Search results for: muscle stem cells
3346 Diselenide-Linked Redox Stimuli-Responsive Methoxy Poly(Ethylene Glycol)-b-Poly(Lactide-Co-Glycolide) Micelles for the Delivery of Doxorubicin in Cancer Cells
Authors: Yihenew Simegniew Birhan, Hsieh Chih Tsai
Abstract:
The recent advancements in synthetic chemistry and nanotechnology fostered the development of different nanocarriers for enhanced intracellular delivery of pharmaceutical agents to tumor cells. Polymeric micelles (PMs), characterized by small size, appreciable drug loading capacity (DLC), better accumulation in tumor tissue via enhanced permeability and retention (EPR) effect, and the ability to avoid detection and subsequent clearance by the mononuclear phagocyte (MNP) system, are convenient to improve the poor solubility, slow absorption and non-selective biodistribution of payloads embedded in their hydrophobic cores and hence, enhance the therapeutic efficacy of chemotherapeutic agents. Recently, redox-responsive polymeric micelles have gained significant attention for the delivery and controlled release of anticancer drugs in tumor cells. In this study, we synthesized redox-responsive diselenide bond containing amphiphilic polymer, Bi(mPEG-PLGA)-Se₂ from mPEG-PLGA, and 3,3'-diselanediyldipropanoic acid (DSeDPA) using DCC/DMAP as coupling agents. The successful synthesis of the copolymers was verified by different spectroscopic techniques. Above the critical micelle concentration, the amphiphilic copolymer, Bi(mPEG-PLGA)-Se₂, self-assembled into stable micelles. The DLS data indicated that the hydrodynamic diameter of the micelles (123.9 ± 0.85 nm) was suitable for extravasation into the tumor cells through the EPR effect. The drug loading content (DLC) and encapsulation efficiency (EE) of DOX-loaded micelles were found to be 6.61 wt% and 54.9%, respectively. The DOX-loaded micelles showed initial burst release accompanied by sustained release trend where 73.94% and 69.54% of encapsulated DOX was released upon treatment with 6mM GSH and 0.1% H₂O₂, respectively. The biocompatible nature of Bi(mPEG-PLGA)-Se₂ copolymer was confirmed by the cell viability study. In addition, the DOX-loaded micelles exhibited significant inhibition against HeLa cells (44.46%), at a maximum dose of 7.5 µg/mL. The fluorescent microscope images of HeLa cells treated with 3 µg/mL (equivalent DOX concentration) revealed efficient internalization and accumulation of DOX-loaded Bi(mPEG-PLGA)-Se₂ micelles in the cytosol of cancer cells. In conclusion, the intelligent, biocompatible, and the redox stimuli-responsive behavior of Bi(mPEG-PLGA)-Se₂ copolymer marked the potential applications of diselenide-linked mPEG-PLGA micelles for the delivery and on-demand release of chemotherapeutic agents in cancer cells.Keywords: anticancer drug delivery, diselenide bond, polymeric micelles, redox-responsive
Procedia PDF Downloads 1103345 A Study of the Formation, Existence and Stability of Localised Pulses in PDE
Authors: Ayaz Ahmad
Abstract:
TOPIC: A study of the formation ,existness and stability of localised pulses in pde Ayaz Ahmad ,NITP, Abstract:In this paper we try to govern the evolution deterministic variable over space and time .We analysis the behaviour of the model which allows us to predict and understand the possible behaviour of the physical system .Bifurcation theory provides a basis to systematically investigate the models for invariant sets .Exploring the behaviour of PDE using bifurcation theory which provides many challenges both numerically and analytically. We use the derivation of a non linear partial differential equation which may be written in this form ∂u/∂t+c ∂u/∂x+∈(∂^3 u)/(∂x^3 )+¥u ∂u/∂x=0 We show that the temperature increased convection cells forms. Through our work we look for localised solution which are characterised by sudden burst of aeroidic spatio-temporal evolution. Key word: Gaussian pulses, Aeriodic ,spatio-temporal evolution ,convection cells, nonlinearoptics, Dr Ayaz ahmad Assistant Professor Department of Mathematics National institute of technology Patna ,Bihar,,India 800005 [email protected] +91994907553Keywords: Gaussian pulses, aeriodic, spatio-temporal evolution, convection cells, nonlinear optics
Procedia PDF Downloads 3423344 Enhancing Mitochondrial Activity and Metabolism in Aging Female Germ Cells: Synergistic Effects of Dual ROCK and ROS Inhibition
Authors: Kuan-Hao Tsui, Li-Te Lin, Chia-Jung Li
Abstract:
The combination of Y-27632 and Vitamin C significantly enhances the quality of aging germ cells by reducing reactive oxygen species (ROS) production, restoring mitochondrial membrane potential balance, and promoting mitochondrial fusion. The age-related decline in oocyte quality contributes to reduced fertility, increased aneuploidy, and diminished embryo quality, with mitochondrial dysfunction in both oocytes and granulosa cells being a key factor in this decline. Experiments on aging germ cells investigated the effects of the Y-27632 and Vitamin C combination. In vivo studies involved aged mice to assess oocyte maturation and ROS accumulation during culture. The assessment included mitochondrial activity, ROS levels, mitochondrial membrane potential, and mitochondrial dynamics. Cellular energy metabolism and ATP production were also measured. The combination treatment effectively addressed mitochondrial dysfunction and regulated cellular energy metabolism, promoting oxygen respiration and increasing ATP production. In aged mice, this supplement treatment enhanced in vitro oocyte maturation and prevented ROS accumulation in aging oocytes during culture. While these findings are promising, further research is needed to explore the long-term effects and potential side effects of the Y-27632 and Vitamin C combination. Additionally, translating these findings to human subjects requires careful consideration. Overall, the study suggests that the Y-27632 and Vitamin C combination could be a promising intervention to mitigate aging-related dysfunction in germ cells, potentially enhancing oocyte quality, particularly in the context of in vitro fertilization.Keywords: ovarian aging, supplements, ROS, mitochondria
Procedia PDF Downloads 423343 Efficacy of Botulinum Toxin in Alleviating Pain Syndrome in Stroke Patients with Upper Limb Spasticity
Authors: Akulov M. A., Zaharov V. O., Jurishhev P. E., Tomskij A. A.
