory tests and numerical simulation, it can be concluded that the influence of flaws on the failure process is determined by its inclination. The characteristic stresses increase as flaw angle rising basically. The tensile cracks develop from gentle flaws (α ≤ 30°) and the shear cracks develop from other flaws. The propagation of cracks changes during failure process and the failure mode of a specimen corresponds to the orientation of the flaw. A flaw has significant influence on the transverse deformation field at the middle of the specimen, except the 75° and 90° flaw sample. The input energy, strain energy and dissipation energy of specimens show approximate increase trends with flaw angle rising and it presents large difference on the energy distribution.Keywords: failure pattern, particle deformation field, energy mechanism, PFC
Procedia PDF Downloads 2147986 The Practice of Integrating Sustainable Elements into the Housing Industry in Malaysia
Authors: Wong Kean Hin, Kumarason A. L. V. Rasiah
Abstract:
A building provides shelter and protection for an individual to live, work, sleep, procreate or engage in leisurely activities comfortably. Currently, a very popular term related to building was often stated by many parties, which is sustainability. A sustainable building is environmental friendly, healthy to the occupants, as well as efficient in electricity and water. This particular research is important to any parties that are involved in the construction industry. This research will provide the awareness and acceptability of Malaysian public towards sustainable residential building. It will also provide the developers about which sustainable features that the people usually want so that the developers can build a sustainable housing that suits the needs of people. Then, propose solutions to solve the difficulties of implementing sustainability in Malaysian housing industry. Qualitative and quantitative research methods were used throughout the process of data collection. The quantitative research method was distribution of questionnaires to 100 Malaysian public and 50 individuals that worked in developer companies. Then, the qualitative method was an interview session with experienced personnel in Malaysian construction industry. From the data collected, there is increasingly Malaysian public and developers are aware about the existence of sustainability. Moreover, the public is willing to invest on sustainable residential building with minimum additional cost. However, there is a mismatch in between sustainable elements provided by developers and the public needs. Some recommendations to improve the progression of sustainability had been proposed in this study, which include laws enforcement, cooperation between the both government sector with private sector, and private sector with private sector, and learn from modern countries. These information will be helpful and useful for the future of sustainability development in Malaysia.Keywords: acceptability, awareness, Malaysian housing industry, sustainable elements, green building index
Procedia PDF Downloads 3707985 Energy Consumption and Economic Growth: Testimony of Selected Sub-Saharan Africa Countries
Authors: Alfred Quarcoo
Abstract:
The main purpose of this paper is to examine the causal relationship between energy consumption and economic growth in Sub-Saharan Africa using panel data techniques. An annual data on energy consumption and Economic Growth (proxied by real gross domestic product per capita) spanning from 1990 to 2016 from the World bank index database was used. The results of the Augmented Dickey–Fuller unit root test shows that the series for all countries are not stationary at levels. However, the log of economic growth in Benin and Congo become stationary after taking the differences of the data, and log of energy consumption become stationary for all countries and Log of economic growth in Kenya and Zimbabwe were found to be stationary after taking the second differences of the panel series. The findings of the Johansen cointegration test demonstrate that the variables Log of Energy Consumption and Log of economic growth are not co-integrated for the cases of Kenya and Zimbabwe, so no long-run relationship between the variables were established in any country. The Granger causality test indicates that there is a unidirectional causality running from energy use to economic growth in Kenya and no causal linkage between Energy consumption and economic growth in Benin, Congo and Zimbabwe.Keywords: Cointegration, Granger Causality, Sub-Sahara Africa, World Bank Development Indicators
Procedia PDF Downloads 567984 Comparison of MODIS-Based Rice Extent Map and Landsat-Based Rice Classification Map in Determining Biomass Energy Potential of Rice Hull in Nueva Ecija, Philippines
Authors: Klathea Sevilla, Marjorie Remolador, Bryan Baltazar, Imee Saladaga, Loureal Camille Inocencio, Ma. Rosario Concepcion Ang
Abstract:
The underutilization of biomass resources in the Philippines, combined with its growing population and the rise in fossil fuel prices confirms demand for alternative energy sources. The goal of this paper is to provide a comparison of MODIS-based and Landsat-based agricultural land cover maps when used in the estimation of rice hull’s available energy potential. Biomass resource assessment was done using mathematical models and remote sensing techniques employed in a GIS platform.Keywords: biomass, geographic information system (GIS), remote sensing, renewable energy
