Search results for: generalized random graphs
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3129

Search results for: generalized random graphs

2109 Unlocking Tourism Value through a Tourist Experience Management Paradigm

Authors: Siphiwe P. Mandina, Tinashe Shamuyashe

Abstract:

Tourism has become a topical issue amongst academics and practitioners due to its potential to contribute significantly towards an economy’s GDP. The problem underpinning this research is the fact that the major attraction, Victoria Falls, is being marketed in neighboring countries like South Africa, Botswana and Zambia with tour operators providing just day trips to the Victoria Falls. This has deprived Zimbabwe of income from tourism with tourists making day trips and actually not spending nights in Zimbabwe. This therefore calls for cutting edge marketing strategies that are superior to or inimitable by competing nations such as South Africa and Zambia. This study proposes a shift towards an experience management paradigm in the tourism sector. A qualitative research was adopted for this study, and findings of this study were generalized across different tourism contexts, therefore making the survey based research design more appropriate. The target population for this study is tourists visiting Zimbabwe over the period 2016 and ZTA visitor database acquired from the Department of Immigration will form the sampling frame for the purposes of this study.

Keywords: tourist experiences, Zimbabwe, tourist arrivals, competitiveness

Procedia PDF Downloads 253
2108 Volatility Spillover Among the Stock Markets of South Asian Countries

Authors: Tariq Aziz, Suresh Kumar, Vikesh Kumar, Sheraz Mustafa, Jhanzeb Marwat

Abstract:

The paper provides an updated version of volatility spillover among the equity markets of South Asian countries, including Pakistan, India, Srilanka, and Bangladesh. The analysis uses both symmetric and asymmetric Generalized Autoregressive Conditional Heteroscedasticity models to investigate volatility persistence and leverage effect. The bivariate EGARCH model is used to test for volatility transmission between two equity markets. Weekly data for the period February 2013 to August 2019 is used for empirical analysis. The findings indicate that the leverage effect exists in the equity markets of all the countries except Bangladesh. The volatility spillover from the equity market of Bangladesh to all other countries is negative and significant whereas the volatility of the equity market of Sri-Lanka does influence the volatility of any other country’s equity market. Indian equity market influence only the volatility of the Sri-Lankan equity market; and there is bidirectional volatility spillover between the equity markets of Pakistan and Bangladesh. The findings are important for policy-makers and international investors.

Keywords: volatility spillover, volatility persistence, garch, egarch

Procedia PDF Downloads 139
2107 Ship Detection Requirements Analysis for Different Sea States: Validation on Real SAR Data

Authors: Jaime Martín-de-Nicolás, David Mata-Moya, Nerea del-Rey-Maestre, Pedro Gómez-del-Hoyo, María-Pilar Jarabo-Amores

Abstract:

Ship detection is nowadays quite an important issue in tasks related to sea traffic control, fishery management and ship search and rescue. Although it has traditionally been carried out by patrol ships or aircrafts, coverage and weather conditions and sea state can become a problem. Synthetic aperture radars can surpass these coverage limitations and work under any climatological condition. A fast CFAR ship detector based on a robust statistical modeling of sea clutter with respect to sea states in SAR images is used. In this paper, the minimum SNR required to obtain a given detection probability with a given false alarm rate for any sea state is determined. A Gaussian target model using real SAR data is considered. Results show that SNR does not depend heavily on the class considered. Provided there is some variation in the backscattering of targets in SAR imagery, the detection probability is limited and a post-processing stage based on morphology would be suitable.