Abstract:
Introduction: Spasticity is a severe consequence of stroke, leading to profound disability, decreased quality of life and decrease of rehabilitation efficacy [4]. Spasticity is often associated with pain syndrome, arising from joint damage of paretic limbs (postural arthropathy) or painful spasm of paretic limb muscles. It is generally accepted that injection of botulinum toxin into a cramped muscle leads to decrease of muscle tone and improves motion range in paretic limb, which is accompanied by pain alleviation. Study aim: To evaluate the change in pain syndrome intensity after incections of botulinum toxin A (Xeomin) in stroke patients with upper limb spasticity. Patients and methods. 21 patients aged 47-74 years were evaluated. Inclusion criteria were: acute stroke 4-7 months before the inclusion into the study, leading to spasticity of wrist and/or finger flexors, elbow flexor or forearm pronator, associated with severe pain syndrome. Patients received Xeomin as monotherapy 90-300 U, according to spasticity pattern. Efficacy evaluation was performed using Ashworth scale, disability assessment scale (DAS), caregiver burden scale and global treatment benefit assessment on weeks 2, 4, 8 and 12. Efficacy criterion was the decrease of pain syndrome by week 4 on PQLS and VAS. Results: The study revealed a significant improvement of measured indices after 4 weeks of treatment, which persisted until the 12 week of treatment. Xeomin is effective in reducing muscle tone of flexors of wrist, fingers and elbow, forearm pronators. By the 4th week of treatment we observed a significant improvement on DAS (р < 0,05), Ashworth scale (1-2 points) in all patients (р < 0,05), caregiver burden scale (р < 0,05). A significant decrease of pain syndrome by the 4th week of treatment on PQLS (р < 0,05) и VAS (р < 0,05) was observed. No adverse effect were registered. Conclusion: Xeomin is an effective treatment of pain syndrome in postural upper limb spasticity after stroke. Xeomin treatment leads to a significant improvement on PQLS and VAS.Keywords: botulinum toxin, pain syndrome, spasticity, stroke
Procedia PDF Downloads 3103342 Low-Density Lipoproteins Mediated Delivery of Paclitaxel and MRI Imaging Probes for Personalized Medicine Applications
Authors: Sahar Rakhshan, Simonetta Geninatti Crich, Diego Alberti, Rachele Stefania
Abstract:
The combination of imaging and therapeutic agents in the same smart nanoparticle is a promising option to perform a minimally invasive imaging guided therapy. In this study, Low density lipoproteins (LDL), one of the most attractive biodegradable and biocompatible nanoparticles, were used for the simultaneous delivery of Paclitaxel (PTX), a hydrophobic antitumour drug and an amphiphilic contrast agent, Gd-AAZTA-C17, in B16-F10 melanoma cell line. These cells overexpress LDL receptors, as assessed by Flow cytometry analysis. PTX and Gd-AAZTA-C17 loaded LDLs (LDL-PTX-Gd) have been prepared, characterized and their stability was assessed under 72 h incubation at 37 ◦C and compared to LDL loaded with Gd-AAZTA-C17 (LDL-Gd) and LDL-PTX. The cytotoxic effect of LDL-PTX-Gd was evaluated by MTT assay. The anti-tumour drug loaded into LDLs showed a significantly higher toxicity on B16-F10 cells with respect to the commercially available formulation Paclitaxel Kabi (PTX Kabi) used in clinical applications. It was possible to demonstrate a high uptake of LDL-Gd in B16-F10 cells. As a consequence of the high cell uptake, melanoma cells showed significantly high cytotoxic effect when incubated in the presence of PTX (LDL-PTX-Gd). Furthermore, B16-F10 have been used to perform Magnetic Resonance Imaging. By the analysis of the image signal intensity, it was possible to extrapolate the amount of internalized PTX indirectly by the decrease of relaxation times caused by Gd, proportional to its concentration. Finally, the treatment with PTX loaded LDL on B16-F10 tumour bearing mice resulted in a marked reduction of tumour growth compared to the administration of PTX Kabi alone. In conclusion, LDLs are selectively taken-up by tumour cells and can be successfully exploited for the selective delivery of Paclitaxel and imaging agents.Keywords: low density lipoprotein, melanoma cell lines, MRI, paclitaxel, personalized medicine application, theragnostic System
Procedia PDF Downloads 1263341 In vitro Antioxidant, Anti-Diabetic and Nutritional Properties of Breynia retusa
Authors: Parimelazhagan Thangaraj
Abstract:
Natural products serves human kind as a source of all drugs and higher plants provide most of these therapeutic agents. These products are widely recognized in the pharmaceutical industry for their broad structural diversity as well as their wide range of pharmacological activities. Euphorbiaceae is one of the important families with significant pharmacological activities, of which many species has been used traditionally for the treatment of various ailments. Breynia retusa belongs to the family Euphorbiaceae is used to cure ailments like body pain, skin inflammation, hyperglycaemia, diarrhoea, dysentery and toothache. Flowers and young leaves of B. retusa are cooked and eaten, roots are used for meningitis. The juice of the stem is used in conjunctivtis and leaves as poultice to hasten suppuration. Based on the strong evidences of traditional uses of Breynia retusa, the present study was focused on neutraceuticals evaluation of the species with special reference to oxidative stress and diabetes. Both leaves and stem of B. retusa were extracted with different solvents and analyzed for radical scavenging ability wherein ABTS.+ (8396.95±1529.01 µM TEAC/g extract), phosphomolybdenum (17.34±0.08 g AAE/100 g extract) and FRAP (6075.66±414.28 µM Fe (II) E/mg extract) assays showed good radical scavenging activity in stem. Furthermore, leaf extracts showed good radical inhibition in DPPH (2.4 µg/mL), metal ion (27.44±0.09 mg EDTAE/g extract) scavenging methods. The α-amylase and α-glucosidase inhibitors are currently used for diabetic treatment as oral hypoglycemic agents. The inhibitory effects of the B. retusa leaf and stem ethyl acetate extracts showed good inhibition on α-amylase (96.25% and 95.69 respectively) and α-glucosidase (54.50% and 50.87% respectively) enzymes compared to standard acarbose. The proximate composition analysis of B. retusa leaves contains higher amount of total carbohydrates (14.08 g Glucose equivalents/100 g sample), ash (19.04 %) and crude fibre (0.52 %). The examination of mineral profile explored that the leaves was rich in calcium (1891 ppm), sulphur (1406 ppm), copper (2600 ppm) and magnesium (778 ppm). Leaves sample revealed very minimal amount of anti-nutrient contents like trypsin (14.08±0.03 TIU/mg protein) and tannin (0.011±0.001 mg TAE/g sample). The low anti nutritional factors may not pose any serious nutritional problems when these leaves are consumed. In conclusion, it is very clear that dietary compounds from B. retusa are suitable and promising for the development of safe food products and natural additives. Based on the studies, it may be concluded that nutritional composition, antioxidant and anti-diabetic activities this species can be used as future therapeutic medicine.Keywords: Breynia retusa, nutraceuticals, antioxidant, anti diabetic
Procedia PDF Downloads 3343340 Mentha crispa Essential Oil and Rotundifolone Analogues: Cytotoxic Effect on Glioblastoma
Authors: Damião Sousa, Hasan Turkez, Ozlem Tozlu, Tamires Lima
Abstract:
Glioblastoma (GBM) is an aggressive cancer from the brain and with high prevalence and significant morbimortality. Therefore, it is necessary to investigate new therapeutic options against this pathology. Thus, the purpose of this study was to evaluate the antitumor activity from Mentha crispa essential oil (MCEO), its major constituent rotundifolone (ROT) and a series of six analogues on human U87MG glioblastoma cell line. The antitumor effects of the compounds on human U87MG-GBM cell line were assessed using in vitro cell viability assays. In addition, biosafety tests were performed on cultured human blood cells. The data show that MCEO, 1,2-perillaldehyde epoxide (EPER1) and perillaldehyde (PALD) were the most cytotoxic compounds against the U87MG cells, with IC50 values of 16.263, 15.087 and 14.888 μg/mL, respectively. The treatment with MCEO, EPER1 and PALD did not lead to damage in blood cells. These chemical analogues may be useful as prototypes for development of novel antitumor drugs due to their promising activities and toxicological safety.Keywords: antitumor activity, cancer, natural products, terpenes
Procedia PDF Downloads 1493339 NLRP3-Inflammassome Participates in the Inflammatory Response Induced by Paracoccidioides brasiliensis
Authors: Eduardo Kanagushiku Pereira, Frank Gregory Cavalcante da Silva, Barbara Soares Gonçalves, Ana Lúcia Bergamasco Galastri, Ronei Luciano Mamoni
Abstract:
The inflammatory response initiates after the recognition of pathogens by receptors expressed by innate immune cells. Among these receptors, the NLRP3 was associated with the recognition of pathogenic fungi in experimental models. NLRP3 operates forming a multiproteic complex called inflammasome, which actives caspase-1, responsible for the production of the inflammatory cytokines IL-1beta and IL-18. In this study, we aimed to investigate the involvement of NLRP3 in the inflammatory response elicited in macrophages against Paracoccidioides brasiliensis (Pb), the etiologic agent of PCM. Macrophages were differentiated from THP-1 cells by treatment with phorbol-myristate-acetate. Following differentiation, macrophages were stimulated by Pb yeast cells for 24 hours, after previous treatment with specific NLRP3 (3,4-methylenedioxy-beta-nitrostyrene) and/or caspase-1 (VX-765) inhibitors, or specific inhibitors of pathways involved in NLRP3 activation such as: Reactive Oxigen Species (ROS) production (N-Acetyl-L-cysteine), K+ efflux (Glibenclamide) or phagossome acidification (Bafilomycin). Quantification of IL-1beta and IL-18 in supernatants was performed by ELISA. Our results showed that the production of IL-1beta and IL-18 by THP-1-derived-macrophages stimulated with Pb yeast cells was dependent on NLRP3 and caspase-1 activation, once the presence of their specific inhibitors diminished the production of these cytokines. Furthermore, we found that the major pathways involved in NLRP3 activation, after Pb recognition, were dependent on ROS production and K+ efflux. In conclusion, our results showed that NLRP3 participates in the recognition of Pb yeast cells by macrophages, leading to the activation of the NLRP3-inflammasome and production of IL-1beta and IL-18. Together, these cytokines can induce an inflammatory response against P. brasiliensis, essential for the establishment of the initial inflammatory response and for the development of the subsequent acquired immune response.Keywords: inflammation, IL-1beta, IL-18, NLRP3, Paracoccidioidomycosis
Procedia PDF Downloads 2753338 Developing Optical Sensors with Application of Cancer Detection by Elastic Light Scattering Spectroscopy
Authors: May Fadheel Estephan, Richard Perks
Abstract:
Context: Cancer is a serious health concern that affects millions of people worldwide. Early detection and treatment are essential for improving patient outcomes. However, current methods for cancer detection have limitations, such as low sensitivity and specificity. Research Aim: The aim of this study was to develop an optical sensor for cancer detection using elastic light scattering spectroscopy (ELSS). ELSS is a noninvasive optical technique that can be used to characterize the size and concentration of particles in a solution. Methodology: An optical probe was fabricated with a 100-μm-diameter core and a 132-μm centre-to-centre separation. The probe was used to measure the ELSS spectra of polystyrene spheres with diameters of 2, 0.8, and 0.413 μm. The spectra were then analysed to determine the size and concentration of the spheres. Findings: The results showed that the optical probe was able to differentiate between the three different sizes of polystyrene spheres. The probe was also able to detect the presence of polystyrene spheres in suspension concentrations as low as 0.01%. Theoretical Importance: The results of this study demonstrate the potential of ELSS for cancer detection. ELSS is a noninvasive technique that can be used to characterize the size and concentration of cells in a tissue sample. This information can be used to identify cancer cells and assess the stage of the disease. Data Collection: The data for this study were collected by measuring the ELSS spectra of polystyrene spheres with different diameters. The spectra were collected using a spectrometer and a computer. Analysis Procedures: The ELSS spectra were analysed using a software program to determine the size and concentration of the spheres. The software program used a mathematical algorithm to fit the spectra to a theoretical model. Question Addressed: The question addressed by this study was whether ELSS could be used to detect cancer cells. The results of the study showed that ELSS could be used to differentiate between different sizes of cells, suggesting that it could be used to detect cancer cells. Conclusion: The findings of this research show the utility of ELSS in the early identification of cancer. ELSS is a noninvasive method for characterizing the number and size of cells in a tissue sample. To determine cancer cells and determine the disease's stage, this information can be employed. Further research is needed to evaluate the clinical performance of ELSS for cancer detection.Keywords: elastic light scattering spectroscopy, polystyrene spheres in suspension, optical probe, fibre optics
Procedia PDF Downloads 823337 Indium Oxide/Scandium Doping Yttria-Stabilized Zirconia Composite Films as Electrolytes for Solid Oxide Fuel Cells
Authors: Yong-Jie Lin, Yi-Feng Lin
Abstract:
In this study, scandium-doped yttria-stabilized zirconia (ScYSZ) and In2O3 nanoparticles (NPs) with cubic crystalline structures were successfully prepared using a facile hydrothermal process. ScYSZ films were prepared by the pressing of ScYSZ NPs and were further used for the electrolyte of solid oxide fuel cells (SOFCs). To increase the ionic conductivity of the ScYSZ electrolyte, different amounts of In2O3 NPs [0 wt% (X(In2O3)=0), 0.21 wt% (X(In2O3)=0.001) and 1.13 wt% (X(In2O3)=0.005)] were doped in the ScYSZ films to increase their oxygen vacancy. The result shows In2O3 NP/ScYSZ films with 1.13 wt% (X(In2O3 )=0.005) In2O3 NPs doping are with largest ionic conductivity of 0.057Ω-1 cm-1 at 900oC, which is 1.6 and 1.8 times higher than YSZ and In2O3 NP/ScYSZ films with 0.21 wt% (X(In2O3)=0.001) In2O3 NPs doping, respectively.Keywords: indium oxide/scandium doping Yttria-stabilized zirconia, solid oxide fuel cells, scandium-doped yttria-stabilized zirconia, indium oxide
Procedia PDF Downloads 4653336 Performance Evaluation of the CSAN Pronto Point-of-Care Whole Blood Analyzer for Regular Hematological Monitoring During Clozapine Treatment