Procedia PDF Downloads 4837983 Evaluation of Sustainable Business Model Innovation in Increasing the Penetration of Renewable Energy in the Ghana Power Sector
Authors: Victor Birikorang Danquah
Abstract:
Ghana's primary energy supply is heavily reliant on petroleum, biomass, and hydropower. Currently, Ghana gets its energy from hydropower (Akosombo and Bui), thermal power plants powered by crude oil, natural gas, and diesel, solar power, and imports from La Cote d'Ivoire. Until the early 2000s, large hydroelectric dams dominated Ghana's electricity generation. Due to unreliable weather patterns, Ghana increased its reliance on thermal power. However, thermal power contributes the highest percentage in terms of electricity generation in Ghana and is predominantly supplied by Independent Power Producers (IPPs). Ghana's electricity industry operates the corporate utility model as its business model. This model is typically' vertically integrated,' with a single corporation selling the majority of power generated by its generation assets to its retail business, which then sells the electricity to retail market consumers. The corporate utility model has a straightforward value proposition that is based on increasing the number of energy units sold. The unit volume business model drives the entire energy value chain to increase throughput, locking system users into unsustainable practices. This report uses the qualitative research approach to explore the electricity industry in Ghana. There is a need for increasing renewable energy, such as wind and solar, in electricity generation. The research recommends two critical business models for the penetration of renewable energy in Ghana's power sector. The first model is the peer-to-peer electricity trading model, which relies on a software platform to connect consumers and generators in order for them to trade energy directly with one another. The second model is about encouraging local energy generation, incentivizing optimal time-of-use behaviour, and allowing any financial gains to be shared among the community members.Keywords: business model innovation, electricity generation, renewable energy, solar energy, sustainability, wind energy
Procedia PDF Downloads 1887982 Deformation and Energy Absorption of Corrugated Tubes
Authors: Mohammad R. Rahim, Shagil Akhtar, Prem K. Bharti, Syed Muneeb Iqbal
Abstract:
Deformation and energy absorption studies with corrugated tubes where corrugation is perpendicular to the line of action which coincides exactly with the unstrained axis of the tubes. In the present study, several specimens with various geometric parameters are prepared and compressed quasi-statistically in ANSYS Workbench. It is observed that tubes with perpendicular corrugation alters the deformation condition considerably and culminates in a substantial escalation in energy absorption scope in juxtaposed with the tubes having a circular cross-section. This study will help automotive, aerospace and various other industries to design superior components with perpendicular corrugated tubes and will reduce the experimental trials by conducting the numerical simulations.Keywords: ANSYS Workbench, deformation and energy absorption, corrugated tubes, quasi-static compression
Procedia PDF Downloads 3897981 Photovoltaic Array Cleaning System Design and Evaluation
Authors: Ghoname Abdullah, Hidekazu Nishimura
Abstract:
Dust accumulation on the photovoltaic module's surface results in appreciable loss and negatively affects the generated power. Hence, in this paper, the design of a photovoltaic array cleaning system is presented. The cleaning system utilizes one drive motor, two guide rails, and four sweepers during the cleaning process. The cleaning system was experimentally implemented for one month to investigate its efficiency on PV array energy output. The energy capture over a month for PV array cleaned using the proposed cleaning system is compared with that of the energy capture using soiled PV array. The results show a 15% increase in energy generation from PV array with cleaning. From the results, investigating the optimal scheduling of the PV array cleaning could be an interesting research topic.Keywords: cleaning system, dust accumulation, PV array, PV module, soiling
Procedia PDF Downloads 1327980 Experımental Study of Structural Insulated Panel under Lateral Load
Abstract:
A Structural Insulated Panel (SIP) is a structural element contains of foam insulation core sandwiched between two oriented-strand boards (OSB), plywood boards, steel sheets or fibre cement boards. Superior insulation, exceptional strength and fast insulation are the specifications of a SIP-based structure. There are also many other benefits such as less total construction costs, speed of construction, less expensive HVAC equipment required, favourable energy-efficient mortgages comparing to wood-framed houses. This paper presents the experimental analysis on selected foam-timber SIPs to study their structural behaviour when used as walls in residential construction under lateral loading. The experimental program has also taken several stud panels in order to compare the performance of SIP with conventional wood-frame system. The results of lateral tests performed in this study established a database that can be used further to develop design tables of SIP wall subjected to lateral loading caused by wind or earthquake. A design table for walls subjected to lateral loading was developed. Experimental results proved that the tested SIPs are ‘as good as’ the conventional wood-frame system.Keywords: structural insulated panel, experimental study, lateral load, design tables
