Search results for: magnetic and non-magnetic adatoms
401 Environmentally Benign Synthesis of 2-Pyrazolines and Cyclohexenones Incorporating Naphthalene Moiety and Their Antimicrobial Evaluation
Authors: Al-Bogami Abdullah Saad
Abstract:
We reported the environmental benign synthesis of chalcones, 2-pyrazolines and cyclohexanones under microwave irradiation. Chalcones were obtained by the condensation of each of 2-hydroxyacetophenone derivatives with α-naphthaldehyde under microwave irradiation. The condensation reactions of each of synthesized chalcones with phenyl hydrazine under microwave irradiation in the presence of dry acetic acid as a cyclizing agent gave 2-pyrazolines. Also, the new cyclohexenone derivatives, valuable intermediates to synthesize fused heterocycles, have been prepared by the cyclocondensation of each of hydroxychalcones with ethyl acetoacetate. The structures of the synthesized compounds were elucidated by Infrared (IR) spectrometry, Nuclear Magnetic Resonance (NMR), Mass Spectrometry(MS) and elmental analysis. The results indicate that unlike classical heating, microwave irradiation results in higher yields with shorter and cleaner reactions. The synthesized compounds were screened for antimicrobial activity against Staphylococcus aureus, Escherichia coli, Candida Albicans and Aspergillus niger. We clarified the effects of different substituents in the tested compounds on the obtaind antibacterial activities and antifungal activities.Keywords: microwave irradiation, 2-Hydroxyacetophenone, α-Naphthaldehyde, pyrazoline, cyclohexenone, antimicrobial activity
Procedia PDF Downloads 339400 Design of Cartesian Robot for Electric Vehicle Wireless Charging Systems
Authors: Kaan Karaoglu, Raif Bayir
Abstract:
In this study, a cartesian robot is developed to improve the performance and efficiency of wireless charging of electric vehicles. The cartesian robot has three axes, each of which moves linearly. Magnetic positioning is used to align the cartesian robot transmitter charging pad. There are two different wireless charging methods, static and dynamic, for charging electric vehicles. The current state of charge information (SOC State of Charge) and location information are received wirelessly from the electric vehicle. Based on this information, the power to be transmitted is determined, and the transmitter and receiver charging pads are aligned for maximum efficiency. With this study, a fully automated cartesian robot structure will be used to charge electric vehicles with the highest possible efficiency. With the wireless communication established between the electric vehicle and the charging station, the charging status will be monitored in real-time. The cartesian robot developed in this study is a fully automatic system that can be easily used in static wireless charging systems with vehicle-machine communication.Keywords: electric vehicle, wireless charging systems, energy efficiency, cartesian robot, location detection, trajectory planning
Procedia PDF Downloads 75399 Anion Exchange Nanocomposite Membrane Doped with ZnO-Nanoparticles for Direct Methanol Alkaline Fuel Cell
Authors: Phumlani Msomi, Patrick Nonjola, Patrick Ndungu, James Ramontja
Abstract:
A series of quaternized poly (2.6 dimethyl – 1.4 phenylene oxide)/ polysulfone (QPPO/PSF) blend anion exchange membrane (AEM) were successfully fabricated and characterized for methanol alkaline fuel cell application. Zinc Oxide (ZnO) nanoparticles were introduced in the polymer matrix to enhance the intrinsic properties of the AEM. To confirm successful fabrication, FT-IR spectroscopy and nuclear magnetic resonance (¹H NMR and HMBC ¹⁵N NMR) were used. The membrane properties were enhanced by the addition of ZnO nanoparticles. The addition of ZnO nanoparticles resulted to a higher ion exchange capacity (IEC) of 3.72 mmol.g⁻¹and a 30-fold ion conductivity (IC) increase of the nanocomposite due to no (zero (0)) methanol permeability at 30 °C and increased water uptake. The QPPO/PSF/2% ZnO composite retained over 80 % of its initial IC when evaluated for alkaline stability at room temperature. The maximum power output reached for the membrane electrode assembly (MEA) constructed with QPPO/PSF/2%ZnO is 69 mW.cm⁻², which is about three times more than the parent QPPO membrane. The above results indicate that QPPO/PSF-ZnO is a good candidate as an anion exchange membrane for fuel cell application.Keywords: anion exchange membrane, fuel cell, zinc oxide, nanocomposite
Procedia PDF Downloads 272398 Effect of Radiation on MHD Mixed Convection Stagnation Point Flow towards a Vertical Plate in a Porous Medium with Convective Boundary Condition
Authors: H. Niranjan, S. Sivasankaran, Zailan Siri
Abstract:
This study investigates mixed convection heat transfer about a thin vertical plate in the presence of magnetohydrodynamic (MHD) and heat transfer effects in the porous medium. The fluid is assumed to be steady, laminar, incompressible and in two-dimensional flow. The nonlinear coupled parabolic partial differential equations governing the flow are transformed into the non-similar boundary layer equations, which are then solved numerically using the shooting method. The effects of the conjugate heat transfer parameter, the porous medium parameter, the permeability parameter, the mixed convection parameter, the magnetic parameter, and the thermal radiation on the velocity and temperature profiles as well as on the local skin friction and local heat transfer are presented and analyzed. The validity of the methodology and analysis is checked by comparing the results obtained for some specific cases with those available in the literature. The various parameters on local skin friction, heat and mass transfer rates are presented in tabular form.Keywords: MHD, porous medium, soret/dufour, stagnation-point
Procedia PDF Downloads 375397 Peg@GDF3:TB3+ – Rb Nanocomposites for Deep-Seated X-Ray Induced Photodynamic Therapy in Oncology
Authors: E.A. Kuchma
Abstract:
Photodynamic therapy (PDT) is considered an alternative and minimally invasive cancer treatment modality compared to chemotherapy and radiation therapy. PDT includes three main components: a photosensitizer (PS), oxygen, and a light source. PS is injected into the patient's body and then selectively accumulates in the tumor. However, the light used in PDT (spectral range 400–700 nm) is limited to superficial lesions, and the light penetration depth does not exceed a few cm. The problem of PDT (poor visible light transmission) can be solved by using X-rays. The penetration depth of X-rays is ten times greater than that of visible light. Therefore, X-ray radiation easily penetrates through the tissues of the body. The aim of this work is to develop universal nanocomposites for X-ray photodynamic therapy of deep and superficial tumors using scintillation nanoparticles of gadolinium fluoride (GdF3), doped with Tb3+, coated with a biocompatible coating (PEG) and photosensitizer RB (Rose Bengal). PEG@GdF3:Tb3+(15%) – RB could be used as an effective X-ray, UV, and photoluminescent mediator to excite a photosensitizer for generating reactive oxygen species (ROS) to kill tumor cells via photodynamic therapy. GdF3 nanoparticles can also be used as contrast agents for computed tomography (CT) and magnetic resonance imaging (MRI).Keywords: X-ray induced photodynamic therapy, scintillating nanoparticle, radiosensitizer, photosensitizer
Procedia PDF Downloads 80396 Nano-Sensors: Search for New Features
Authors: I. Filikhin, B. Vlahovic
Abstract:
We focus on a novel type of detection based on electron tunneling properties of double nanoscale structures in semiconductor materials. Semiconductor heterostructures as quantum wells (QWs), quantum dots (QDs), and quantum rings (QRs) may have energy level structure of several hundred of electron confinement states. The single electron spectra of the double quantum objects (DQW, DQD, and DQR) were studied in our previous works with relation to the electron localization and tunneling between the objects. The wave function of electron may be localized in one of the QDs or be delocalized when it is spread over the whole system. The localizing-delocalizing tunneling occurs when an electron transition between both states is possible. The tunneling properties of spectra differ strongly for “regular” and “chaotic” systems. We have shown that a small violation of the geometry drastically affects localization of electron. In particular, such violations lead to the elimination of the delocalized states of the system. The same symmetry violation effect happens if electrical or magnetic fields are applied. These phenomena could be used to propose a new type of detection based on the high sensitivity of charge transport between double nanostructures and small violations of the shapes. It may have significant technological implications.Keywords: double quantum dots, single electron levels, tunneling, electron localizations
Procedia PDF Downloads 506395 Temperature Rises Characteristics of Distinct Double-Sided Flat Permanent Magnet Linear Generator for Free Piston Engines for Hybrid Vehicles
Authors: Ismail Rahama Adam Hamid
Abstract:
This paper presents the development of a thermal model for a flat, double-sided linear generator designed for use in free-piston engines. The study conducted in this paper examines the influence of temperature on the performance of the permeant magnet linear generator, an integral and pivotal component within the system. This research places particular emphasis on the Neodymium Iron Boron (NdFeB) permanent magnet, which serves as a source of magnetic field for the linear generator. In this study, an internal combustion engine that tends to produce heat is connected to a generator. Considering the temperatures rise from both the combustion process and the thermal contributions of current-carrying conductors and frictional forces. Utilizing Computational Fluid Dynamics (CFD) method, a thermal model of the (NdFeB) magnet within the linear generator is constructed and analyzed. Furthermore, the temperature field is examined to ensure that the linear generator operates under stable conditions without the risk of demagnetization.Keywords: free piston engine, permanent magnet, linear generator, demagnetization, simulation
Procedia PDF Downloads 57394 Analysis of Vertical Hall Effect Device Using Current-Mode
Authors: Kim Jin Sup
Abstract:
This paper presents a vertical hall effect device using current-mode. Among different geometries that have been studied and simulated using COMSOL Multiphysics, optimized cross-shaped model displayed the best sensitivity. The cross-shaped model emerged as the optimum plate to fit the lowest noise and residual offset and the best sensitivity. The symmetrical cross-shaped hall plate is widely used because of its high sensitivity and immunity to alignment tolerances resulting from the fabrication process. The hall effect device has been designed using a 0.18-μm CMOS technology. The simulation uses the nominal bias current of 12μA. The applied magnetic field is from 0 mT to 20 mT. Simulation results achieved in COMSOL and validated with respect to the electrical behavior of equivalent circuit for Cadence. Simulation results of the one structure over the 13 available samples shows for the best geometry a current-mode sensitivity of 6.6 %/T at 20mT. Acknowledgment: This work was supported by Institute for Information & communications Technology Promotion (IITP) grant funded by the Korea government (MSIP) (No. R7117-16-0165, Development of Hall Effect Semiconductor for Smart Car and Device).Keywords: vertical hall device, current-mode, crossed-shaped model, CMOS technology
Procedia PDF Downloads 292393 A Rare Case of Dissection of Cervical Portion of Internal Carotid Artery, Diagnosed Postpartum
Authors: Bidisha Chatterjee, Sonal Grover, Rekha Gurung
Abstract:
Postpartum dissection of the internal carotid artery is a relatively rare condition and is considered as an underlying aetiology in 5% to 25% of strokes under the age of 30 to 45 years. However, 86% of these cases recover completely and 14% have mild focal neurological symptoms. Prognosis is generally good with early intervention. The risk quoted for a repeat carotid artery dissection in subsequent pregnancies is less than 2%. 36-year Caucasian primipara presented on postnatal day one of forceps delivery with tachycardia. In the intrapartum period she had a history of prolonged rupture of membranes and developed intrapartum sepsis and was treated with antibiotics. Postpartum ECG showed septal inferior T wave inversion and a troponin level of 19. Subsequently Echocardiogram ruled out post-partum cardiomyopathy. Repeat ECG showed improvement of the previous changes and in the absence of symptoms no intervention was warranted. On day 4 post-delivery, she had developed symptoms of droopy right eyelid, pain around the right eye and itching in the right ear. On examination, she had developed right sided ptosis, unequal pupils (Rt miotic pupil). Cranial nerve examination, reflexes, sensory examination and muscle power was normal. Apart from migraine, there was no medical or family history of note. In view of Horner’s on the right, she had a CT Angiogram and subsequently MR/MRA and was diagnosed with dissection of the cervical portion of the right internal carotid artery. She was discharged on a course of Aspirin 75mg. By 6 week post-natal follow up patient had recovered significantly with occasional episodes of unequal pupils and tingling of right toes which resolved spontaneously. Cervical artery dissection, including VAD and carotid artery dissection, are rare complications of pregnancy with an estimated annual incidence of 2.6–3 per 100,000 pregnancy hospitalizations. Aetiology remains unclear though trauma during straining at labour, underlying arterial disease and preeclampsia have been implicated. Hypercoagulable state during pregnancy and puerperium could also be an important factor. 60-90% cases present with severe headache and neck pain and generally precede neurological symptoms like ipsilateral Horner’s syndrome, retroorbital pain, tinnitus and cranial nerve palsy. Although rare, the consequences of delayed diagnosis and management can lead to severe and permanent neurological deficits. Patients with a strong index of suspicion should undergo an MRI or MRA of head and neck. Antithrombotic and antiplatelet therapy forms the mainstay of therapy with selected cases needing endovascular stenting. Long term prognosis is favourable with either complete resolution or minimal deficit if treatment is prompt. Patients should be counselled about the recurrence risk and possibility of stroke in future pregnancy. Coronary artery dissection is rare and treatable but needs early diagnosis and treatment. Post-partum headache and neck pain with neurological symptoms should prompt urgent imaging followed by antithrombotic and /or antiplatelet therapy. Most cases resolve completely or with minimal sequelae.Keywords: postpartum, dissection of internal carotid artery, magnetic resonance angiogram, magnetic resonance imaging, antiplatelet, antithrombotic
Procedia PDF Downloads 98392 India's Geothermal Energy Landscape and Role of Geophysical Methods in Unravelling Untapped Reserves
Authors: Satya Narayan
Abstract:
India, a rapidly growing economy with a burgeoning population, grapples with the dual challenge of meeting rising energy demands and reducing its carbon footprint. Geothermal energy, an often overlooked and underutilized renewable source, holds immense potential for addressing this challenge. Geothermal resources offer a valuable, consistent, and sustainable energy source, and may significantly contribute to India's energy. This paper discusses the importance of geothermal exploration in India, emphasizing its role in achieving sustainable energy production while mitigating environmental impacts. It also delves into the methodology employed to assess geothermal resource feasibility, including geophysical surveys and borehole drilling. The results and discussion sections highlight promising geothermal sites across India, illuminating the nation's vast geothermal potential. It detects potential geothermal reservoirs, characterizes subsurface structures, maps temperature gradients, monitors fluid flow, and estimates key reservoir parameters. Globally, geothermal energy falls into high and low enthalpy categories, with India mainly having low enthalpy resources, especially in hot springs. The northwestern Himalayan region boasts high-temperature geothermal resources due to geological factors. Promising sites, like Puga Valley, Chhumthang, and others, feature hot springs suitable for various applications. The Son-Narmada-Tapti lineament intersects regions rich in geological history, contributing to geothermal resources. Southern India, including the Godavari Valley, has thermal springs suitable for power generation. The Andaman-Nicobar region, linked to subduction and volcanic activity, holds high-temperature geothermal potential. Geophysical surveys, utilizing gravity, magnetic, seismic, magnetotelluric, and electrical resistivity techniques, offer vital information on subsurface conditions essential for detecting, evaluating, and exploiting geothermal resources. The gravity and magnetic methods map the depth of the mantle boundary (high-temperature) and later accurately determine the Curie depth. Electrical methods indicate the presence of subsurface fluids. Seismic surveys create detailed sub-surface images, revealing faults and fractures and establishing possible connections to aquifers. Borehole drilling is crucial for assessing geothermal parameters at different depths. Detailed geochemical analysis and geophysical surveys in Dholera, Gujarat, reveal untapped geothermal potential in India, aligning with renewable energy goals. In conclusion, geophysical surveys and borehole drilling play a pivotal role in economically viable geothermal site selection and feasibility assessments. With ongoing exploration and innovative technology, these surveys effectively minimize drilling risks, optimize borehole placement, aid in environmental impact evaluations, and facilitate remote resource exploration. Their cost-effectiveness informs decisions regarding geothermal resource location and extent, ultimately promoting sustainable energy and reducing India's reliance on conventional fossil fuels.Keywords: geothermal resources, geophysical methods, exploration, exploitation