Authors: Farzana Esmailkassam, Usakorn Kunanuvat, Zahraa Mohammed Ali
Abstract:
Objective: The key barrier in Clozapine treatment of treatment-resistant schizophrenia (TRS) includes frequent bloods draws to monitor neutropenia, the main drug side effect. WBC and ANC monitoring must occur throughout treatment. Accurate WBC and ANC counts are necessary for clinical decisions to halt, modify or continue clozapine treatment. The CSAN Pronto point-of-care (POC) analyzer generates white blood cells (WBC) and absolute neutrophils (ANC) through image analysis of capillary blood. POC monitoring offers significant advantages over central laboratory testing. This study evaluated the performance of the CSAN Pronto against the Beckman DxH900 Hematology laboratory analyzer. Methods: Forty venous samples (EDTA whole blood) with varying concentrations of WBC and ANC as established on the DxH900 analyzer were tested in duplicates on three CSAN Pronto analyzers. Additionally, both venous and capillary samples were concomitantly collected from 20 volunteers and assessed on the CSAN Pronto and the DxH900 analyzer. The analytical performance including precision using liquid quality controls (QCs) as well as patient samples near the medical decision points, and linearity using a mix of high and low patient samples to create five concentrations was also evaluated. Results: In the precision study for QCs and whole blood, WBC and ANC showed CV inside the limits established according to manufacturer and laboratory acceptability standards. WBC and ANC were found to be linear across the measurement range with a correlation of 0.99. WBC and ANC from all analyzers correlated well in venous samples on the DxH900 across the tested sample ranges with a correlation of > 0.95. Mean bias in ANC obtained on the CSAN pronto versus the DxH900 was 0.07× 109 cells/L (95% L.O.A -0.25 to 0.49) for concentrations <4.0 × 109 cells/L, which includes decision-making cut-offs for continuing clozapine treatment. Mean bias in WBC obtained on the CSAN pronto versus the DxH900 was 0.34× 109 cells/L (95% L.O.A -0.13 to 0.72) for concentrations <5.0 × 109 cells/L. The mean bias was higher (-11% for ANC, 5% for WBC) at higher concentrations. The correlations between capillary and venous samples showed more variability with mean bias of 0.20 × 109 cells/L for the ANC. Conclusions: The CSAN pronto showed acceptable performance in WBC and ANC measurements from venous and capillary samples and was approved for clinical use. This testing will facilitate treatment decisions and improve clozapine uptake and compliance.Keywords: absolute neutrophil counts, clozapine, point of care, white blood cells
Procedia PDF Downloads 983335 Effect of Conjugated Linoleic Acid on Lipid Metabolism and Increased Fat around the Muscle Durability by Reducing the Oxidation Process
Authors: Hamidreza Khodaei, Ali Daryabeigi Zand
Abstract:
Conjugated linoleic acid (CLA) is a mixture of isomers of linoleic acid. Despite the fact that 28 different isomers of CLA have already been identified, but the main isomer found in natural diets more than ninety percent CLA on intake of food constitutes demonstrates. CLA is known to be a substance that readily available by rumen microorganisms in some ruminants such as cattle and sheep would likely be made. The main objective of this research was to evaluate the impacts of CLA on lipid metabolism and enhanced fat around the muscle durability by reducing the process of oxidation. In order to implement this research, 80 female mice of the Balb/C, with 55 days of age were employed in the experiment. Treatments include various levels of CLA. Over the course of this study blood samples was also taken from the tail vein of the studied mice. Some other relevant parameters such as serum concentrations of triglycerides, total cholesterol, LDL, HDL and liver enzymes were also determined. The oxidative stability of fats TBARS technique was investigated at different intervals. The findings of the research were analyzed by statistical software of SAS 98. The results, CLA had no significant effect on liver enzymes (P > 0.05). However, it showed a statistically significant impact on triglycerides and total cholesterol. Ratio of LDL to HDL declined remarkably. Histological studies demonstrated reduced accumulation of fat in the tissues surrounding muscles.Keywords: conjugated linoleic acid, fat metabolism, fat retention, oxidation process
Procedia PDF Downloads 1983334 Mycotoxin Bioavailability in Sparus Aurata Muscle After Human Digestion and Intestinal Transport (Caco-2/HT-29 Cells) Simulation
Authors: Cheila Pereira, Sara C. Cunha, Miguel A. Faria, José O. Fernandes
Abstract:
The increasing world population brings several concerns, one of which is food security and sustainability. To meet this challenge, aquaculture, the farming of aquatic animals and plants, including fish, mollusks, bivalves, and algae, has experienced sustained growth and development in recent years. Recent advances in this industry have focused on reducing its economic and environmental costs, for example, the substitution of protein sources in fish feed. Plant-based proteins are now a common approach, and while it is a greener alternative to animal-based proteins, there are some disadvantages, such as their putative content and intoxicants such as mycotoxins. These are naturally occurring plant contaminants, and their exposure in fish can cause health problems, stunted growth or even death, resulting in economic losses for the producers and health concerns for the consumers. Different works have demonstrated the presence of both AFB1 (aflatoxin B1) and ENNB1 (enniatin B1) in fish feed and their capacity to be absorbed and bioaccumulate in the fish organism after digestion, further reaching humans through fish ingestion. The aim of this work was to evaluate the bioaccessibility of both mycotoxins in samples of Sparus aurata muscle using a static digestion model based on the INFOGEST protocol. The samples were subjected to different cooking procedures – raw, grilled and fried – and different seasonings – none, thyme and ginger – in order to evaluate their potential reduction effect on mycotoxins bioaccessibility, followed by the evaluation of the intestinal transport of both compounds with an in vitro cell model composed of Caco-2/HT-29 co-culture monolayers, simulating the human intestinal epithelium. The bioaccessible fractions obtained in the digestion studies were used in the transport studies for a more realistic approach to bioavailability evaluation. Results demonstrated the effect of the use of different cooking procedures and seasoning on the toxin's bioavailability. Sparus aurata was chosen in this study for its large production in aquaculture and high consumption in Europe. Also, with the continued evolution of fish farming practices and more common usage of novel feed ingredients based on plants, there is a growing concern about less studied contaminants in aquaculture and their consequences for human health. In pair with greener advances in this industry, there is a convergence towards alternative research methods, such as in vitro applications. In the case of bioavailability studies, both in vitro digestion protocols and intestinal transport assessment are excellent alternatives to in vivo studies. These methods provide fast, reliable and comparable results without ethical restraints.Keywords: AFB1, aquaculture, bioaccessibility, ENNB1, intestinal transport.
