Search results for: hidden models of Markov (HMM)
6258 Fine-Tuned Transformers for Translating Multi-Dialect Texts to Modern Standard Arabic
Authors: Tahar Alimi, Rahma Boujebane, Wiem Derouich, Lamia Hadrich Belguith
Abstract:
Machine translation task of low-resourced languages such as Arabic is a challenging task. Despite the appearance of sophisticated models based on the latest deep learning techniques, namely the transfer learning and transformers, all models prove incapable of carrying out an acceptable translation, which includes Arabic Dialects (AD), because they do not have official status. In this paper, we present a machine translation model designed to translate Arabic multidialectal content into Modern Standard Arabic (MSA), leveraging both new and existing parallel resources. The latter achieved the best results for both Levantine and Maghrebi dialects with a BLEU score of 64.99.Keywords: Arabic translation, dialect translation, fine-tune, MSA translation, transformer, translation
Procedia PDF Downloads 686257 Multiscale Model of Blast Explosion Human Injury Biomechanics
Authors: Raj K. Gupta, X. Gary Tan, Andrzej Przekwas
Abstract:
Bomb blasts from Improvised Explosive Devices (IEDs) account for vast majority of terrorist attacks worldwide. Injuries caused by IEDs result from a combination of the primary blast wave, penetrating fragments, and human body accelerations and impacts. This paper presents a multiscale computational model of coupled blast physics, whole human body biodynamics and injury biomechanics of sensitive organs. The disparity of the involved space- and time-scales is used to conduct sequential modeling of an IED explosion event, CFD simulation of blast loads on the human body and FEM modeling of body biodynamics and injury biomechanics. The paper presents simulation results for blast-induced brain injury coupling macro-scale brain biomechanics and micro-scale response of sensitive neuro-axonal structures. Validation results on animal models and physical surrogates are discussed. Results of our model can be used to 'replicate' filed blast loadings in laboratory controlled experiments using animal models and in vitro neuro-cultures.Keywords: blast waves, improvised explosive devices, injury biomechanics, mathematical models, traumatic brain injury
Procedia PDF Downloads 2506256 Supplemental VisCo-friction Damping for Dynamical Structural Systems
Authors: Sharad Singh, Ajay Kumar Sinha
Abstract:
Coupled dampers like viscoelastic-frictional dampers for supplemental damping are a newer technique. In this paper, innovative Visco-frictional damping models have been presented and investigated. This paper attempts to couple frictional and fluid viscous dampers into a single unit of supplemental dampers. Visco-frictional damping model is developed by series and parallel coupling of frictional and fluid viscous dampers using Maxwell and Kelvin-Voigat models. The time analysis has been performed using numerical simulation on an SDOF system with varying fundamental periods, subject to a set of 12 ground motions. The simulation was performed using the direct time integration method. MATLAB programming tool was used to carry out the numerical simulation. The response behavior has been analyzed for the varying time period and added damping. This paper compares the response reduction behavior of the two modes of coupling. This paper highlights the performance efficiency of the suggested damping models. It also presents a mathematical modeling approach to visco-frictional dampers and simultaneously suggests the suitable mode of coupling between the two sub-units.Keywords: hysteretic damping, Kelvin model, Maxwell model, parallel coupling, series coupling, viscous damping
Procedia PDF Downloads 1616255 Building an Opinion Dynamics Model from Experimental Data
Authors: Dino Carpentras, Paul J. Maher, Caoimhe O'Reilly, Michael Quayle
Abstract:
Opinion dynamics is a sub-field of agent-based modeling that focuses on people’s opinions and their evolutions over time. Despite the rapid increase in the number of publications in this field, it is still not clear how to apply these models to real-world scenarios. Indeed, there is no agreement on how people update their opinion while interacting. Furthermore, it is not clear if different topics will show the same dynamics (e.g., more polarized topics may behave differently). These problems are mostly due to the lack of experimental validation of the models. Some previous studies started bridging this gap in the literature by directly measuring people’s opinions before and after the interaction. However, these experiments force people to express their opinion as a number instead of using natural language (and then, eventually, encoding it as numbers). This is not the way people normally interact, and it may strongly alter the measured dynamics. Another limitation of these studies is that they usually average all the topics together, without checking if different topics may show different dynamics. In our work, we collected data from 200 participants on 5 unpolarized topics. Participants expressed their opinions in natural language (“agree” or “disagree”). We also measured the certainty of their answer, expressed as a number between 1 and 10. However, this value was not shown to other participants to keep the interaction based on natural language. We then showed the opinion (and not the certainty) of another participant and, after a distraction task, we repeated the measurement. To make the data compatible with opinion dynamics models, we multiplied opinion and certainty to obtain a new parameter (here called “continuous opinion”) ranging from -10 to +10 (using agree=1 and disagree=-1). We firstly checked the 5 topics individually, finding that all of them behaved in a similar way despite having different initial opinions distributions. This suggested that the same model could be applied for different unpolarized topics. We also observed that people tend to maintain similar levels of certainty, even when they changed their opinion. This is a strong violation of what is suggested from common models, where people starting at, for example, +8, will first move towards 0 instead of directly jumping to -8. We also observed social influence, meaning that people exposed with “agree” were more likely to move to higher levels of continuous opinion, while people exposed with “disagree” were more likely to move to lower levels. However, we also observed that the effect of influence was smaller than the effect of random fluctuations. Also, this configuration is different from standard models, where noise, when present, is usually much smaller than the effect of social influence. Starting from this, we built an opinion dynamics model that explains more than 80% of data variance. This model was also able to show the natural conversion of polarization from unpolarized states. This experimental approach offers a new way to build models grounded on experimental data. Furthermore, the model offers new insight into the fundamental terms of opinion dynamics models.Keywords: experimental validation, micro-dynamics rule, opinion dynamics, update rule