Procedia PDF Downloads 86391 Manufacturing an Eminent Mucolytic Medicine Using an Efficient Synthesis Path
Authors: Farzaneh Ziaee, Mohammad Ziaee
Abstract:
N-acetyl-L-cysteine (NAC) is a well-known mucolytic agent, and recently its efficacy has been examined for the prevention and remediation of several diseases such as lung infections caused by Coronavirus. Also, it is administrated as the main antidote in paracetamol overdose and is effective for the treatment of idiopathic pulmonary fibrosis (IPF), chronic obstructive pulmonary disease (COPD). This medicine is used as an antioxidant to prevent diabetic kidney disease (nephropathy). In this study, a method for the acylation of amino acids is employed to manufacture this drug in a height yield. Regarding this patented path, NAC can be made in a single batch step at ambient pressure and temperature. Moreover, this study offers a technique to make peptide bonds which is of interest for pharmaceutical and medicinal industries. The separation process was undertaken using appropriate solvents to achieve an excellent purification level. The synthesized drug was characterized via proton nuclear magnetic resonance (1H NMR), high-performance liquid chromatography (HPLC), Fourier transform infrared spectroscopy (FT-IR), elemental analysis, and melting point.Keywords: N-acetylcysteine, synthesis, mucolytic medication, lung anti-inflammatory, COVID-19, antioxidant, pharmaceutical supplement, characterization
Procedia PDF Downloads 193390 Theoretical and Numerical Investigation of a Tri-Stable Nonlinear Energy Harvesting System in Rotational Motion for Low Frequency Environment
Authors: Mei Xutao, Nakano Kimihiko
Abstract:
In order to enhance the energy harvesting efficiency, this paper presents a novel tri-stable energy harvesting system (TEHS), which is realized by the effect of magnetic force, in rotational motion to scavenge vibration energy. The device is meant to provide the power supply for wireless autonomous systems in low-frequency environment. The nonlinear TEHS is composed of the cantilever beam which is mounted on a rotating hub and partially covered by piezoelectric patch, a tip mass magnet in the end and two fixed magnets. A theoretical investigation using the Lagrangian formulation is derived to describe the motion of the energy harvesting system and the output voltage. Additionally, several numerical simulations were carried out to characterize the system under different external excitations and to validate its performance. The results demonstrated that TEHS owns a wide range of frequency of snap-through and high output voltage compared with the bi-stable energy harvesting system (BEHS). Moreover, some sets of experimental validations will be performed in the future work because the experimental setup is in the configuration now.Keywords: piezoelectric beam, rotational motion, snap-through, tri-stable energy harvester
Procedia PDF Downloads 297389 Comparison of Different Electrical Machines with Permanent Magnets in the Stator for Use as an Industrial Drive
Authors: Marcel Lehr, Andreas Binder
Abstract:
This paper compares three different permanent magnet synchronous machines (Doubly-Salient-Permanent-Magnet-Machine (DSPM), Flux-Reversal-Permanent-Magnet-Machine (FRPM), Flux-Switching-Permanent-Magnet-Machine (FSPM)) with the permanent magnets in the stator of the machine for use as an industrial drive for 400 V Y, 45 kW and 1000 ... 3000 min-1. The machines are compared based on the magnetic co-energy and Finite-Element-Method-Simulations regarding the torque density. The results show that the FSPM provides the highest torque density of the three machines. Therefore, an FSPM prototype was built, tested on a test bench and finally compared with an already built conventional permanent magnet synchronous machine (PMSM) of the same size (stator outer diameter dso = 314 mm, axial length lFe = 180 mm) and rating with surface-mounted rotor magnets. These measurements show that the conventional PMSM and the FSPM machine are roughly equivalent in their electrical behavior.Keywords: doubly-salient-permanent-magnet-machine, flux-reversal-permanent-magnet-machine, flux-switching-permanent-magnet-machine, industrial drive
Procedia PDF Downloads 371388 A Novel Dual Band-pass filter Based On Coupling of Composite Right/Left Hand CPW and (CSRRs) Uses Ferrite Components
Authors: Mohammed Berka, Khaled Merit
Abstract:
Recent works on microwave filters show that the constituent materials such filters are very important in the design and realization. Several solutions have been proposed to improve the qualities of filtering. In this paper, we propose a new dual band-pass filter based on the coupling of a composite (CRLH) coplanar waveguide with complementary split ring resonators (CSRRs). The (CRLH) CPW is composed of two resonators, each one has an interdigital capacitor (CID) and two short-circuited stubs parallel to top ground plane. On the lower ground plane, we use defected ground structure technology (DGS) to engrave two (CSRRs) offered with different shapes and dimensions. Between the top ground plane and the substrate, we place a ferrite layer to control the electromagnetic coupling between (CRLH) CPW and (CSRRs). The global filter that has coplanar access will have a dual band-pass behavior around the magnetic resonances of (CSRRs). Since there’s no scientific or experimental result in the literature for this kind of complicated structure, it was necessary to perform simulation using HFSS Ansoft designer.Keywords: complementary split ring resonators, coplanar waveguide, ferrite, filter, stub.