Procedia PDF Downloads 673333 Autophagy Defects That Modify Human Immune Cell Metabolism and Promote Aging-Associated Inflammation
Authors: Grace McCambridge, Alanna Keady, Madhur Agrawal, Dequina Nicholas Alvarado, Barbara Nikolajczyk, Leena Panneerseelan-Bharath
Abstract:
Age is a non-modifiable risk factor for the inflammation that underlies pathologies such as type 2 diabetes mellitus (T2DM). Inflammation, as indicated by circulating cytokines, rises in aging, but mechanisms that promote this ‘inflammaging’ remain poorly defined. Furthermore, downstream consequences of inflammaging, including the development of an inflammatory profile that predicts comorbidities like T2DM, remain speculative. We tested the possibility that natural aging-associated changes in autophagy, a process that is compromised in both aging and T2DM, regulates inflammatory profiles in older subjects. Our data showed that circulating CD4⁺ T cells from older compared to younger subjects have (i) defects in autophagy; (ii) higher mitochondria accumulation; (iii) a failure to metabolically shift from oxidative phosphorylation to anaerobic glycolysis upon αCD3/CD28 activation; (iv) more reactive oxygen species (ROS) accumulation; and (v) a cytokine profile that recapitulates the Th17 profile that predicts T2DM. ROS scavenging in cells from older subjects restored mitochondrial mass and membrane potential (indicators of improved autophagy) and reduced Th17 cytokines to amounts made by T cells from younger subjects. Knock-down of the autophagy protein Atg3 in T cells from younger subjects increased mitochondrial accumulation and Th17 cytokines. To begin translating these findings to clinical practice, we showed that physiological concentrations of the diabetes drug metformin (100 µM) added in vitro enhanced autophagy, prevented mitochondria and ROS accumulation, increased anaerobic glycolysis, and decreased Th17 cytokines in activated CD4⁺ T cells from older subjects. Metformin therefore improves autophagy and multiple downstream pro-inflammatory mechanisms CD4⁺ T cells from older subjects. We conclude that autophagy improvement ameliorates the development of a T2DM-predictive Th17 profile in aging, and thus holds promise for delay or prevention of aging-associated metabolic decline.Keywords: autophagy, mitochondrial turnover, ROS, glycolysis
Procedia PDF Downloads 1663332 Amino Acid Based Biodegradable Poly (Ester-Amide)s and Their Potential Biomedical Applications as Drug Delivery Containers and Antibacterial
Authors: Nino Kupatadze, Tamar Memanishvili, Natia Ochkhikidze, David Tugushi, Zaal Kokaia, Ramaz Katsarava
Abstract:
Amino acid-based Biodegradable poly(ester-amide)s (PEAs) have gained considerable interest as a promising materials for numerous biomedical applications. These polymers reveal a high biocompatibility and easily form small particles suitable for delivery various biological, as well as elastic bio-erodible films serving as matrices for constructing antibacterial coatings. In the present work we have demonstrated a potential of the PEAs for two applications: 1. cell therapy for stroke as vehicles for delivery and sustained release of growth factors, 2. bactericidal coating as prevention biofilm and applicable in infected wound management. Stroke remains the main cause of adult disability with limited treatment options. Although stem cell therapy is a promising strategy, it still requires improvement of cell survival, differentiation and tissue modulation. .Recently, microspheres (MPs) made of biodegradable polymers have gained significant attention for providing necessary support of transplanted cells. To investigate this strategy in the cell therapy of stroke, MPs loaded with transcription factors Wnt3A/BMP4 were prepared. These proteins have been shown to mediate the maturation of the cortical neurons. We have suggested that implantation of these materials could create a suitable microenvironment for implanted cells. Particles with spherical shape, porous surface, and 5-40 m in size (monitored by scanning electron microscopy) were made on the basis of the original PEA composed of adipic acid, L-phenylalanine and 1,4-butanediol. After 4 months transplantation of MPs in rodent brain, no inflammation was observed. Additionally, factors were successfully released from MPs and affected neuronal cell differentiation in in vitro. The in vivo study using loaded MPs is in progress. Another severe problem in biomedicine is prevention of surgical devices from biofilm formation. Antimicrobial polymeric coatings are most effective “shields” to protect surfaces/devices from biofilm formation. Among matrices for constructing the coatings preference should be given to bio-erodible polymers. Such types of coatings will play a role of “unstable seating” that will not allow bacteria to occupy the surface. In other words, bio-erodible coatings would be discomfort shelter for bacteria that along with releasing “killers of bacteria” should prevent the formation of biofilm. For this purpose, we selected an original biodegradable PEA composed of L-leucine, 1,6-hexanediol and sebacic acid as a bio-erodible matrix, and nanosilver (AgNPs) as a bactericidal agent (“killer of bacteria”). Such nanocomposite material is also promising in treatment of superficial wound and ulcer. The solubility of the PEA in ethanol allows to reduce AgNO3 to NPs directly in the solution, where the solvent served as a reductive agent, and the PEA served as NPs stabilizer. The photochemical reduction was selected as a basic method to form NPs. The obtained AgNPs were characterized by UV-spectroscopy, transmission electron microscope (TEM), and dynamic light scattering (DLS). According to the UV-data and TEM data the photochemical reduction resulted in spherical AgNPs with wide particle size distribution with a high contribution of the particles below 10 nm that are known as responsible for bactericidal activity of AgNPs. DLS study showed that average size of nanoparticles formed after photo-reduction in ethanol solution ranged within ca. 50 nm.Keywords: biodegradable polymers, microparticles, nanocomposites, stem cell therapy, stroke
Procedia PDF Downloads 3953331 A Replicon-Baculovirus Model for Efficient Packaging of Hepatitis E Virus RNA and Production of Infectious Virions
Authors: Mohammad K. Parvez, Mohammed S. Al-Dosari
Abstract:
Hepatitis E virus (HEV) is an emerging RNA virus that causes acute and chronic liver disease with a global mortality rate of about 2%. Despite milestone developments in understanding of HEV biology, there is still lack of a robust culture system or animal model. Therefore, in a novel approach, two recombinant-baculoviruses (vBac-ORF2 and vBac-ORF3) that could overexpress HEV ORF2 (structural/capsid) and ORF3 (nonstructural/regulatory) proteins, respectively were constructed. The established HEV-SAR55 (genotype 1) replicon that contained GFP gene, in place of ORF2/ORF3 sequences was in vitro transcribed, and GFP production in RNA transfected S10-3 cells was scored by FACS. Enhanced infectivity, if any, of nascent virions produced by exogenously-supplied ORF2 and viral RNA by co-expression of ORF3 was tested on naïve HepG2 cells. Co-transduction with vBac-ORF2/vBac-ORF3 (108 pfu/microL) produced high amounts of native ORF2/ORF3 in approximately 60% of S10-3 cells, determined by immunofluorescence microscopy and Western analysis. FACS analysis showed about 9% GFP positivity of S10-3 cells on day6 post-transfection (i.e, day5 post-transduction). Further, FACS scoring indicated that lysates from S10-3 cultures receiving the RNA plus vBac-ORF2 were capable of producing HEV particles with about 4% infectivity in HepG2 cells. However, lysates of cultures co-transduced with vBac-ORF3, were found to further enhance virion infectivity by approximately 17%. This supported a previously proposed role of ORF3 as a minor-structural protein in HEV virion assembly and infectivity. In conclusion, the present model for efficient genomic RNA packaging and production of infectious virions could be a valuable tool to study various aspects of HEV molecular biology, in vitro.Keywords: chronic liver disease, hepatitis E virus, ORF2, ORF3, replicon