Procedia PDF Downloads 1136254 Classification on Statistical Distributions of a Complex N-Body System
Authors: David C. Ni
Abstract:
Contemporary models for N-body systems are based on temporal, two-body, and mass point representation of Newtonian mechanics. Other mainstream models include 2D and 3D Ising models based on local neighborhood the lattice structures. In Quantum mechanics, the theories of collective modes are for superconductivity and for the long-range quantum entanglement. However, these models are still mainly for the specific phenomena with a set of designated parameters. We are therefore motivated to develop a new construction directly from the complex-variable N-body systems based on the extended Blaschke functions (EBF), which represent a non-temporal and nonlinear extension of Lorentz transformation on the complex plane – the normalized momentum spaces. A point on the complex plane represents a normalized state of particle momentums observed from a reference frame in the theory of special relativity. There are only two key parameters, normalized momentum and nonlinearity for modelling. An algorithm similar to Jenkins-Traub method is adopted for solving EBF iteratively. Through iteration, the solution sets show a form of σ + i [-t, t], where σ and t are the real numbers, and the [-t, t] shows various distributions, such as 1-peak, 2-peak, and 3-peak etc. distributions and some of them are analog to the canonical distributions. The results of the numerical analysis demonstrate continuum-to-discreteness transitions, evolutional invariance of distributions, phase transitions with conjugate symmetry, etc., which manifest the construction as a potential candidate for the unification of statistics. We hereby classify the observed distributions on the finite convergent domains. Continuous and discrete distributions both exist and are predictable for given partitions in different regions of parameter-pair. We further compare these distributions with canonical distributions and address the impacts on the existing applications.Keywords: blaschke, lorentz transformation, complex variables, continuous, discrete, canonical, classification
Procedia PDF Downloads 3136253 In Silico Modeling of Drugs Milk/Plasma Ratio in Human Breast Milk Using Structures Descriptors
Authors: Navid Kaboudi, Ali Shayanfar
Abstract:
Introduction: Feeding infants with safe milk from the beginning of their life is an important issue. Drugs which are used by mothers can affect the composition of milk in a way that is not only unsuitable, but also toxic for infants. Consuming permeable drugs during that sensitive period by mother could lead to serious side effects to the infant. Due to the ethical restrictions of drug testing on humans, especially women, during their lactation period, computational approaches based on structural parameters could be useful. The aim of this study is to develop mechanistic models to predict the M/P ratio of drugs during breastfeeding period based on their structural descriptors. Methods: Two hundred and nine different chemicals with their M/P ratio were used in this study. All drugs were categorized into two groups based on their M/P value as Malone classification: 1: Drugs with M/P>1, which are considered as high risk 2: Drugs with M/P>1, which are considered as low risk Thirty eight chemical descriptors were calculated by ACD/labs 6.00 and Data warrior software in order to assess the penetration during breastfeeding period. Later on, four specific models based on the number of hydrogen bond acceptors, polar surface area, total surface area, and number of acidic oxygen were established for the prediction. The mentioned descriptors can predict the penetration with an acceptable accuracy. For the remaining compounds (N= 147, 158, 160, and 174 for models 1 to 4, respectively) of each model binary regression with SPSS 21 was done in order to give us a model to predict the penetration ratio of compounds. Only structural descriptors with p-value<0.1 remained in the final model. Results and discussion: Four different models based on the number of hydrogen bond acceptors, polar surface area, and total surface area were obtained in order to predict the penetration of drugs into human milk during breastfeeding period About 3-4% of milk consists of lipids, and the amount of lipid after parturition increases. Lipid soluble drugs diffuse alongside with fats from plasma to mammary glands. lipophilicity plays a vital role in predicting the penetration class of drugs during lactation period. It was shown in the logistic regression models that compounds with number of hydrogen bond acceptors, PSA and TSA above 5, 90 and 25 respectively, are less permeable to milk because they are less soluble in the amount of fats in milk. The pH of milk is acidic and due to that, basic compounds tend to be concentrated in milk than plasma while acidic compounds may consist lower concentrations in milk than plasma. Conclusion: In this study, we developed four regression-based models to predict the penetration class of drugs during the lactation period. The obtained models can lead to a higher speed in drug development process, saving energy, and costs. Milk/plasma ratio assessment of drugs requires multiple steps of animal testing, which has its own ethical issues. QSAR modeling could help scientist to reduce the amount of animal testing, and our models are also eligible to do that.Keywords: logistic regression, breastfeeding, descriptors, penetration
Procedia PDF Downloads 766252 Prediction of Malawi Rainfall from Global Sea Surface Temperature Using a Simple Multiple Regression Model
Authors: Chisomo Patrick Kumbuyo, Katsuyuki Shimizu, Hiroshi Yasuda, Yoshinobu Kitamura
Abstract:
This study deals with a way of predicting Malawi rainfall from global sea surface temperature (SST) using a simple multiple regression model. Monthly rainfall data from nine stations in Malawi grouped into two zones on the basis of inter-station rainfall correlations were used in the study. Zone 1 consisted of Karonga and Nkhatabay stations, located in northern Malawi; and Zone 2 consisted of Bolero, located in northern Malawi; Kasungu, Dedza, Salima, located in central Malawi; Mangochi, Makoka and Ngabu stations located in southern Malawi. Links between Malawi rainfall and SST based on statistical correlations were evaluated and significant results selected as predictors for the regression models. The predictors for Zone 1 model were identified from the Atlantic, Indian and Pacific oceans while those for Zone 2 were identified from the Pacific Ocean. The correlation between the fit of predicted and observed rainfall values of the models were satisfactory with r=0.81 and 0.54 for Zone 1 and 2 respectively (significant at less than 99.99%). The results of the models are in agreement with other findings that suggest that SST anomalies in the Atlantic, Indian and Pacific oceans have an influence on the rainfall patterns of Southern Africa.Keywords: Malawi rainfall, forecast model, predictors, SST