Procedia PDF Downloads 403387 Periodical System of Isotopes
Authors: Andriy Magula
Abstract:
With the help of a special algorithm being the principle of multilevel periodicity, the periodic change of properties at the nuclear level of chemical elements was discovered and the variant for the periodic system of isotopes was presented. The periodic change in the properties of isotopes, as well as the vertical symmetry of subgroups, was checked for consistency in accordance with the following ten types of experimental data: mass ratio of fission fragments; quadrupole moment values; magnetic moment; lifetime of radioactive isotopes; neutron scattering; thermal neutron radiative capture cross-sections (n, γ); α-particle yield cross-sections (n, α); isotope abundance on Earth, in the Solar system and other stellar systems; features of ore formation and stellar evolution. For all ten cases, the correspondences for the proposed periodic structure of the nucleus were obtained. The system was formed in the usual 2D table, similar to the periodic system of elements, and the mass series of isotopes was divided into 8 periods and 4 types of ‘nuclear’ orbitals: sn, dn, pn, fn. The origin of ‘magic’ numbers as a set of filled charge shells of the nucleus was explained. Due to the isotope system, the periodic structure is shown at a new level of the universe, and the prospects of its practical use are opened up.Keywords: periodic system, isotope, period, subgroup, “nuclear” orbital, nuclear reaction
Procedia PDF Downloads 19386 Synthesis, Characterization, Computational Study, Antimicrobial Evaluation, in Vivo Toxicity Study of Manganese (II) and Copper (II) Complexes with Derivative Sulfa-drug
Authors: Afaf Bouchoucha, Karima Si Larbi, Mohamed Amine Bourouaia, Salah.Boulanouar, Safia.Djabbar
Abstract:
The synthesis, characterization and comparative biological study of manganese (II) and copper (II) complexes with an heterocyclic ligand used in pharmaceutical field (Scheme 1), were reported. Two kinds of complexes were obtained with derivative sulfonamide, [M (L)₂ (H₂O)₂].H₂O and [M (L)₂ (Cl)₂]3H₂O. These complexes have been prepared and characterized by elemental analysis, FAB mass, ESR magnetic measurements, FTIR, UV-Visible spectra and conductivity. Their stability constants have been determined by potentiometric methods in a water-ethanol (90:10 v/v) mixture at a 0.2 mol l-1 ionic strength (NaCl) and at 25.0 ± 0.1 ºC using Sirko program. DFT calculations were done using B3LYP/6-31G(d) and B3LYP/LanL2DZ. The antimicrobial activity of ligand and complexes against the species Escherichia coli, P. aeruginosa, Klebsiella pneumoniae, S. aureus, Bacillus subtilisan, Candida albicans, Candida tropicalis, Saccharomyces, Aspergillus fumigatus and Aspergillus terreus has been carried out and compared using agar-diffusion method. Also, the toxicity study was evaluated on synchesis complexes using Mice of NMRI strain.Keywords: hetterocyclic ligand, complex, stability constant, antimicrobial activity, DFT, acute and genotoxicity study
Procedia PDF Downloads 121385 Performance Evaluation of Vermiculite as Adsorbent Material for Solar-Assisted Air-Conditioning in Tropical Climate
Authors: Norhayati Mat Wajid, Abdul Murad Zainal Abidin, Hasila Jarimi, Kamaruzaman Sopian, Adnan Ibrahim, Ahmad Fazlizan, Afif Safwan
Abstract:
Solar-adsorption air-conditioning system (SADCS) is an alternative to the conventional vapor compression system (VCS). SADCS have advantages over VCS system, such as 1) a green cooling technology which utilizes solar energy to drive the adsorption/desorption cycle, 2) can be operated using green refrigerant HFC free pure water, 3) mechanically simpler, and 4) lower operating noise level since it has no moving parts other than the magnetic valves. Several advancements have been achieved in these fields in the last decade, but further research is still needed to escalate this technology to a practical level. Hence, this paper presents a literature survey and a review that add insights into the current state-of-the-art of SADCS technologies with emphasis on the practical researches that were conducted at the laboratory scale and commercial level. In this paper, the performance evaluation of vermiculite as adsorbent material for SADCS in tropical climate discussed in comparison to other adsorbent material such as silica gel.Keywords: adsorption cooling, solar-assisted cooling, HVAC, tropical climate, solar thermal
Procedia PDF Downloads 154384 Crater Pattern on the Moon and Origin of the Moon
Authors: Xuguang Leng
Abstract:
The crater pattern on the Moon indicates the Moon was captured by Earth in the more recent years, disproves the theory that the Moon was born as a satellite to the Earth. The Moon was tidal locked since it became the satellite of the Earth. Moon’s near side is shielded by Earth from asteroid/comet collisions, with the center of the near side most protected. Yet the crater pattern on the Moon is fairly random, with no distinguishable empty spot/strip, no distinguishable difference near side vs. far side. Were the Moon born as Earth’s satellite, there would be a clear crater free spot, or strip should the tial lock shifts over time, on the near side; and far more craters on the far side. The nonexistence of even a vague crater free spot on the near side of the Moon indicates the capture was a more recent event. Given Earth’s much larger mass and sphere size over the Moon, Earth should have collided with asteroids and comets in much higher frequency, resulting in significant mass gain over the lifespan. Earth’s larger mass and magnetic field are better at retaining water and gas from solar wind’s stripping effect, thus accelerating the mass gain. A dwarf planet Moon can be pulled closer and closer to the Earth over time as Earth’s gravity grows stronger, eventually being captured as a satellite. Given enough time, it is possible Earth’s mass would be large enough to cause the Moon to collide with Earth.Keywords: moon, origin, crater, pattern