Procedia PDF Downloads 2563330 Performance Improvement of The Nano-Composite Based Proton Exchange Membranes (PEMs)
Authors: Yusuf Yılmaz, Kevser Dincer, Derya Saygılı
Abstract:
In this study, performance of PEMs was experimentally investigated. Coating on the cathode side of the PEMs fuel cells was accomplished with the spray method by using NaCaNiBO. A solution having 0,1 gr NaCaNiBO +10 mL methanol was prepared. This solution was taken out and filled into a spray. Then the cathode side of PEMs fuel cells was cladded with NaCaNiBO by using spray method. After coating, the membrane was left out to dry for 24 hours. The PEM fuel cells were mounted to the system in single, double, triple and fourfold manner in order to spot the best performance. The performance parameter considered was the power to current ratio. The best performance was found to occur at the 300th second with the power/current ratio of 3.55 Watt/Ampere and on the fourfold parallel mounting after the coating; whereas the poorest performance took place at the 210th second, power to current ratio of 0.12 Watt/Ampere and on the twofold parallel connection after the coating.Keywords: nano-composites, proton exchange membranes, performance improvement, fuel cell
Procedia PDF Downloads 3713329 Thiazolo[5,4-D]Thiazole-Core Organic Chromophore with Furan Spacer for Organic Solar Cells
Authors: M. Nazim, S. Ameen, H. K. Seo, H. S. Shin
Abstract:
Energy is the basis of life and strong attention has been growing for the cost-effective energy production. Recently, solution-processed small molecule organic solar cells (SMOSCs) have grown much attention due to the wages such as well-defined molecular structures, definite molecular weight, easy synthesis and easy purification techniques. In particular, the size of donor (D) and acceptor (A) unit is a crucial factor for the exciton-diffusion towards D-A interface and then charge-separation for the effective charge-transport to the electrodes. Furan-bridged materials are more electron-rich, high fluorescence, with better molecular-packing, and greater rigidity and greater solubility than their thiophene-counterparts In this work, a furan-bridged thiazolo[5,4-d]thiazole based organic small molecule (RFTzR) was formulated and applied for BHJ organic solar cells (OSCs). The introduction of furan spacer with two terminal alkyl units improved its absorption and solubility in the common organic solvents, significantly. RFTzR exhibited a HOMO and LUMO energy levels of -5.36 eV and -3.14 eV, respectively. The fabricated solar cell devices of RFTzR (donor) with PC60BM (acceptor) as photoactive materials showed high performance of 2.72% (RFTzR:PC60BM, 2:1, w/w) ratio with open-circuit voltage of 0.756 V and high photocurrent density of 10.13 mA/cm².Keywords: chromophore, organic solar cells, photoactive materials, small molecule
Procedia PDF Downloads 1633328 Study of Porous Metallic Support for Intermediate-Temperature Solid Oxide Fuel Cells
Authors: S. Belakry, D. Fasquelle, A. Rolle, E. Capoen, R. N. Vannier, J. C. Carru
Abstract:
Solid oxide fuel cells (SOFCs) are promising devices for energy conversion due to their high electrical efficiency and eco-friendly behavior. Their performance is not only influenced by the microstructural and electrical properties of the electrodes and electrolyte but also depends on the interactions at the interfaces. Nowadays, commercial SOFCs are electrically efficient at high operating temperatures, typically between 800 and 1000 °C, which restricts their real-life applications. The present work deals with the objectives to reduce the operating temperature and to develop cost-effective intermediate-temperature solid oxide fuel cells (IT-SOFCs). This work focuses on the development of metal-supported solid oxide fuel cells (MS-IT-SOFCs) that would provide cheaper SOFC cells with increased lifetime and reduced operating temperature. In the framework, the local company TIBTECH brings its skills for the manufacturing of porous metal supports. This part of the work focuses on the physical, chemical, and electrical characterizations of porous metallic supports (stainless steel 316 L and FeCrAl alloy) under different exposure conditions of temperature and atmosphere by studying oxidation, mechanical resistance, and electrical conductivity of the materials. Within the target operating temperature (i.e., 500 to 700 ° C), the stainless steel 316 L and FeCrAl alloy slightly oxidize in the air and H2, but don’t deform; whereas under Ar atmosphere, they oxidize more than with previously mentioned atmospheres. Above 700 °C under air and Ar, the two metallic supports undergo high oxidation. From 500 to 700 °C, the resistivity of FeCrAl increases by 55%. But nevertheless, the FeCrAl resistivity increases more slowly than the stainless steel 316L resistivity. This study allows us to verify the compatibility of electrodes and electrolyte materials with metallic support at the operating requirements of the IT-SOFC cell. The characterizations made in this context will also allow us to choose the most suitable fabrication process for all functional layers in order to limit the oxidation of the metallic supports.Keywords: stainless steel 316L, FeCrAl alloy, solid oxide fuel cells, porous metallic support
Procedia PDF Downloads 953327 Study of Magnetic Nanoparticles’ Endocytosis in a Single Cell Level
Authors: Jefunnie Matahum, Yu-Chi Kuo, Chao-Ming Su, Tzong-Rong Ger
Abstract:
Magnetic cell labeling is of great importance in various applications in biomedical fields such as cell separation and cell sorting. Since analytical methods for quantification of cell uptake of magnetic nanoparticles (MNPs) are already well established, image analysis on single cell level still needs more characterization. This study reports an alternative non-destructive quantification methods of single-cell uptake of positively charged MNPs. Magnetophoresis experiments were performed to calculate the number of MNPs in a single cell. Mobility of magnetic cells and the area of intracellular MNP stained by Prussian blue were quantified by image processing software. ICP-MS experiments were also performed to confirm the internalization of MNPs to cells. Initial results showed that the magnetic cells incubated at 100 µg and 50 µg MNPs/mL concentration move at 18.3 and 16.7 µm/sec, respectively. There is also an increasing trend in the number and area of intracellular MNP with increasing concentration. These results could be useful in assessing the nanoparticle uptake in a single cell level.Keywords: magnetic nanoparticles, single cell, magnetophoresis, image analysis
Procedia PDF Downloads 3333326 Investigating the Effects of Density and Different Nitrogen Nutritional Systems on Yield, Yield Components and Essential Oil of Fennel (Foeniculum Vulgare Mill.)