Keywords: SAR, generalized gamma distribution, detection curves, radar detection

Procedia PDF Downloads 453
2106 R Software for Parameter Estimation of Spatio-Temporal Model

Authors: Budi Nurani Ruchjana, Atje Setiawan Abdullah, I. Gede Nyoman Mindra Jaya, Eddy Hermawan

Abstract:

In this paper, we propose the application package to estimate parameters of spatiotemporal model based on the multivariate time series analysis using the R open-source software. We build packages mainly to estimate the parameters of the Generalized Space Time Autoregressive (GSTAR) model. GSTAR is a combination of time series and spatial models that have parameters vary per location. We use the method of Ordinary Least Squares (OLS) and use the Mean Average Percentage Error (MAPE) to fit the model to spatiotemporal real phenomenon. For case study, we use oil production data from volcanic layer at Jatibarang Indonesia or climate data such as rainfall in Indonesia. Software R is very user-friendly and it is making calculation easier, processing the data is accurate and faster. Limitations R script for the estimation of model parameters spatiotemporal GSTAR built is still limited to a stationary time series model. Therefore, the R program under windows can be developed either for theoretical studies and application.

Keywords: GSTAR Model, MAPE, OLS method, oil production, R software

Procedia PDF Downloads 243
2105 Left Cornual Ectopic Pregnancy with Uterine Rupture - a Case Report

Authors: Vinodhini Elangovan, Jen Heng Pek

Abstract:

Background: An ectopic pregnancy is defined as any pregnancy implanted outside of the endometrial cavity. Cornual pregnancy, a rare variety of ectopic pregnancies, is seen in about 2-4% of ectopic pregnancies. It develops in the interstitial portion of the fallopian tube and invades through the uterine wall. This case describes a third-trimester cornual pregnancy that resulted in a uterine rupture. Case: A 38-year old Chinese lady was brought to the Emergency Department (ED) as a standby case for hypotension. She was 30+6 weeks pregnant (Gravida 3, Parous 1). Her past obstetric history included a live birth delivered via lower segment Caesarean section due to non-reassuring fetal status in 2002 and a miscarriage in 2012. She developed generalized abdominal pain. There was no per vaginal bleeding or leaking liquor. There was also no fever, nausea, vomiting, constipation, diarrhea, or urinary symptoms. On arrival in the ED, she was pale, diaphoretic, and lethargic. She had generalized tenderness with guarding and rebound over her abdomen. Point of care ultrasound was performed and showed a large amount of intra-abdominal free fluid, and the fetal heart rate was 170 beats per minute. The point of care hemoglobin was 7.1 g/dL, and lactate was 6.8 mmol/L. The patient’s blood pressure dropped precipitously to 50/36 mmHg, and her heart rate went up to 141 beats per minute. The clinical impression was profound shock secondary to uterine rupture. Intra-operatively, there was extensive haemoperitoneum, and the fetus was seen in the abdominal cavity. The fetus was delivered immediately and handed to the neonatal team. On exploration of the uterus, the point of rupture was at the left cornual region where the placenta was attached to. Discussion: Cornual pregnancies are difficult to diagnose pre-operatively with low ultrasonographic sensitivity and hence are commonly confused with normal intrauterine pregnancies. They pose a higher risk of rupture and hemorrhage compared to other types of ectopic pregnancies. In very rare circumstances, interstitial pregnancies can result in a viable fetus. Uterine rupture resulting in hemorrhagic shock is a true obstetric emergency that can result in significant morbidity and mortality for the patient and the fetus, and early diagnosis in the emergency department is crucial. The patient in this case presented with known risk factors of multiparity, advanced maternal age, and previous lower segment cesarean section, which increased the suspicion of uterine rupture. Ultrasound assessment may be beneficial to any patient who presents with symptoms and a history of uterine surgery to assess the possibility of uterine dehiscence or rupture. Management of a patient suspected of uterine rupture should be systematic in the emergency department and follow an ABC approach. Conclusion: This case demonstrates the importance for an emergency physician to maintain the suspicion for ectopic pregnancy even at advanced gestational ages. It also highlights how even though all emergency physicians may not be qualified to do a detailed pelvic ultrasound, it is essential for them to be competent with a point of care ultrasound to make a prompt diagnosis of conditions such as uterine rupture.