Procedia PDF Downloads 3207979 The Role of the Urban Renewal Projects on the Reshaping of the Cities in Izmir, Turkey
Authors: Sibel Ecemis Kilic, Neslihan Karatas
Abstract:
The concept of urban renewal came up with interventions to the urban areas which have social and economic problems aimed at gaining the city. In Turkey after 2000, urban renewal has become a frequent topic on the agenda; regulations have been developed in this regard. Urban renewal project would be a focal point for the formation of the city in the near future. The future of the city is directly related to how to achieve these applications. Urban renewal policies will be decisive in the positive or negative development of the potential of the existing renewal process. Urban renewal is seen as a refreshing new planned action for reshaping unplanned and uncontrolled growth of big cities/metropolitan areas. In this context, Izmir is one of the largest metropolitan areas which came on the agenda of urban renewal application in the recent period. Izmir, which is the third largest city of Turkey, is an important trade and port city. The city, located west of Turkey, is a gate opening to Europe. In particular, continued its development rapidly after the Republican Period, it has become an important big city today. Assessment of the current situation shows that the majority of existing residential areas was formed with squatters and unplanned settlements in Izmir city center. Therefore, an important part of these areas have significant problems in terms of the quality of life, safety, and environmental quality. Legal residential areas which have had developed before 2000 is seen inadequate security in terms of an earthquake. In this study, the central policies in Turkey and local policies in İzmir about urban renewal will be considered. In addition, urban renewal projects that are being implemented or applied in Izmir were discussed and suggestions will be developed in accordance with this policy.Keywords: urban transformation, Izmir, urban planning, urban renewal
Procedia PDF Downloads 4887978 New Kinetic Effects in Spatial Distribution of Electron Flux and Excitation Rates in Glow Discharge Plasmas in Middle and High Pressures
Authors: Kirill D. Kapustin, Mikhail B. Krasilnikov, Anatoly A. Kudryavtsev
Abstract:
Physical formation mechanisms of differential electron fluxes is high pressure positive column gas discharge are discussed. It is shown that the spatial differential fluxes of the electrons are directed both inward and outward depending on the energy relaxation law. In some cases the direction of energy differential flux at intermediate energies (5-10eV) in whole volume, except region near the wall, appeared to be down directed, so electron in this region dissipate more energy than gain from axial electric field. Paradoxical behaviour of electron flux in spatial-energy space is presented.Keywords: plasma kinetics, electron distribution function, excitation and radiation rates, local and nonlocal EDF
Procedia PDF Downloads 4057977 Enabling Community Participation for Social Innovation in the Energy Sector
Authors: Budiman Ibnu
Abstract:
This study investigates about enabling conditions to facilitate social innovation in the energy sector. This is important to support the energy transition in Indonesia. This research provides appropriate project direction, including research (and action) gaps for the energy actors in Indonesia. The actors are allowed to work further with the result of this study to stimulate the energy transition in Indonesia. This report uses systemic change framework which recognizes four drivers of systemic change in a region: 1. transforming political ecologies; 2. configuring green economies; 3. building of adaptive communities; 4. social innovation. These drivers are interconnected, and this report particularly focuses on how social innovation can be supported by other drivers. This study used methods of interview and literature review as the main sources for data collection in this report. There were interviews with eight experts in the related topic which come from different countries which have experienced social innovation in the energy sector. Afterwards, this research reviewed related journal papers from last five years, to check the latest development within the topic, to support the interview result. The result found that the enabling condition can focus on one of the drivers of systemic change, which is building communities by increasing their participation, through several integrated actions. This can be implemented in two types of citizen energy initiatives which are energy cooperatives and sustainable consumption initiatives. This implementation requires study about its related policy and governance support, in order to create complete enabling conditions to facilitate social innovation in the energy transition.Keywords: enabling condition, social innovation, citizen initiatives, community participation