Procedia PDF Downloads 97383 Electrical Resistivity of Solid and Liquid Pt: Insight into Electrical Resistivity of ε-Fe
Authors: Innocent C. Ezenwa, Takashi Yoshino
Abstract:
Knowledge of the transport properties of Fe and its alloys at extreme high pressure (P), temperature (T) conditions are essential for understanding the generation and sustainability of the magnetic field of the rocky planets with a metallic core. Since Pt, an unfilled d-band late transition metal with an electronic structure of Xe4f¹⁴5d⁹6s¹, is paramagnetic and remains close-packed structure at ambient conditions and high P-T, it is expected that its transport properties at these conditions would be similar to those of ε-Fe. We investigated the T-dependent electrical resistivity of solid and liquid Pt up to 8 GPa and found it constant along its melting curve both on the liquid and solid sides in agreement with theoretical prediction and experimental results estimated from thermal conductivity measurements. Our results suggest that the T-dependent resistivity of ε-Fe is linear and would not saturate at high P, T conditions. This, in turn, suggests that the thermal conductivity of liquid Fe at Earth’s core conditions may not be as high as previously suggested by models employing saturation resistivity. Hence, thermal convection could have powered the geodynamo before the birth of the inner core. The electrical resistivity and thermal conductivity on the liquid and solid sides of the inner core boundary of the Earth would be significantly different in values.Keywords: electrical resistivity, thermal conductivity, transport properties, geodynamo and geomagnetic field
Procedia PDF Downloads 143382 Minimal Incision Cochlear Implantation in Congenital Abnormality: A Case Report
Authors: Munish Saroch, Amit Saini
Abstract:
Introduction: Many children with congenital malformation of inner ear have undergone cochlear implant (CI) surgery. The results for cochlear implant surgery in these children are very encouraging and provide a ray of hope for these patients. Objective: The main objective of this presentation is to prove that even in Mondini’s deformity Minimal incision cochlear implantation improves cosmesis, reduces post-operative infection and earliest switch on of device. Methods: We report a case of two-year-old child suffering from Mondini’s deformity who underwent CI with minimal incision cochlear implantation (MICI). MICI has been developed with the aims of reducing the impact of surgery on the patient without any preoperative shaving of hairs. Results: Patient after surgery with MICI showed better looking postauricular scar, low post-operative morbidity in comparison to conventional wider access approach and hence earliest switch on of device (1st post operative day). Conclusion: We are of opinion that MICI is safe and successful in Mondini’s deformity.Keywords: CI, Cochlear Implant, MICI, Minimal Incision Cochlear Implantation, HL, Hearing Loss, HRCT, High Resolution Computer Tomography, MRI, Magnetic resonance imaging, SCI, Standard cochlear implantation
Procedia PDF Downloads 216381 Model Based Fault Diagnostic Approach for Limit Switches
Authors: Zafar Mahmood, Surayya Naz, Nazir Shah Khattak
Abstract:
The degree of freedom relates to our capability to observe or model the energy paths within the system. Higher the number of energy paths being modeled leaves to us a higher degree of freedom, but increasing the time and modeling complexity rendering it useless for today’s world’s need for minimum time to market. Since the number of residuals that can be uniquely isolated are dependent on the number of independent outputs of the system, increasing the number of sensors required. The examples of discrete position sensors that may be used to form an array include limit switches, Hall effect sensors, optical sensors, magnetic sensors, etc. Their mechanical design can usually be tailored to fit in the transitional path of an STME in a variety of mechanical configurations. The case studies into multi-sensor system were carried out and actual data from sensors is used to test this generic framework. It is being investigated, how the proper modeling of limit switches as timing sensors, could lead to unified and neutral residual space while keeping the implementation cost reasonably low.Keywords: low-cost limit sensors, fault diagnostics, Single Throw Mechanical Equipment (STME), parameter estimation, parity-space
Procedia PDF Downloads 617380 Relationship Between Pain Intensity at the Time of the Hamstring Muscle Injury and Hamstring Muscle Lesion Volume Measured by Magnetic Resonance Imaging
Authors: Grange Sylvain, Plancher Ronan, Reurink Guustav, Croisille Pierre, Edouard Pascal
Abstract:
The primary objective of this study was to analyze the potential correlation between the pain experienced at the time of a hamstring muscle injury and the volume of the lesion measured on MRI. The secondary objectives were to analyze a correlation between this pain and the lesion grade as well as the affected hamstring muscle. We performed a retrospective analysis of the data collected in a prospective, multicenter, non-interventional cohort study (HAMMER). Patients with suspected hamstring muscle injury had an MRI after the injury and at the same time were evaluated for their pain intensity experienced at the time of the injury with a Numerical Pain Rating Scale (NPRS) from 0 to 10. A total of 61 patients were included in the present analysis. MRIs were performed in an average of less than 8 days. There was a significant correlation between pain and the injury volume (r=0.287; p=0.025). There was no significant correlation between the pain and the lesion grade (p>0.05), nor between the pain and affected hamstring muscle (p>0.05). Pain at the time of injury appeared to be correlated with the volume of muscle affected. These results confirm the value of a clinical approach in the initial evaluation of hamstring injuries to better select patients eligible for further imaging.Keywords: hamstring muscle injury, MRI, volume lesion, pain