Procedia PDF Downloads 3956251 Comparison of Different in vitro Models of the Blood-Brain Barrier for Study of Toxic Effects of Engineered Nanoparticles
Authors: Samir Dekali, David Crouzier
Abstract:
Due to their new physico-chemical properties engineered nanoparticles (ENPs) are increasingly employed in numerous industrial sectors (such as electronics, textile, aerospace, cosmetics, pharmaceuticals, food industry, etc). These new physico-chemical properties can also represent a threat for the human health. Consumers can notably be exposed involuntarily by different routes such as inhalation, ingestion or through the skin. Several studies recently reported a possible biodistribution of these ENPs on the blood-brain barrier (BBB). Consequently, there is a great need for developing BBB in vitro models representative of the in vivo situation and capable of rapidly and accurately assessing ENPs toxic effects and their potential translocation through this barrier. In this study, several in vitro models established with micro-endothelial brain cell lines of different origins (bEnd.3 mouse cell line or a new human cell line) co-cultivated or not with astrocytic cells (C6 rat or C8-B4 mouse cell lines) on Transwells® were compared using different endpoints: trans-endothelial resistance, permeability of the Lucifer yellow and protein junction labeling. Impact of NIST diesel exhaust particles on BBB cell viability is also discussed.Keywords: nanoparticles, blood-brain barrier, diesel exhaust particles, toxicology
Procedia PDF Downloads 4416250 Policy Compliance in Information Security
Authors: R. Manjula, Kaustav Bagchi, Sushant Ramesh, Anush Baskaran
Abstract:
In the past century, the emergence of information technology has had a significant positive impact on human life. While companies tend to be more involved in the completion of projects, the turn of the century has seen importance being given to investment in information security policies. These policies are essential to protect important data from adversaries, and thus following these policies has become one of the most important attributes revolving around information security models. In this research, we have focussed on the factors affecting information security policy compliance in two models : The theory of planned behaviour and the integration of the social bond theory and the involvement theory into a single model. Finally, we have given a proposal of where these theories would be successful.Keywords: information technology, information security, involvement theory, policies, social bond theory
Procedia PDF Downloads 3756249 An Output Oriented Super-Efficiency Model for Considering Time Lag Effect
Authors: Yanshuang Zhang, Byungho Jeong
Abstract:
There exists some time lag between the consumption of inputs and the production of outputs. This time lag effect should be considered in calculating efficiency of decision making units (DMU). Recently, a couple of DEA models were developed for considering time lag effect in efficiency evaluation of research activities. However, these models can’t discriminate efficient DMUs because of the nature of basic DEA model in which efficiency scores are limited to ‘1’. This problem can be resolved a super-efficiency model. However, a super efficiency model sometimes causes infeasibility problem. This paper suggests an output oriented super-efficiency model for efficiency evaluation under the consideration of time lag effect. A case example using a long term research project is given to compare the suggested model with the MpO modelKeywords: DEA, Super-efficiency, Time Lag, research activities
Procedia PDF Downloads 6616248 Improving Student Programming Skills in Introductory Computer and Data Science Courses Using Generative AI
Authors: Genady Grabarnik, Serge Yaskolko
Abstract:
Generative Artificial Intelligence (AI) has significantly expanded its applicability with the incorporation of Large Language Models (LLMs) and become a technology with promise to automate some areas that were very difficult to automate before. The paper describes the introduction of generative Artificial Intelligence into Introductory Computer and Data Science courses and analysis of effect of such introduction. The generative Artificial Intelligence is incorporated in the educational process two-fold: For the instructors, we create templates of prompts for generation of tasks, and grading of the students work, including feedback on the submitted assignments. For the students, we introduce them to basic prompt engineering, which in turn will be used for generation of test cases based on description of the problems, generating code snippets for the single block complexity programming, and partitioning into such blocks of an average size complexity programming. The above-mentioned classes are run using Large Language Models, and feedback from instructors and students and courses’ outcomes are collected. The analysis shows statistically significant positive effect and preference of both stakeholders.Keywords: introductory computer and data science education, generative AI, large language models, application of LLMS to computer and data science education
Procedia PDF Downloads 626247 Characterization of 3D-MRP for Analyzing of Brain Balancing Index (BBI) Pattern
Authors: N. Fuad, M. N. Taib, R. Jailani, M. E. Marwan
Abstract:
This paper discusses on power spectral density (PSD) characteristics which are extracted from three-dimensional (3D) electroencephalogram (EEG) models. The EEG signal recording was conducted on 150 healthy subjects. Development of 3D EEG models involves pre-processing of raw EEG signals and construction of spectrogram images. Then, the values of maximum PSD were extracted as features from the model. These features are analysed using mean relative power (MRP) and different mean relative power (DMRP) technique to observe the pattern among different brain balancing indexes. The results showed that by implementing these techniques, the pattern of brain balancing indexes can be clearly observed. Some patterns are indicates between index 1 to index 5 for left frontal (LF) and right frontal (RF).Keywords: power spectral density, 3D EEG model, brain balancing, mean relative power, different mean relative power
Procedia PDF Downloads 4806246 A Study of Classification Models to Predict Drill-Bit Breakage Using Degradation Signals
Authors: Bharatendra Rai
Abstract:
Cutting tools are widely used in manufacturing processes and drilling is the most commonly used machining process. Although drill-bits used in drilling may not be expensive, their breakage can cause damage to expensive work piece being drilled and at the same time has major impact on productivity. Predicting drill-bit breakage, therefore, is important in reducing cost and improving productivity. This study uses twenty features extracted from two degradation signals viz., thrust force and torque. The methodology used involves developing and comparing decision tree, random forest, and multinomial logistic regression models for classifying and predicting drill-bit breakage using degradation signals.Keywords: degradation signal, drill-bit breakage, random forest, multinomial logistic regression
Procedia PDF Downloads 3546245 Design and Implementation of Generative Models for Odor Classification Using Electronic Nose
Authors: Kumar Shashvat, Amol P. Bhondekar
Abstract:
In the midst of the five senses, odor is the most reminiscent and least understood. Odor testing has been mysterious and odor data fabled to most practitioners. The delinquent of recognition and classification of odor is important to achieve. The facility to smell and predict whether the artifact is of further use or it has become undesirable for consumption; the imitation of this problem hooked on a model is of consideration. The general industrial standard for this classification is color based anyhow; odor can be improved classifier than color based classification and if incorporated in machine will be awfully constructive. For cataloging of odor for peas, trees and cashews various discriminative approaches have been used Discriminative approaches offer good prognostic performance and have been widely used in many applications but are incapable to make effectual use of the unlabeled information. In such scenarios, generative approaches have better applicability, as they are able to knob glitches, such as in set-ups where variability in the series of possible input vectors is enormous. Generative models are integrated in machine learning for either modeling data directly or as a transitional step to form an indeterminate probability density function. The algorithms or models Linear Discriminant Analysis and Naive Bayes Classifier have been used for classification of the odor of cashews. Linear Discriminant Analysis is a method used in data classification, pattern recognition, and machine learning to discover a linear combination of features that typifies or divides two or more classes of objects or procedures. The Naive Bayes algorithm is a classification approach base on Bayes rule and a set of qualified independence theory. Naive Bayes classifiers are highly scalable, requiring a number of restraints linear in the number of variables (features/predictors) in a learning predicament. The main recompenses of using the generative models are generally a Generative Models make stronger assumptions about the data, specifically, about the distribution of predictors given the response variables. The Electronic instrument which is used for artificial odor sensing and classification is an electronic nose. This device is designed to imitate the anthropological sense of odor by providing an analysis of individual chemicals or chemical mixtures. The experimental results have been evaluated in the form of the performance measures i.e. are accuracy, precision and recall. The investigational results have proven that the overall performance of the Linear Discriminant Analysis was better in assessment to the Naive Bayes Classifier on cashew dataset.Keywords: odor classification, generative models, naive bayes, linear discriminant analysis
Procedia PDF Downloads 3936244 Implementation and Performance Analysis of Data Encryption Standard and RSA Algorithm with Image Steganography and Audio Steganography
Authors: S. C. Sharma, Ankit Gambhir, Rajeev Arya
Abstract:
In today’s era data security is an important concern and most demanding issues because it is essential for people using online banking, e-shopping, reservations etc. The two major techniques that are used for secure communication are Cryptography and Steganography. Cryptographic algorithms scramble the data so that intruder will not able to retrieve it; however steganography covers that data in some cover file so that presence of communication is hidden. This paper presents the implementation of Ron Rivest, Adi Shamir, and Leonard Adleman (RSA) Algorithm with Image and Audio Steganography and Data Encryption Standard (DES) Algorithm with Image and Audio Steganography. The coding for both the algorithms have been done using MATLAB and its observed that these techniques performed better than individual techniques. The risk of unauthorized access is alleviated up to a certain extent by using these techniques. These techniques could be used in Banks, RAW agencies etc, where highly confidential data is transferred. Finally, the comparisons of such two techniques are also given in tabular forms.Keywords: audio steganography, data security, DES, image steganography, intruder, RSA, steganography
Procedia PDF Downloads 2966243 Optimizing Parallel Computing Systems: A Java-Based Approach to Modeling and Performance Analysis
Authors: Maher Ali Rusho, Sudipta Halder
Abstract:
The purpose of the study is to develop optimal solutions for models of parallel computing systems using the Java language. During the study, programmes were written for the examined models of parallel computing systems. The result of the parallel sorting code is the output of a sorted array of random numbers. When processing data in parallel, the time spent on processing and the first elements of the list of squared numbers are displayed. When processing requests asynchronously, processing completion messages are displayed for each task with a slight delay. The main results include the development of optimisation methods for algorithms and processes, such as the division of tasks into subtasks, the use of non-blocking algorithms, effective memory management, and load balancing, as well as the construction of diagrams and comparison of these methods by characteristics, including descriptions, implementation examples, and advantages. In addition, various specialised libraries were analysed to improve the performance and scalability of the models. The results of the work performed showed a substantial improvement in response time, bandwidth, and resource efficiency in parallel computing systems. Scalability and load analysis assessments were conducted, demonstrating how the system responds to an increase in data volume or the number of threads. Profiling tools were used to analyse performance in detail and identify bottlenecks in models, which improved the architecture and implementation of parallel computing systems. The obtained results emphasise the importance of choosing the right methods and tools for optimising parallel computing systems, which can substantially improve their performance and efficiency.Keywords: algorithm optimisation, memory management, load balancing, performance profiling, asynchronous programming.