Procedia PDF Downloads 1527976 Green Crypto Mining: A Quantitative Analysis of the Profitability of Bitcoin Mining Using Excess Wind Energy
Authors: John Dorrell, Matthew Ambrosia, Abilash
Abstract:
This paper employs econometric analysis to quantify the potential profit wind farms can receive by allocating excess wind energy to power bitcoin mining machines. Cryptocurrency mining consumes a substantial amount of electricity worldwide, and wind energy produces a significant amount of energy that is lost because of the intermittent nature of the resource. Supply does not always match consumer demand. By combining the weaknesses of these two technologies, we can improve efficiency and a sustainable path to mine cryptocurrencies. This paper uses historical wind energy from the ERCOT network in Texas and cryptocurrency data from 2000-2021, to create 4-year return on investment projections. Our research model incorporates the price of bitcoin, the price of the miner, the hash rate of the miner relative to the network hash rate, the block reward, the bitcoin transaction fees awarded to the miners, the mining pool fees, the cost of the electricity and the percentage of time the miner will be running to demonstrate that wind farms generate enough excess energy to mine bitcoin profitably. Excess wind energy can be used as a financial battery, which can utilize wasted electricity by changing it into economic energy. The findings of our research determine that wind energy producers can earn profit while not taking away much if any, electricity from the grid. According to our results, Bitcoin mining could give as much as 1347% and 805% return on investment with the starting dates of November 1, 2021, and November 1, 2022, respectively, using wind farm curtailment. This paper is helpful to policymakers and investors in determining efficient and sustainable ways to power our economic future. This paper proposes a practical solution for the problem of crypto mining energy consumption and creates a more sustainable energy future for Bitcoin.Keywords: bitcoin, mining, economics, energy
Procedia PDF Downloads 387975 Innovative Power Engineering in a Selected Rural Commune
Authors: Pawel Sowa, Joachim Bargiel
Abstract:
This paper presents modern solutions of distributed generation in rural communities aiming at the improvement of energy and environmental security, as well as power supply reliability to important customers (e.g. health care, sensitive consumer required continuity). Distributed sources are mainly gas and biogas cogeneration units, as well as wind and photovoltaic sources. Some examples of their applications in a selected Silesian community are given.Keywords: energy security, mini energy centres , power engineering, power supply reliability
Procedia PDF Downloads 3037974 Effective Energy Saving of a Large Building through Multiple Approaches
Authors: Choo Hong Ang
Abstract:
The most popular approach to save energy for large commercial buildings in Malaysia is to replace the existing chiller plant of high kW/ton to one of lower kW/ton. This approach, however, entails large capital outlay with a long payment period of up to 7 years. This paper shows that by using multiple approaches, other than replacing the existing chiller plant, an energy saving of up to 20 %, is possible. The main methodology adopted was to identify and then plugged all heat ingress paths into a building, including putting up glass structures to prevent mixing of internal air-conditioned air with the ambient environment, and replacing air curtains with glass doors. This methodology could save up to 10 % energy bill. Another methodology was to change fixed speed motors of air handling units (AHU) to variable speed drive (VSD) and changing escalators to motion-sensor type. Other methodologies included reducing heat load by blocking air supply to non-occupied parcels, rescheduling chiller plant operation, changing of fluorescent lights to LED lights, and conversion from tariff B to C1. A case example of Komtar, the tallest building in Penang, is given here. The total energy bill for Komtar was USD2,303,341 in 2016 but was reduced to USD 1,842,927.39 in 2018, a significant saving of USD460,413.86 or 20 %. In terms of kWh, there was a reduction from 18, 302,204.00 kWh in 2016 to 14,877,105.00 kWh in 2018, a reduction of 3,425,099.00 kWh or 18.71 %. These methodologies used were relatively low cost and the payback period was merely 24 months. With this achievement, the Komtar building was awarded champion of the Malaysian National Energy Award 2019 and second runner up of the Asean Energy Award. This experience shows that a strong commitment to energy saving is the key to effective energy saving.Keywords: chiller plant, energy saving measures, heat ingress, large building
Procedia PDF Downloads 1087973 Adaptable Path to Net Zero Carbon: Feasibility Study of Grid-Connected Rooftop Solar PV Systems with Rooftop Rainwater Harvesting to Decrease Urban Flooding in India
Authors: Rajkumar Ghosh, Ananya Mukhopadhyay
Abstract:
India has seen enormous urbanization in recent years, resulting in increased energy consumption and water demand in its metropolitan regions. Adoption of grid-connected solar rooftop systems and rainwater collection has gained significant popularity in urban areas to address these challenges while also boosting sustainability and environmental consciousness. Grid-connected solar rooftop systems offer a long-term solution to India's growing energy needs. Solar panels are erected on the rooftops of residential and commercial buildings to generate power by utilizing the abundant solar energy available across the country. Solar rooftop systems generate clean, renewable electricity, reducing reliance on fossil fuels and lowering greenhouse gas emissions. This is compatible with India's goal of reducing its carbon footprint. Urban residents and companies can save money on electricity by generating their own and possibly selling excess power back to the grid through net metering arrangements. India gives several financial incentives (subsidies 40% for system capacity 1 kW to 3 kW) to stimulate the building of solar rooftop systems, making them an economically viable option for city dwellers. India provides subsidies up to 70% to special states such as Uttarakhand, Sikkim, Himachal Pradesh, Jammu & Kashmir, and Lakshadweep. Incorporating solar rooftops into urban infrastructure contributes to sustainable urban expansion by alleviating pressure on traditional energy sources and improving air quality. Incorporating solar rooftops into urban infrastructure contributes to sustainable urban expansion by alleviating demand on existing energy sources and improving power supply reliability. Rainwater harvesting is another key component of India's sustainable urban development. It comprises collecting and storing rainwater for use in non-potable water applications such as irrigation, toilet flushing, and groundwater recharge. Rainwater gathering 2 helps to conserve water resources by lowering the demand for freshwater sources. This technology is crucial in water-stressed areas to ensure a sustainable water supply. Excessive rainwater runoff in metropolitan areas can lead to Urban flooding. Solar PV system with Rooftop Rainwater harvesting systems absorb and channel excess rainwater, which helps to reduce flooding and waterlogging in Smart cities. Rainwater harvesting systems are inexpensive and quick to set up, making them a tempting option for city dwellers and businesses looking to save money on water. Rainwater harvesting systems are now compulsory in several Indian states for specified types of buildings (bye law, Rooftop space ≥ 300 sq. m.), ensuring widespread adoption. Finally, grid-connected solar rooftop systems and rainwater collection are important to India's long-term urban development. They not only reduce the environmental impact of urbanization, but also empower individuals and businesses to control their energy and water requirements. The G20 summit will focus on green financing, fossil fuel phaseout, and renewable energy transition. The G20 Summit in New Delhi reaffirmed India's commitment to battle climate change by doubling renewable energy capacity. To address climate change and mitigate global warming, India intends to attain 280 GW of solar renewable energy by 2030 and Net Zero carbon emissions by 2070. With continued government support and increased awareness, these strategies will help India develop a more resilient and sustainable urban future.Keywords: grid-connected solar PV system, rooftop rainwater harvesting, urban flood, groundwater, urban flooding, net zero carbon emission
Procedia PDF Downloads 977972 Long-term Care Facility for the Elderly and Its Relationship with Energy Efficiency
Authors: Gabriela Sardinha Pacheco
Abstract:
In a context of elderly population growth, the need to provide high quality infrastructure and services to these people becomes even more evident. The act of designing a space dedicated to elderly people goes beyond the concept of well-being and reaches to a point of evaluating and changing the way which society sees this part of the population as well as how it can build a relationship with energy efficiency. In this context, the care facilities for elderly have an extremely important role to provide this infrastructure to the population. A common issue is that, for many times, these facilities face financial issues, and the full operation of the establishment can be impacted. The intention of this work is to develop a project in which the energy efficiency measures can be lived daily and that the residents of the institution can participate actively, directly, or indirectly in the construction of this relationship. The use of energy efficiency strategies should become a natural process when thinking about buildings as it is an essential step to provide increased well-being, climate change mitigation, and cost reduction.Keywords: energy efficiency, environmental comfort, long-term care facility, well-being
Procedia PDF Downloads 627971 Sustainable Manufacturing Industries and Energy-Water Nexus Approach
Authors: Shahbaz Abbas, Lin Han Chiang Hsieh
Abstract:
The significant population growth and climate change issues have contributed to the natural resources depletion and their sustainability in the future. Manufacturing industries have a substantial impact on every country’s economy, but the sustainability of the industrial resources is challenging, and the policymakers have been developing the possible solutions to manage the sustainability of industrial resources such as raw material, energy, water, and industrial supply chain. In order to address these challenges, nexus approach is one of the optimization and modelling techniques in the recent sustainable environmental research. The interactions between the nexus components acknowledge that all components are dependent upon each other, and they are interrelated; therefore, their sustainability is also associated with each other. In addition, the nexus concept does not only provide the resources sustainability but also environmental sustainability can be achieved through nexus approach by utilizing the industrial waste as a resource for the industrial processes. Based on energy-water nexus, this study has developed a resource-energy-water for the sugar industry to understand the interactions between sugarcane, energy, and water towards the sustainable sugar industry. In particular, the focus of the research is the Taiwanese sugar industry; however, the same approach can be adapted worldwide to optimize the sustainability of sugar industries. It has been concluded that there are significant interactions between sugarcane, energy consumption, and water consumption in the sugar industry to manage the scarcity of resources in the future. The interactions between sugarcane and energy also deliver a mechanism to reuse the sugar industrial waste as a source of energy, consequently validating industrial and environmental sustainability. The desired outcomes from the nexus can be achieved with the modifications in the policy and regulations of Taiwanese industrial sector.Keywords: energy-water nexus, environmental sustainability, industrial sustainability, natural resource management
Procedia PDF Downloads 1277970 Determination of Unknown Radionuclides Using High Purity Germanium Detectors
Authors: O. G. Onuk, L. S. Taura, C. M. Eze, S. M. Ngaram
Abstract:
The decay chain of radioactive elements in the laboratory and the verification of natural radioactivity of the human body was investigated using the High Purity Germanium (HPGe) detector. Properties of the HPGe detectors were also investigated. The efficiency and energy resolution of HPGe detector used in the laboratory was found to be excellent. The detector was calibrated three times so as to cover a wider energy range. Also the Centroid C of the detector was found to have a linear relationship with the energies of the known gamma-rays. Using the three calibrations of the detector, the energy of an unknown radionuclide was found to follow the decay chain of thorium-232 (232Th) and it was also found that an average adult has about 2.5g Potasium-40 (40K) in the body.Keywords: detector, efficiency, energy, radionuclides, resolution
Procedia PDF Downloads 2547969 Properties of Ettringite According to Hydration, Dehydration and Carbonation Process
Authors: Bao Chen, Frederic Kuznik, Matthieu Horgnies, Kevyn Johannes, Vincent Morin, Edouard Gengembre
Abstract:
The contradiction between energy consumption, environment protection, and social development is increasingly intensified during recent decade years. At the same time, as avoiding fossil-fuels-thirsty, people turn their view on the renewable green energy, such as solar energy, wind power, hydropower, etc. However, due to the unavoidable mismatch on geography and time for production and consumption, energy storage seems to be one of the most reasonable solutions to enlarge the use of renewable energies. Thermal energy storage (TES), a branch of energy storage solution, mainly concerns the capture, storage and consumption of thermal energy for later use in different scales (individual house, apartment, district, and city). In TES research field, sensible heat and latent heat storage have been widely studied and presented at an advanced stage of development. Compared with them, thermochemical energy storage is still at initial phase but provides a relatively higher theoretical energy density and a long shelf life without heat dissipation during storage. Among thermochemical energy storage materials, inorganic pure or composite compounds like micro-porous silica gel, SrBr₂ hydrate and MgSO₄-Zeolithe have been reported as promising to be integrated into thermal energy storage systems. However, the cost of these materials, one of main obstacles, may hinder the wide use of energy storage systems in real application scales (individual house, apartment, district and even city). New studies on ettringite show promising application for thermal energy storage since its high energy density and large resource from cementitious materials. Ettringite, or calcium trisulfoaluminate hydrate, of which chemical formula is 3CaO∙Al₂O₃∙3CaSO₄∙32H₂O, or C₆AS̅₃H₃₂ as known in cement chemistry notation, is one of the most important members of AFt group. As a common compound in hydrated cements, ettringite has been widely studied for its performances in construction but barely known as a thermochemical material. For this study, we summarize available data about the structure and properties of ettringite and its metastable phase (meta-ettringite), including the processes of hydration, thermal conversion and carbonation durability for thermal energy storage.Keywords: building materials, ettringite, meta-ettringite, thermal energy storage