Procedia PDF Downloads 98379 F-VarNet: Fast Variational Network for MRI Reconstruction
Authors: Omer Cahana, Maya Herman, Ofer Levi
Abstract:
Magnetic resonance imaging (MRI) is a long medical scan that stems from a long acquisition time. This length is mainly due to the traditional sampling theorem, which defines a lower boundary for sampling. However, it is still possible to accelerate the scan by using a different approach, such as compress sensing (CS) or parallel imaging (PI). These two complementary methods can be combined to achieve a faster scan with high-fidelity imaging. In order to achieve that, two properties have to exist: i) the signal must be sparse under a known transform domain, ii) the sampling method must be incoherent. In addition, a nonlinear reconstruction algorithm needs to be applied to recover the signal. While the rapid advance in the deep learning (DL) field, which has demonstrated tremendous successes in various computer vision task’s, the field of MRI reconstruction is still in an early stage. In this paper, we present an extension of the state-of-the-art model in MRI reconstruction -VarNet. We utilize VarNet by using dilated convolution in different scales, which extends the receptive field to capture more contextual information. Moreover, we simplified the sensitivity map estimation (SME), for it holds many unnecessary layers for this task. Those improvements have shown significant decreases in computation costs as well as higher accuracy.Keywords: MRI, deep learning, variational network, computer vision, compress sensing
Procedia PDF Downloads 162378 Physical Theory for One-Dimensional Correlated Electron Systems
Authors: Nelson Nenuwe
Abstract:
The behavior of interacting electrons in one dimension was studied by calculating correlation functions and critical exponents at zero and external magnetic fields for arbitrary band filling. The technique employed in this study is based on the conformal field theory (CFT). The charge and spin degrees of freedom are separated, and described by two independent conformal theories. A detailed comparison of the t-J model with the repulsive Hubbard model was then undertaken with emphasis on their Tomonaga-Luttinger (TL) liquid properties. Near half-filling the exponents of the t-J model take the values of the strong-correlation limit of the Hubbard model, and in the low-density limit the exponents are those of a non-interacting system. The critical exponents obtained in this study belong to the repulsive TL liquid (conducting phase) and attractive TL liquid (superconducting phase). The theoretical results from this study find applications in one-dimensional organic conductors (TTF-TCNQ), organic superconductors (Bechgaard salts) and carbon nanotubes (SWCNTs, DWCNTs and MWCNTs). For instance, the critical exponent at from this study is consistent with the experimental result from optical and photoemission evidence of TL liquid in one-dimensional metallic Bechgaard salt- (TMTSF)2PF6.Keywords: critical exponents, conformal field theory, Hubbard model, t-J model
Procedia PDF Downloads 344377 Phenolic Analysis, Antioxidant Capacity and Antimicrobial Activity of Origanum glandulosum Desf Extract from Algeria
Authors: Abdelkader Basli, Jean-Claude Delaunay, Eric Pedrot, Jean-Michel Mérillon, Jean-Pierre Monti, Khodir Madani, Mohamed Chibane, Tristan Richard
Abstract:
The antioxidant and antimicrobial activities of Origanum glandulosum collected in Algeria have been studied. Extract was prepared from aerial part of endemic Algerian oregano. The produced extract has been characterized in terms of total phenols (using Folin method), total flavonoid, antioxidant activities (using the DPPH radical scavenging method and ORAC assay) and microbial activity against four bacteria: Streptococcus aureus, Bacillus subtilis, Escherichia coli, Klebsiella pneumoniae one yeast: Candida albicans and one fungi: Aspergillus niger. The results pointed the antioxidant activities of the extract of O. glandulosum and antimicrobial activities against all bacteria and C. Candida, but no effect on A. niger. High performance liquid chromatography combined with mass spectrometry (LC-MS) and nuclear magnetic resonance (LC-NMR) were used to separate and identify the major compounds present in the oregano extract. Rosmarinic acid, globoidnan A and B, lithospermic acid B and three flavonoids were identified.Keywords: origanum glandulosum, antioxidant, microbial activity, polyphenol, LC-MS, LC-NMR
Procedia PDF Downloads 645376 Assessing Arterial Blockages Using Animal Model and Computational Fluid Dynamics
Authors: Mohammad Al- Rawi, Ahmad Al- Jumaily
Abstract:
This paper investigates the effect of developing arterial blockage at the abdominal aorta on the blood pressure waveform at an externally accessible location suitable for invasive measurements such as the brachial and the femoral arteries. Arterial blockages are created surgically within the abdominal aorta of healthy Wistar rats to create narrowing resemblance conditions. Blood pressure waveforms are measured using a catheter inserted into the right femoral artery. Measurements are taken at the baseline healthy condition as well as at four different severities (20%, 50%, 80% and 100%) of arterial blockage. In vivo and in vitro measurements of the lumen diameter and wall thickness are taken using Magnetic Resonance Imaging (MRI) and microscopic techniques, respectively. These data are used to validate a 3D computational fluid dynamics model (CFD) which is developed to generalize the outcomes of this work and to determine the arterial stress and strain under the blockage conditions. This work indicates that an arterial blockage in excess of 20% of the lumen diameter significantly influences the pulse wave and reduces the systolic blood pressure at the right femoral artery. High wall shear stress and low circumferential strain are also generated at the blockage site.Keywords: arterial blockage, pulse wave, atherosclerosis, CFD