Authors: Mohammadreza Delfieh, Seyed Ali Mohammad Modarres Sanavy, Rouzbeh Farhoudi
Abstract:
Fennel is of most important medicinal plants which is widely used in food and pharmaceutical industries. In order to investigate the effect of different nitrogen nutritional systems including chemical, organic and biologic ones at different plant densities on yield, yield components and seed essential oil content and yield of this valuable medicinal plant, a field experiment was carried out in 2013-2014 agricultural season at Islamic Azad University of Shoushtar agricultural college in split plot design with 18 treatments and based on completely randomized blocks design. Different nitrogen system treatments consisting of: 1. N1 or control (Uniformly spreading urea fertilizer in the plot, 50% at planting time and 50% at stem elongation), 2. N2 (Uniformly spreading 50% of urea fertilizer in the plot at planting time and spraying the other 50% of urea fertilizer at stem elongation on fennel foliage), 3. N3 or cow manure, 4. N4 or biofertilizer (Inoculation of fennel seeds with Azotobacter and Azospirillum), 5. N5 or Integrated-1 (Cow manure + uniformly spreading urea fertilizer in the plot at stem elongation), 6. N6 or Integrated-2 (Cow manure + Inoculation of fennel seeds with Azotobacter and Azospirillum) were applied to the main plots. Three fennel densities consisting of: 1. FD1 (60 plant/m2), 2. FD2 (80 plant/m2) and 3. FD3 (100 plant/m2) were applied to subplots. Results showed that all of the traits were significantly affected by applied treatments (P 0.01). The interaction between treatments also were significant at 5 percent level for shoot dry weight and at 1 percent level for other traits. Based on the results, using the Integrated-1 treatment at 100 plant per m2 produced 94.575 g/m2 seed yield containing 3.375 percent of essential oil. Utilization of such combination not only could lead to a desirable fennel quantity and quality, but also is more consistent with environment.Keywords: fennel (foeniculum vulgare mill.), nutritional system, nitrogen, biofertilizer, organic fertilizer, chemical fertilizer, density
Procedia PDF Downloads 4593325 The Effect of Naringenin on the Apoptosis in T47D Cell Line of Breast Cancer
Authors: AliAkbar Hafezi, Jahanbakhsh Asadi, Majid Shahbazi, Alijan Tabarraei, Nader Mansour Samaei, Hamed Sheibak, Roghaye Gharaei
Abstract:
Background: Breast cancer is the most common cancer in women. In most cancer cells, apoptosis is blocked. As for the importance of apoptosis in cancer cell death and the role of different genes in its induction or inhibition, the search for compounds that can begin the process of apoptosis in tumor cells is discussed as a new strategy in anticancer drug discovery. The aim of this study was to investigate the effect of Naringenin (NGEN) on the apoptosis in the T47D cell line of breast cancer. Materials and Methods: In this experimental study in vitro, the T47D cell line of breast cancer was selected as a sample. The cells at 24, 48, and 72 hours were treated with doses of 20, 200, and 1000 µm of Naringenin. Then, the transcription levels of the genes involved in apoptosis, including Bcl-2, Bax, Caspase 3, Caspase 8, Caspase 9, P53, PARP-1, and FAS, were assessed using Real Time-PCR. The collected data were analyzed using IBM SPSS Statistics 24.0. Results: The results showed that Naringenin at doses of 20, 200, and 1000 µm in all three times of 24, 48, and 72 hours increased the expression of Caspase 3, P53, PARP-1 and FAS and reduced the expression of Bcl-2 and increased the Bax/Bcl-2 ratio, nevertheless in none of the studied doses and times, had not a significant effect on the expression of Bax, Caspase 8 and Caspase 9. Conclusion: This study indicates that Naringenin can reduce the growth of some cancer cells and cause their deaths through increased apoptosis and decreased anti-apoptotic Bcl-2 gene expression and, resulting in the induction of apoptosis via both internal and external pathways.Keywords: apoptosis, breast cancer, naringenin, T47D cell line
Procedia PDF Downloads 533324 Comparative Analysis of Single vs. Multiple gRNA on NGN3 Expression Using a Controllable dCas9-VP192 Activator (CRISPRa)
Authors: Nicholas Abdilmasih, Habib Rezanejad
Abstract:
This study investigates the gene expression induction efficiency of single versus multiple guide RNAs (gRNAs) targeting the NGN3 gene using the CRISPR activation system in HEK293 cells. Our study aimed to contribute to optimizing the use of gRNAs in gene therapy applications, particularly in treating diseases like diabetes, where precise gene regulation is essential. The experimental design involves culturing HEK293 cells, and once they reach approximately 70-80% confluence, cells were transfected with specific gRNAs targeting the NGN3 gene promoter. Specific gRNAs targeting the NGN3 promoter that was previously designed, incorporated into plasmid clone cassettes and introduced into HEK293 cells through co-transfection using pCAG-DDdCas9-VP192-EGFP transactivator. Post-transfection, cell viability, and fluorescence were monitored to assess transfection efficiency. RNA was extracted, converted to cDNA, and analyzed via qPCR to measure NGN3 expression levels. Results indicated that specific combinations of fewer gRNAs led to higher NGN3 activation compared to multiple gRNAs, challenging the assumption that more gRNAs result in synergistic gene activation. These findings suggest that optimized gRNA combinations can enhance gene therapy efficiency, potentially leading to more effective treatments for conditions like diabetes.Keywords: CRISPR activation, Diabetes mellitus, gene therapy, guide RNA, Neurogenin3
Procedia PDF Downloads 263323 Inactivation of Listeria innocua ATCC 33092 by Gas-Phase Plasma Treatment
Authors: Z. Herceg, V. Stulic, T. Vukusic, A. Rezek Jambrak
Abstract:
High voltage electrical discharge plasmas are new nonthermal developing techniques used for water decontamination. To the full understanding of cell inactivation mechanisms, this study brings inactivation, recovery and cellular leakage of L. innocua cells before and after the treatment. Bacterial solution (200 mL) of L. innocua was treated in a glass reactor with a point-to-plate electrode configuration (high voltage electrode-titanium wire, was in the gas phase and grounded electrode was in the liquid phase). Argon was injected into the headspace of the reactor at the gas flow of 5 L/min. Frequency of 60, 90 and 120 Hz, time of 5 and 10 min, positive polarity and conductivity of media of 100 µS/cm were chosen to define listed parameters. With a longer treatment time inactivation was higher as well as the increase in cellular leakage. Despite total inactivation recovery of cells occurred probably because of a high leakage of proteins, compared to lower leakage of nucleic acids (DNA and RNA). In order to define mechanisms of inactivation further research is needed.Keywords: Listeria innocua ATCC 33092, inactivation, gas phase plasma, cellular leakage, recovery of cells
Procedia PDF Downloads 1773322 Controlling the Fluid Flow in Hydrogen Fuel Cells through Material Porosity Designs
Authors: Jamal Hussain Al-Smail
Abstract:
Hydrogen fuel cells (HFCs) are environmentally friendly, energy converter devices that convert the chemical energy of the reactants (oxygen and hydrogen) to electricity through electrochemical reactions. The level of the electricity production of HFCs mainly increases depending on the oxygen distribution in the HFC’s cathode gas diffusion layer (GDL). With a constant porosity of the GDL, the electrochemical reaction can have a great variation that reduces the cell’s productivity and stability. Our findings bring a methodology in finding porosity designs of the diffusion layer to improve the oxygen distribution such that it results in a stable oxygen-hydrogen reaction. We first introduce a mathematical model involving the mass and momentum transport equations, in which a porosity function of the GDL is incorporated as a control for the fluid flow. We then derive numerical methods for solving the mathematical model. In conclusion, we present our numerical results to show how to design the GDL porosity to result in a uniform oxygen distribution.Keywords: fuel cells, material porosity design, mathematical modeling, porous media