Procedia PDF Downloads 2157968 Survey Research Assessment for Renewable Energy Integration into the Mining Industry
Authors: Kateryna Zharan, Jan C. Bongaerts
Abstract:
Mining operations are energy intensive, and the share of energy costs in total costs is often quoted in the range of 40 %. Saving on energy costs is, therefore, a key element of any mine operator. With the improving reliability and security of renewable energy (RE) sources, and requirements to reduce carbon dioxide emissions, perspectives for using RE in mining operations emerge. These aspects are stimulating the mining companies to search for ways to substitute fossil energy with RE. Hereby, the main purpose of this study is to present the survey research assessment in matter of finding out the key issues related to the integration of RE into mining activities, based on the mining and renewable energy experts’ opinion. The purpose of the paper is to present the outcomes of a survey conducted among mining and renewable energy experts about the feasibility of RE in mining operations. The survey research has been developed taking into consideration the following categories: first of all, the mining and renewable energy experts were chosen based on the specific criteria. Secondly, they were offered a questionnaire to gather their knowledge and opinions on incentives for mining operators to turn to RE, barriers and challenges to be expected, environmental effects, appropriate business models and the overall impact of RE on mining operations. The outcomes of the survey allow for the identification of factors which favor and disfavor decision-making on the use of RE in mining operations. It concludes with a set of recommendations for further study. One of them relates to a deeper analysis of benefits for mining operators when using RE, and another one suggests that appropriate business models considering economic and environmental issues need to be studied and developed. The results of the paper will be used for developing a hybrid optimized model which might be adopted at mines according to their operation processes as well as economic and environmental perspectives.Keywords: carbon dioxide emissions, mining industry, photovoltaic, renewable energy, survey research, wind generation
Procedia PDF Downloads 3617967 Insulation and Architectural Design to Have Sustainable Buildings in Iran
Authors: Ali Bayati, Jamileh Azarnoush
Abstract:
Nowadays according to increasing the population all around the world, consuming of fossil fuels increased dramatically. Many believe that most of the atmospheric pollution comes by using fossil fuels. The process of natural sources entering cities shows one of the large challenges in consumption sources management. Nowadays, everyone considered about the consumption of fossil fuels and also Reduction of consumption civil energy in megacities that play a key role in solving serious problems such as air pollution, producing greenhouse gasses, global warming and damage ozone layer. In the construction industry, we should use the materials with the lowest need to energy for making and carrying them, and also the materials which need the lowest energy and expenses to recycling. In this way, the kind of usage material, the way of processing, regional materials and the adaptation with the environment is critical. Otherwise, the isolation should be use and mention in the long term. Accordingly, in this article we investigates the new ways in order to reduce environmental pollution and save more energy by using materials that are not harmful to the environment, fully insulated materials in buildings, sustainable and diversified buildings, suitable urban design and using solar energy more efficiently in order to reduce energy consumption.Keywords: building design, construction masonry, insulation, sustainable construction
Procedia PDF Downloads 5437966 Designing Elevations by Photocatalysis of Precast Concrete Materials, in Reducing Energy Consumption of Buildings: Case Study of Tabriz
Authors: Mahsa Faramarzi Asli, Mina Sarabi
Abstract:
The important issues that are addressed in most advanced industrial countries in recent decades, discussion of minimizing heat losses through the buildings. And the most influential parameters in the calculation of building energy consumption, is heat exchange, which takes place between the interior and outer space. One of the solutions to reduce heat loss is using materials with low thermal conductivity. The purpose of this article, is the effect of using some frontages with nano-concrete photo catalytic precast materials for reducing energy consumption in buildings. For this purpose, estimating the energy dissipation through the facade built with nano-concrete photo catalytic precast materials on a sample building in Tabriz city by BCS 19 software ( topic 19 simulation) is done and the results demonstrate reduce heat loss through the facade nano- concrete.Keywords: nano materials, optimize energy consumption, themal, stability
Procedia PDF Downloads 5667965 Micro Grids, Solution to Power Off-Grid Areas in Pakistan
Authors: M. Naveed Iqbal, Sheza Fatima, Noman Shabbir
Abstract:
In the presence of energy crisis in Pakistan, off-grid remote areas are not on priority list. The use of new large scale coal fired power plants will also make this situation worst. Therefore, the greatest challenge in our society is to explore new ways to power off grid remote areas with renewable energy sources. It is time for a sustainable energy policy which puts consumers, the environment, human health, and peace first. The renewable energy is one of the biggest growing sectors of the energy industry. Therefore, the large scale use of micro grid is thus described here with modeling, simulation, planning and operating of the micro grid. The goal of this research paper is to go into detail of a library of major components of micro grid. The introduction will go through the detail view of micro grid definition. Then, the simulation of Micro Grid in MATLAB/ Simulink including the Photo Voltaic Cell will be described with the detailed modeling. The simulation with the design and modeling will be introduced too.Keywords: micro grids, distribution generation, PV, off-grid operations
Procedia PDF Downloads 3177964 Hygrothermal Interactions and Energy Consumption in Cold Climate Hospitals: Integrating Numerical Analysis and Case Studies to Investigate and Analyze the Impact of Air Leakage and Vapor Retarding
Authors: Amir E. Amirzadeh, Richard K. Strand
Abstract:
Moisture-induced problems are a significant concern for building owners, architects, construction managers, and building engineers, as they can have substantial impacts on building enclosures' durability and performance. Computational analyses, such as hygrothermal and thermal analysis, can provide valuable information and demonstrate the expected relative performance of building enclosure systems but are not grounded in absolute certainty. This paper evaluates the hygrothermal performance of common enclosure systems in hospitals in cold climates. The study aims to investigate the impact of exterior wall systems on hospitals, focusing on factors such as durability, construction deficiencies, and energy performance. The study primarily examines the impact of air leakage and vapor retarding layers relative to energy consumption. While these factors have been studied in residential and commercial buildings, there is a lack of information on their impact on hospitals in a holistic context. The study integrates various research studies and professional experience in hospital building design to achieve its objective. The methodology involves surveying and observing exterior wall assemblies, reviewing common exterior wall assemblies and details used in hospital construction, performing simulations and numerical analyses of various variables, validating the model and mechanism using available data from industry and academia, visualizing the outcomes of the analysis, and developing a mechanism to demonstrate the relative performance of exterior wall systems for hospitals under specific conditions. The data sources include case studies from real-world projects and peer-reviewed articles, industry standards, and practices. This research intends to integrate and analyze the in-situ and as-designed performance and durability of building enclosure assemblies with numerical analysis. The study's primary objective is to provide a clear and precise roadmap to better visualize and comprehend the correlation between the durability and performance of common exterior wall systems used in the construction of hospitals and the energy consumption of these buildings under certain static and dynamic conditions. As the construction of new hospitals and renovation of existing ones have grown over the last few years, it is crucial to understand the effect of poor detailing or construction deficiencies on building enclosure systems' performance and durability in healthcare buildings. This study aims to assist stakeholders involved in hospital design, construction, and maintenance in selecting durable and high-performing wall systems. It highlights the importance of early design evaluation, regular quality control during the construction of hospitals, and understanding the potential impacts of improper and inconsistent maintenance and operation practices on occupants, owner, building enclosure systems, and Heating, Ventilation, and Air Conditioning (HVAC) systems, even if they are designed to meet the project requirements.Keywords: hygrothermal analysis, building enclosure, hospitals, energy efficiency, optimization and visualization, uncertainty and decision making
Procedia PDF Downloads 727963 A Study on the Life Prediction Performance Degradation Analysis of the Hydraulic Breaker
Authors: Jong Won, Park, Sung Hyun, Kim
Abstract:
The kinetic energy to pass subjected to shock and chisel reciprocating piston hydraulic power supplied by the excavator using for the purpose of crushing the rock, and roads, buildings, etc., hydraulic breakers blow. Impact frequency, efficiency measurement of the impact energy, hydraulic breakers, to demonstrate the ability of hydraulic breaker manufacturers and users to a very important item. And difficult in order to confirm the initial performance degradation in the life of the hydraulic breaker has been thought to be a problem.In this study, we measure the efficiency of hydraulic breaker, Impact energy and Impact frequency, the degradation analysis of research to predict the life.Keywords: impact energy, impact frequency, hydraulic breaker, life prediction
Procedia PDF Downloads 443