Procedia PDF Downloads 196242 Further Investigation of α+12C and α+16O Elastic Scattering
Authors: Sh. Hamada
Abstract:
The current work aims to study the rainbow like-structure observed in the elastic scattering of alpha particles on both 12C and 16O nuclei. We reanalyzed the experimental elastic scattering angular distributions data for α+12C and α+16O nuclear systems at different energies using both optical model and double folding potential of different interaction models such as: CDM3Y1, DDM3Y1, CDM3Y6 and BDM3Y1. Potential created by BDM3Y1 interaction model has the shallowest depth which reflects the necessity to use higher renormalization factor (Nr). Both optical model and double folding potential of different interaction models fairly reproduce the experimental data.Keywords: density distribution, double folding, elastic scattering, nuclear rainbow, optical model
Procedia PDF Downloads 2386241 Sensitivity Analysis of the Thermal Properties in Early Age Modeling of Mass Concrete
Authors: Farzad Danaei, Yilmaz Akkaya
Abstract:
In many civil engineering applications, especially in the construction of large concrete structures, the early age behavior of concrete has shown to be a crucial problem. The uneven rise in temperature within the concrete in these constructions is the fundamental issue for quality control. Therefore, developing accurate and fast temperature prediction models is essential. The thermal properties of concrete fluctuate over time as it hardens, but taking into account all of these fluctuations makes numerical models more complex. Experimental measurement of the thermal properties at the laboratory conditions also can not accurately predict the variance of these properties at site conditions. Therefore, specific heat capacity and the heat conductivity coefficient are two variables that are considered constant values in many of the models previously recommended. The proposed equations demonstrate that these two quantities are linearly decreasing as cement hydrates, and their value are related to the degree of hydration. The effects of changing the thermal conductivity and specific heat capacity values on the maximum temperature and the time it takes for concrete to reach that temperature are examined in this study using numerical sensibility analysis, and the results are compared to models that take a fixed value for these two thermal properties. The current study is conducted in 7 different mix designs of concrete with varying amounts of supplementary cementitious materials (fly ash and ground granulated blast furnace slag). It is concluded that the maximum temperature will not change as a result of the constant conductivity coefficient, but variable specific heat capacity must be taken into account, also about duration when a concrete's central node reaches its max value again variable specific heat capacity can have a considerable effect on the final result. Also, the usage of GGBFS has more influence compared to fly ash.Keywords: early-age concrete, mass concrete, specific heat capacity, thermal conductivity coefficient
Procedia PDF Downloads 826240 A Machine Learning-based Study on the Estimation of the Threat Posed by Orbital Debris
Authors: Suhani Srivastava
Abstract:
This research delves into the classification of orbital debris through machine learning (ML): it will categorize the intensity of the threat orbital debris poses through multiple ML models to gain an insight into effectively estimating the danger specific orbital debris can pose to future space missions. As the space industry expands, orbital debris becomes a growing concern in Low Earth Orbit (LEO) because it can potentially obfuscate space missions due to the increased orbital debris pollution. Moreover, detecting orbital debris and identifying its characteristics has become a major concern in Space Situational Awareness (SSA), and prior methods of solely utilizing physics can become inconvenient in the face of the growing issue. Thus, this research focuses on approaching orbital debris concerns through machine learning, an efficient and more convenient alternative, in detecting the potential threat certain orbital debris pose. Our findings found that the Logistic regression machine worked the best with a 98% accuracy and this research has provided insight into the accuracies of specific machine learning models when classifying orbital debris. Our work would help provide space shuttle manufacturers with guidelines about mitigating risks, and it would help in providing Aerospace Engineers facilities to identify the kinds of protection that should be incorporated into objects traveling in the LEO through the predictions our models provide.Keywords: aerospace, orbital debris, machine learning, space, space situational awareness, nasa
Procedia PDF Downloads 296239 Affective Approach to Selected Ingmar Bergman Films
Authors: Grzegorz Zinkiewicz
Abstract:
The paper explores affective potential implicit in Bergman’s movies. This is done by the use of affect theory and the concept of affect in terms of paradigmatic and syntagmatic relations, from both diachronic and synchronic perspective. Since its inception in the early 2000s, affect theory has been applied to a number of academic fields. In Film Studies, it offers new avenues for discovering deeper, hidden layers of a given film. The aim is to show that the form and content of the films by Ingmar Bergman are determined by their inner affects that function independently of the viewer and, to an extent, are autonomous entities that can be analysed in separation from the auteur and actual characters. The paper discovers layers in Ingmar Bergman films and focuses on aspects that are often marginalised or studied from other viewpoints such as the connection between the content and visual side. As a result, a revaluation of Bergman films is possible that is more consistent with his original interpretations and comments included in his lectures, interviews and autobiography.Keywords: affect theory, experimental cinema, Ingmar Bergman, viewer response