Keywords: cornual ectopic , ectopic pregnancy, emergency medicine, obstetric emergencies

Procedia PDF Downloads 129
2104 The Impact of Cognitive Behavioral Therapy in the Management of Perinatal Anxiety

Authors: Kelsey Kimball

Abstract:

Generalized anxiety disorder (GAD) is a common mental health illness affecting approximately 10% of the perinatal population. Research examining cognitive behavioral therapy in this population has only recently become more prevalent though exploring this subject is long overdue. This research examines the impact of cognitive behavioral therapy (CBT) on GAD during the perinatal period. The aim of this project was to identify the most effective way to manage GAD during the perinatal period to provide clinicians with evidence-based methods of caring for this population’s mental health. The research was conducted using several databases to identify ten primary research articles involving anxiety management. A critique and a systematic review of the literature was done. The results of the systematic literature review suggested that CBT had a significant positive impact on perinatal anxiety. Three main themes were derived from the literature: CBT for managing GAD in the general population, CBT for managing GAD in the perinatal population, and CBT’s effect on worry and problematic behaviors in both populations. Nurse practitioners are central in improving access to and treatment of perinatal anxiety disorders.

Keywords: anxiety, cognitive behavioral therapy, nurse practitioner, perinatal

Procedia PDF Downloads 98
2103 Ensemble Methods in Machine Learning: An Algorithmic Approach to Derive Distinctive Behaviors of Criminal Activity Applied to the Poaching Domain

Authors: Zachary Blanks, Solomon Sonya

Abstract:

Poaching presents a serious threat to endangered animal species, environment conservations, and human life. Additionally, some poaching activity has even been linked to supplying funds to support terrorist networks elsewhere around the world. Consequently, agencies dedicated to protecting wildlife habitats have a near intractable task of adequately patrolling an entire area (spanning several thousand kilometers) given limited resources, funds, and personnel at their disposal. Thus, agencies need predictive tools that are both high-performing and easily implementable by the user to help in learning how the significant features (e.g. animal population densities, topography, behavior patterns of the criminals within the area, etc) interact with each other in hopes of abating poaching. This research develops a classification model using machine learning algorithms to aid in forecasting future attacks that is both easy to train and performs well when compared to other models. In this research, we demonstrate how data imputation methods (specifically predictive mean matching, gradient boosting, and random forest multiple imputation) can be applied to analyze data and create significant predictions across a varied data set. Specifically, we apply these methods to improve the accuracy of adopted prediction models (Logistic Regression, Support Vector Machine, etc). Finally, we assess the performance of the model and the accuracy of our data imputation methods by learning on a real-world data set constituting four years of imputed data and testing on one year of non-imputed data. This paper provides three main contributions. First, we extend work done by the Teamcore and CREATE (Center for Risk and Economic Analysis of Terrorism Events) research group at the University of Southern California (USC) working in conjunction with the Department of Homeland Security to apply game theory and machine learning algorithms to develop more efficient ways of reducing poaching. This research introduces ensemble methods (Random Forests and Stochastic Gradient Boosting) and applies it to real-world poaching data gathered from the Ugandan rain forest park rangers. Next, we consider the effect of data imputation on both the performance of various algorithms and the general accuracy of the method itself when applied to a dependent variable where a large number of observations are missing. Third, we provide an alternate approach to predict the probability of observing poaching both by season and by month. The results from this research are very promising. We conclude that by using Stochastic Gradient Boosting to predict observations for non-commercial poaching by season, we are able to produce statistically equivalent results while being orders of magnitude faster in computation time and complexity. Additionally, when predicting potential poaching incidents by individual month vice entire seasons, boosting techniques produce a mean area under the curve increase of approximately 3% relative to previous prediction schedules by entire seasons.