Procedia PDF Downloads 284375 Unsteady Heat and Mass Transfer in MHD Flow of Nanofluids over Stretching Sheet with a Non Uniform Heat Source/Sink
Authors: Bandari Shankar, Yohannes Yirga
Abstract:
In this paper, the problem of heat and mass transfer in unsteady MHD boundary-layer flow of nanofluids over stretching sheet with a non uniform heat source/sink is considered. The unsteadiness in the flow and temperature is caused by the time-dependent stretching velocity and surface temperature. The unsteady boundary layer equations are transformed to a system of non-linear ordinary differential equations and solved numerically using Keller box method. The velocity, temperature, and concentration profiles were obtained and utilized to compute the skin-friction coefficient, local Nusselt number, and local Sherwood number for different values of the governing parameters viz. solid volume fraction parameter, unsteadiness parameter, magnetic field parameter, Schmidt number, space-dependent and temperature-dependent parameters for heat source/sink. A comparison of the numerical results of the present study with previously published data revealed an excellent agreementKeywords: unsteady, heat and mass transfer, manetohydrodynamics, nanofluid, non-uniform heat source/sink, stretching sheet
Procedia PDF Downloads 275374 MHD Stagnation-Point Flow over a Plate
Authors: H. Niranjan, S. Sivasankaran
Abstract:
Heat and mass transfer near a steady stagnation point boundary layer flow of viscous incompressible fluid through porous media investigates along a vertical plate is thoroughly studied under the presence of magneto hydrodynamic (MHD) effects. The fluid flow is steady, laminar, incompressible and in two-dimensional. The nonlinear differential coupled parabolic partial differential equations of continuity, momentum, energy and specie diffusion are converted into the non-similar boundary layer equations using similarity transformation, which are then solved numerically using the Runge-Kutta method along with shooting method. The effects of the conjugate heat transfer parameter, the porous medium parameter, the permeability parameter, the mixed convection parameter, the magnetic parameter, and the thermal radiation on the velocity and temperature profiles as well as on the local skin friction and local heat transfer are presented and analyzed. The validity of the methodology and analysis is checked by comparing the results obtained for some specific cases with those available in the literature. The various parameters on local skin friction, heat and mass transfer rates are presented in tabular form.Keywords: MHD, porous medium, slip, convective boundary condition, stagnation point
Procedia PDF Downloads 302373 Comparing the Detection of Autism Spectrum Disorder within Males and Females Using Machine Learning Techniques
Authors: Joseph Wolff, Jeffrey Eilbott
Abstract:
Autism Spectrum Disorders (ASD) are a spectrum of social disorders characterized by deficits in social communication, verbal ability, and interaction that can vary in severity. In recent years, researchers have used magnetic resonance imaging (MRI) to help detect how neural patterns in individuals with ASD differ from those of neurotypical (NT) controls for classification purposes. This study analyzed the classification of ASD within males and females using functional MRI data. Functional connectivity (FC) correlations among brain regions were used as feature inputs for machine learning algorithms. Analysis was performed on 558 cases from the Autism Brain Imaging Data Exchange (ABIDE) I dataset. When trained specifically on females, the algorithm underperformed in classifying the ASD subset of our testing population. Although the subject size was relatively smaller in the female group, the manual matching of both male and female training groups helps explain the algorithm’s bias, indicating the altered sex abnormalities in functional brain networks compared to typically developing peers. These results highlight the importance of taking sex into account when considering how generalizations of findings on males with ASD apply to females.Keywords: autism spectrum disorder, machine learning, neuroimaging, sex differences
Procedia PDF Downloads 209372 Effect of Naphtha on the Composition of a Heavy Crude, in Addition to a Cycle Steam Stimulation Process
Authors: A. Guerrero, A. Leon, S. Munoz, M. Sandoval
Abstract:
The addition of solvent to cyclic steam stimulation is done in order to reduce the solvent-vapor ratio at late stages of the process, the moment in which this relationship increases significantly. The study of the use of naphtha in addition to the cyclic steam stimulation has been mainly oriented to the effect it achieves on the incremental recovery compared to the application of steam only. However, the effect of naphtha on the reactivity of crude oil components under conditions of cyclic steam stimulation or if its effect is the only dilution has not yet been considered, to author’s best knowledge. The present study aims to evaluate and understand the effect of naphtha and the conditions of cyclic steam stimulation, on the remaining composition of the improved oil, as well as the main mechanisms present in the heavy crude - naphtha interaction. Tests were carried out with the system solvent (naphtha)-oil (12.5° API, 4216 cP @ 40° C)- steam, in a batch micro-reactor, under conditions of cyclic steam stimulation (250-300 °C, 400 psi). The characterization of the samples obtained was carried out by MALDI-TOF MS (matrix-assisted laser desorption/ionization time-of-flight mass spectrometry) and NMR (Nuclear Magnetic Resonance) techniques. The results indicate that there is a rearrangement of the microstructure of asphaltenes, resulting in a decrease in these and an increase in lighter components such as resins.Keywords: composition change, cyclic steam stimulation, interaction mechanism, naphtha
Procedia PDF Downloads 136