Procedia PDF Downloads 1066238 The Effect of Three-Dimensional Morphology on Vulnerability Assessment of Atherosclerotic Plaque
Authors: M. Zareh, H. Mohammadi, B. Naser
Abstract:
Atherosclerotic plaque rupture is the main trigger of heart attack and brain stroke which are the leading cause of death in developed countries. Better understanding of rupture-prone plaque can help clinicians detect vulnerable plaques- rupture prone or instable plaques- and apply immediate medical treatment to prevent these life-threatening cardiovascular events. Therefore, there are plenty of studies addressing disclosure of vulnerable plaques properties. Necrotic core and fibrous tissue are two major tissues constituting atherosclerotic plaque; using histopathological and numerical approaches, many studies have demonstrated that plaque rupture is strongly associated with a large necrotic core and a thin fibrous cap, two morphological characteristic which can be acquired by two-dimensional imaging of atherosclerotic plaque present in coronary and carotid arteries. Plaque rupture is widely considered as a mechanical failure inside plaque tissue; this failure occurs when the stress within plaque excesses the strength of tissue material; hence, finite element method, a strong numerical approach, has been extensively applied to estimate stress distribution within plaques with different compositions which is then used for assessment of various vulnerability characteristics including plaque morphology, material properties and blood pressure. This study aims to evaluate significance of three-dimensional morphology on vulnerability degree of atherosclerotic plaque. To reach this end, different two-dimensional geometrical models of atherosclerotic plaques are considered based on available data and named Main 2D Models (M2M). Then, for each of these M2Ms, two three-dimensional idealistic models are created. These two 3D models represent two possible three-dimensional morphologies which might exist for a plaque with similar 2D morphology to one of M2Ms. Finite element method is employed to estimate stress, von-Mises stress, within each 3D models. Results indicate that for each M2Ms stress can significantly varies due to possible 3D morphological changes in that plaque. Also, our results show that an atherosclerotic plaque with thick cap may experience rupture if it has a critical 3D morphology. This study highlights the effect of 3D geometry of plaque on its instability degree and suggests that 3D morphology of plaque might be necessary to more effectively and accurately assess atherosclerotic plaque vulnerability.Keywords: atherosclerotic plaque, plaque rupture, finite element method, 3D model
Procedia PDF Downloads 3126237 Rural Development as a Strategy to Deter Migration in India - Re-Examining the Ideology of Cluster Development
Authors: Nandini Mohan, Thiruvengadam R. B.
Abstract:
Mahatma Gandhi advocated that the true indicator of modern India lay in the development of its villages. This has been proven with the recent outbreak of the Coronavirus pandemic and the surfacing predicament of our urban centers. Developed on the Industrialization model, the current state of the metropolis is of rampant overcrowding, high rates of unemployment, inadequate infrastructure, and resources to cater to the growing population. A majority of each city’s strength composes of the migrant population, demonstrated through the migrant crisis, a direct repercussion of COVID-19. This paper explores the ideology of how rural development can act as a tactic to counter the high rates of rural-urban migration. It establishes the need for a rural push, as India is predominantly an agrarian economy, with a vast disparity between the urban and rural centers due to its urban bias. It seeks to define development in holistic terms. It studies the models of ‘cluster’ as conceptualized by V.K.R.V. Rao, and detailed by Architect Charles Correa in his book, The New Landscape. The paper reexamines the theory of cluster development through existing models proposed by the government of India. Namely, PURA (Provision of Urban Amenities in Rural Areas), DRI (Deendayal Research Institute), and Rurban under Shyama Prasad Mukharjee Rurban Mission. It analyses the models, their strengths, weaknesses, and reasons for their failure and success to derive parameters for the ideation of an archetype model. A model of rural development that talks of the simultaneous development of existing adjacent villages, by the introduction of set unique functions, that may turn into self-sustaining clusters or agglomerations in the future, which could serve as the next step for Indian village development based on the cluster ideology.Keywords: counter migration, models of rural development, cluster development theory, India
Procedia PDF Downloads 936236 Optimizing Inanda Dam Using Water Resources Models
Authors: O. I. Nkwonta, B. Dzwairo, J. Adeyemo, A. Jaiyola, N. Sawyerr, F. Otieno
Abstract:
The effective management of water resources is of great importance to ensure the supply of water resources to support changing water requirements over a selected planning horizon and in a sustainable and cost-effective way. Essentially, the purpose of the water resources planning process is to balance the available water resources in a system with the water requirements and losses to which the system is subjected. In such situations, Water resources yield and planning model can be used to solve those difficulties. It has an advantage over other models by managing model runs, developing a representative system network, modelling incremental sub-catchments, creating a variety of standard system features, special modelling features, and run result output options.Keywords: complex, water resources, planning, cost effective and management
Procedia PDF Downloads 5766235 Modeling of Masonry In-Filled R/C Frame to Evaluate Seismic Performance of Existing Building
Authors: Tarek M. Alguhane, Ayman H. Khalil, M. N. Fayed, Ayman M. Ismail
Abstract:
This paper deals with different modeling aspects of masonry infill: no infill model, Layered shell infill model, and strut infill model. These models consider the complicated behavior of the in-filled plane frames under lateral load similar to an earthquake load. Three strut infill models are used: NBCC (2005) strut infill model, ASCE/SEI 41-06 strut infill model and proposed strut infill model based on modification to Canadian, NBCC (2005) strut infill model. Pushover and modal analyses of a masonry infill concrete frame with a single storey and an existing 5-storey RC building have been carried out by using different models for masonry infill. The corresponding hinge status, the value of base shear at target displacement as well as their dynamic characteristics have been determined and compared. A validation of the structural numerical models for the existing 5-storey RC building has been achieved by comparing the experimentally measured and the analytically estimated natural frequencies and their mode shapes. This study shows that ASCE/SEI 41-06 equation underestimates the values for the equivalent properties of the diagonal strut while Canadian, NBCC (2005) equation gives realistic values for the equivalent properties. The results indicate that both ASCE/SEI 41-06 and Canadian, NBCC (2005) equations for strut infill model give over estimated values for dynamic characteristic of the building. Proposed modification to Canadian, NBCC (2005) equation shows that the fundamental dynamic characteristic values of the building are nearly similar to the corresponding values using layered shell elements as well as measured field results.Keywords: masonry infill, framed structures, RC buildings, non-structural elements
Procedia PDF Downloads 2806234 Effect of Atmospheric Turbulence on Hybrid FSO/RF Link Availability under Qatar's Harsh Climate
Authors: Abir Touati, Syed Jawad Hussain, Farid Touati, Ammar Bouallegue
Abstract:
Although there has been a growing interest in the hybrid free-space optical link and radio frequency FSO/RF communication system, the current literature is limited to results obtained in moderate or cold environment. In this paper, using a soft switching approach, we investigate the effect of weather inhomogeneities on the strength of turbulence hence the channel refractive index under Qatar harsh environment and their influence on the hybrid FSO/RF availability. In this approach, either FSO/RF or simultaneous or none of them can be active. Based on soft switching approach and a finite state Markov Chain (FSMC) process, we model the channel fading for the two links and derive a mathematical expression for the outage probability of the hybrid system. Then, we evaluate the behavior of the hybrid FSO/RF under hazy and harsh weather. Results show that the FSO/RF soft switching renders the system outage probability less than that of each link individually. A soft switching algorithm is being implemented on FPGAs using Raptor code interfaced to the two terminals of a 1Gbps/100 Mbps FSO/RF hybrid system, the first being implemented in the region. Experimental results are compared to the above simulation results.Keywords: atmospheric turbulence, haze, hybrid FSO/RF, outage probability, refractive index
Procedia PDF Downloads 4236233 Towards a Comprehensive Framework on Civic Competence Development of Teachers: A Systematic Review of Literature
Authors: Emilie Vandevelde, Ellen Claes
Abstract:
This study aims to develop a comprehensive model for the civic socialization process of teachers. Citizenship has become one of the main objectives for the European education systems. It is expected that teachers are well prepared and equipped with the necessary knowledge, skills, and attitudes to also engage students in democratic citizenship. While a lot is known about young peoples’ civic competence development and how schools and teachers (don’t) support this process, less is known about how teachers themselves engage with (the teaching of) civics. Other than the civic socialization process of young adolescents that focuses on personal competence development, the civic socialization process of teachers includes the development of professional, civic competences. These professional competences make that they are able to prepare pupils to carry out their civic responsibilities in thoughtful ways. Existing models for the civic socialization process of young adolescents do not take this dual purpose into account. Based on these observations, this paper will investigate (1)What personal and professional civic competences teachers need to effectively teach civic education and (2) how teachers acquire these personal and professional civic competences. To answer the first research question, a systematic review of literature of existing civic education frameworks was carried out and linked to literature on teacher training. The second research question was addressed by adapting the Octagon model, developed by the International Association for the Evaluation of Educational Achievement (IEA), to the context of teachers. This was done by carrying out a systematic review of the recent literature linking three theoretical topics involved in teachers’ civic competence development: theories about the civic socialization process of young adolescents, Schulmans (1987) theoretical assumptions on pedagogical content knowledge (PCK), and Nogueira & Moreira’s (2012) framework for civic education teachers’ knowledge and literature on teachers’ professional development. This resulted in a comprehensive conceptual framework describing the personal and professional civic competences of civic education teachers. In addition, this framework is linked to the OctagonT model: a model that describes the processes through which teachers acquire these personal and professional civic competences. This model recognizes that teachers’ civic socialization process is influenced by interconnected variables located at different levels in a multi-level structure (the individual teacher (e.g., civic beliefs), everyday contacts (e.g., teacher educators, the intended, informal and hidden curriculum of the teacher training program, internship contacts, participation opportunities in teacher training, etc.) and the influence of the national educational context (e.g., vision on civic education)). Furthermore, implications for teacher education programs are described.Keywords: civic education, civic competences, civic socialization, octagon model, teacher training