Procedia PDF Downloads 1533321 Regression of Hand Kinematics from Surface Electromyography Data Using an Long Short-Term Memory-Transformer Model
Authors: Anita Sadat Sadati Rostami, Reza Almasi Ghaleh
Abstract:
Surface electromyography (sEMG) offers important insights into muscle activation and has applications in fields including rehabilitation and human-computer interaction. The purpose of this work is to predict the degree of activation of two joints in the index finger using an LSTM-Transformer architecture trained on sEMG data from the Ninapro DB8 dataset. We apply advanced preprocessing techniques, such as multi-band filtering and customizable rectification methods, to enhance the encoding of sEMG data into features that are beneficial for regression tasks. The processed data is converted into spike patterns and simulated using Leaky Integrate-and-Fire (LIF) neuron models, allowing for neuromorphic-inspired processing. Our findings demonstrate that adjusting filtering parameters and neuron dynamics and employing the LSTM-Transformer model improves joint angle prediction performance. This study contributes to the ongoing development of deep learning frameworks for sEMG analysis, which could lead to improvements in motor control systems.Keywords: surface electromyography, LSTM-transformer, spiking neural networks, hand kinematics, leaky integrate-and-fire neuron, band-pass filtering, muscle activity decoding
Procedia PDF Downloads 183320 Applying Cationic Porphyrin Derivative 5, 10-Dihexyl-15, 20bis Porphyrin, as Transfection Reagent for Gene Delivery into Mammalian Cells
Authors: Hajar Hosseini Khorami
Abstract:
Porphyrins are organic, aromatic compounds found in heme, cytochrome, cobalamin, chlorophyll , and many other natural products with essential roles in biological processes that their cationic forms have been used as groups of favorable non-viral vectors recently. Cationic porphyrins are self-chromogenic reagents with a high capacity for modifications, great interaction with DNA and protection of DNA from nuclease during delivery of it into a cell with low toxicity. In order to have high efficient gene transfection into the cell while causing low toxicity, genetically manipulations of the non-viral vector, cationic porphyrin, would be useful. In this study newly modified cationic porphyrin derivative, 5, 10-dihexyl-15, 20bis (N-methyl-4-pyridyl) porphyrin was applied. Cytotoxicity of synthesized cationic porphyrin on Chinese Hamster Ovarian (CHO) cells was evaluated by using MTT assay. This cationic derivative is dose-dependent, with low cytotoxicity at the ranges from 100 μM to 0.01μM. It was uptake by cells at high concentration. Using direct non-viral gene transfection method and different concentration of cationic porphyrin were tested on transfection of CHO cells by applying derived transfection reagent with X-tremeGENE HP DNA as a positive control. However, no transfection observed by porphyrin derivative and the parameters tested except for positive control. Results of this study suggested that applying different protocol, and also trying other concentration of cationic porphyrins and DNA for forming a strong complex would increase the possibility of efficient gene transfection by using cationic porphyrins.Keywords: cationic porphyrins, gene delivery, non-viral vectors, transfection reagents
Procedia PDF Downloads 2003319 An Inverse Docking Approach for Identifying New Potential Anticancer Targets
Authors: Soujanya Pasumarthi
Abstract:
Inverse docking is a relatively new technique that has been used to identify potential receptor targets of small molecules. Our docking software package MDock is well suited for such an application as it is both computationally efficient, yet simultaneously shows adequate results in binding affinity predictions and enrichment tests. As a validation study, we present the first stage results of an inverse-docking study which seeks to identify potential direct targets of PRIMA-1. PRIMA-1 is well known for its ability to restore mutant p53's tumor suppressor function, leading to apoptosis in several types of cancer cells. For this reason, we believe that potential direct targets of PRIMA-1 identified in silico should be experimentally screened for their ability to inhibitcancer cell growth. The highest-ranked human protein of our PRIMA-1 docking results is oxidosqualene cyclase (OSC), which is part of the cholesterol synthetic pathway. The results of two followup experiments which treat OSC as a possible anti-cancer target are promising. We show that both PRIMA-1 and Ro 48-8071, a known potent OSC inhibitor, significantly reduce theviability of BT-474 breast cancer cells relative to normal mammary cells. In addition, like PRIMA-1, we find that Ro 48-8071 results in increased binding of mutant p53 to DNA in BT- 474cells (which highly express p53). For the first time, Ro 48-8071 is shown as a potent agent in killing human breast cancer cells. The potential of OSC as a new target for developing anticancer therapies is worth further investigation.Keywords: inverse docking, in silico screening, protein-ligand interactions, molecular docking
Procedia PDF Downloads 4483318 Relaxant Effects of Sideritis raeseri Extract on the Uterus of Rabbits
Authors: Berat Krasniqi, Shpëtim Thaçi, Miribane Dërmaku-Sopjani, Sokol Abazi, Mentor Sopjani
Abstract:
The Mediterranean native plant, Sideritis raeseri Boiss. & Heldr. (Lamiaceae), also known as "mountain tea," has a long history of use in traditional medicine. The effects of an ethanol extract of Sideritis raeseri (SR) on uterus smooth muscle activity are evaluated in this study, and the underlying mechanism is identified. S. raeseri extract (SRE) was made from air-dried components of the SR shoot system. At 37°C, the SRE (0.5-2 mg/mL) was tested on isolated rabbit uterus rings that were suspended in a Krebs solution-filled organ bath and bubbled with a mixture of 95% O₂ and 5% CO₂. The SRE alone relaxed the muscle contraction in a concentration-dependent manner in uterine rings in in vitro tests. SRE also decreased Ca²⁺-induced contractions in the uterus by a large amount when the uterus was depolarized with carbachol (CCh, 1µM), K⁺ (80 mM), or contracted by oxytocin (5 nM). The potential involvement of NO-dependent or independent cGMP mechanisms in the uterine actions of SR was investigated. For this purpose, L-NAME (NO synthase inhibitor, 100 M) or bradykinin (NO synthase stimulator, 100 nM), or indomethacin (cyclooxygenase inhibitor, 10µM) decreased the impact of SRE. These results suggest that NO-dependent signaling is involved in SRE's mediated uterine relaxant effect. Data suggests that SRE could be a powerful tocolytic agent that reduces uterine activity and could be used to treat a number of uterine conditions.Keywords: Sideritis raeseri, uterus, alternative medicine, intracellular mechanisms
Procedia PDF Downloads 1163317 Applications of AFM in 4D to Optimize the Design of Genetic Nanoparticles
Authors: Hosam Abdelhady
Abstract:
Filming the behaviors of individual DNA molecules in their environment when they interact with individual medicinal nano-polymers in a molecular scale has opened the door to understand the effect of the molecular shape, size, and incubation time with nanocarriers on optimizing the design of robust genetic Nano molecules able to resist the enzymatic degradation, enter the cell, reach to the nucleus and kill individual cancer cells in their environment. To this end, we will show how we applied the 4D AFM as a guide to finetune the design of genetic nanoparticles and to film the effects of these nanoparticles on the nanomechanical and morphological profiles of individual cancer cells.Keywords: AFM, dendrimers, nanoparticles, DNA, gene therapy, imaging
Procedia PDF Downloads 73