Procedia PDF Downloads 3176232 2D Point Clouds Features from Radar for Helicopter Classification
Authors: Danilo Habermann, Aleksander Medella, Carla Cremon, Yusef Caceres
Abstract:
This paper aims to analyze the ability of 2d point clouds features to classify different models of helicopters using radars. This method does not need to estimate the blade length, the number of blades of helicopters, and the period of their micro-Doppler signatures. It is also not necessary to generate spectrograms (or any other image based on time and frequency domain). This work transforms a radar return signal into a 2D point cloud and extracts features of it. Three classifiers are used to distinguish 9 different helicopter models in order to analyze the performance of the features used in this work. The high accuracy obtained with each of the classifiers demonstrates that the 2D point clouds features are very useful for classifying helicopters from radar signal.Keywords: helicopter classification, point clouds features, radar, supervised classifiers
Procedia PDF Downloads 2336231 Two Concurrent Convolution Neural Networks TC*CNN Model for Face Recognition Using Edge
Authors: T. Alghamdi, G. Alaghband
Abstract:
In this paper we develop a model that couples Two Concurrent Convolution Neural Network with different filters (TC*CNN) for face recognition and compare its performance to an existing sequential CNN (base model). We also test and compare the quality and performance of the models on three datasets with various levels of complexity (easy, moderate, and difficult) and show that for the most complex datasets, edges will produce the most accurate and efficient results. We further show that in such cases while Support Vector Machine (SVM) models are fast, they do not produce accurate results.Keywords: Convolution Neural Network, Edges, Face Recognition , Support Vector Machine.
Procedia PDF Downloads 1616230 Predicting Recessions with Bivariate Dynamic Probit Model: The Czech and German Case
Authors: Lukas Reznak, Maria Reznakova
Abstract:
Recession of an economy has a profound negative effect on all involved stakeholders. It follows that timely prediction of recessions has been of utmost interest both in the theoretical research and in practical macroeconomic modelling. Current mainstream of recession prediction is based on standard OLS models of continuous GDP using macroeconomic data. This approach is not suitable for two reasons: the standard continuous models are proving to be obsolete and the macroeconomic data are unreliable, often revised many years retroactively. The aim of the paper is to explore a different branch of recession forecasting research theory and verify the findings on real data of the Czech Republic and Germany. In the paper, the authors present a family of discrete choice probit models with parameters estimated by the method of maximum likelihood. In the basic form, the probits model a univariate series of recessions and expansions in the economic cycle for a given country. The majority of the paper deals with more complex model structures, namely dynamic and bivariate extensions. The dynamic structure models the autoregressive nature of recessions, taking into consideration previous economic activity to predict the development in subsequent periods. Bivariate extensions utilize information from a foreign economy by incorporating correlation of error terms and thus modelling the dependencies of the two countries. Bivariate models predict a bivariate time series of economic states in both economies and thus enhance the predictive performance. A vital enabler of timely and successful recession forecasting are reliable and readily available data. Leading indicators, namely the yield curve and the stock market indices, represent an ideal data base, as the pieces of information is available in advance and do not undergo any retroactive revisions. As importantly, the combination of yield curve and stock market indices reflect a range of macroeconomic and financial market investors’ trends which influence the economic cycle. These theoretical approaches are applied on real data of Czech Republic and Germany. Two models for each country were identified – each for in-sample and out-of-sample predictive purposes. All four followed a bivariate structure, while three contained a dynamic component.Keywords: bivariate probit, leading indicators, recession forecasting, Czech Republic, Germany
Procedia PDF Downloads 2516229 Teaching: Using Co-teaching as an Instructional Model
Authors: Beverley Gallimore
Abstract:
The Individuals with Disabilities Education Act of 2004 (IDEA) has helped to improve outcomes for students with special education needs. Through IDEA, students with Special Education Needs (SEN) have opportunities for more equitable education within the General Education classroom. However, students with disabilities lack access to instructions that can help them to maximize their fullest learning potential. Recently, educational stakeholders have emphasized Integrated Co-teaching as a tool to increase engagement and learning outcomes for students with disabilities in general education classrooms. As a result of this new approach, general and special education teachers are working collaboratively to teach students with disabilities. However, co-teaching models are not properly designed and structured to effectively benefit students with disabilities. Teachers must be oriented correctly in the co-teaching models if it is to be beneficial for students.Keywords: CO-teaching, differentiation, equitable, collaborative
Procedia PDF Downloads 85