Keywords: ensemble methods, imputation, machine learning, random forests, statistical analysis, stochastic gradient boosting, wildlife protection

Procedia PDF Downloads 292
2102 Electronic and Optical Properties of Orthorhombic NdMnO3 with the Modified Becke-Johnson Potential

Authors: B. Bouadjemi, S. Bentata, T. Lantri, A. Abbad, W. Benstaali, A. Zitouni, S. Cherid

Abstract:

We investigate the electronic structure, magnetic and optical properties of the orthorhombic NdMnO3 through density-functional-theory (DFT) calculations using both generalized gradient approximation GGA and GGA+U approaches, the exchange and correlation effects are taken into account by an orbital independent modified Becke Johnson (MBJ). The predicted band gaps using the MBJ exchange approximation show a significant improvement over previous theoretical work with the common GGA and GGA+U very closer to the experimental results. Band gap dependent optical parameters like dielectric constant, index of refraction, absorption coefficient, reflectivity and conductivity are calculated and analyzed. We find that when using MBJ we have obtained better results for band gap of NdMnO3 than in the case of GGA and GGA+U. The values of band gap founded in this work by MBJ are in a very good agreement with corresponding experimental values compared to other calculations. This comprehensive theoretical study of the optoelectronic properties predicts that this material can be effectively used in optical devices.

Keywords: DFT, optical properties, absorption coefficient, strong correlation, MBJ, orthorhombic NdMnO3, optoelectronic

Procedia PDF Downloads 909
2101 Requirements Engineering via Controlling Actors Definition for the Organizations of European Critical Infrastructure

Authors: Jiri F. Urbanek, Jiri Barta, Oldrich Svoboda, Jiri J. Urbanek

Abstract:

The organizations of European and Czech critical infrastructure have specific position, mission, characteristics and behaviour in European Union and Czech state/ business environments, regarding specific requirements for regional and global security environments. They must respect policy of national security and global rules, requirements and standards in all their inherent and outer processes of supply-customer chains and networks. A controlling is generalized capability to have control over situational policy. This paper aims and purposes are to introduce the controlling as quite new necessary process attribute providing for critical infrastructure is environment the capability and profit to achieve its commitment regarding to the effectiveness of the quality management system in meeting customer/ user requirements and also the continual improvement of critical infrastructure organization’s processes overall performance and efficiency, as well as its societal security via continual planning improvement via DYVELOP modelling.

Keywords: added value, DYVELOP, controlling, environments, process approach

Procedia PDF Downloads 412
2100 Environmental, Climate Change, and Health Outcomes in the World

Authors: Felix Aberu

Abstract:

The high rate of greenhouse gas (CO₂) emission and increased concentration of Carbon Dioxide in the atmosphere are not unconnected to both human and natural activities. This has caused climate change and global warming in the world. The adverse effect of these climatic changes has no doubt threatened human existence. Hence, this study examined the effects of environmental and climate influence on mortality and morbidity rates, with particular reference to the world’s leading CO₂ emission countries, using both the pre-estimation, estimation, and post-estimation techniques for more dependable outcomes. Hence, the System Generalized Method of Moments (SGMM) was adopted as the main estimation technique for the data analysis from 1996 to 2023. The coefficient of carbon emissions confirmed a positive and significant relationship among CO₂ emission, mortality, and morbidity rates in the world’s leading CO₂ emissions countries, which implies that carbon emission has contributed to mortality and morbidity rates in the world. Therefore, significant action should be taken to facilitate the expansion of environmental protection and sustainability initiatives in any CO₂ emissions nations of the world.

Keywords: environmental, mortality, morbidity, health outcomes, carbon emissions

Procedia PDF Downloads 54
2099 Idiopathic Gingival Fibromatosis

Authors: Bandana Koirala, Shivalal Sharma

Abstract:

Introduction: Gingival enlargements are quite common and may be either inflammatory, non-inflammatory or a combination of both. Idiopathic gingival enlargement is a rare condition with a proliferative fibrous lesion of the gingival tissue that causes esthetic and functional problems. It is of undetermined etiology. Case Description: This case report addresses the diagnosis and treatment of a case of idiopathic gingival enlargement in a 9-year-old male patient. The patient presented with a generalized diffuse gingival enlargement involving the entire maxillary and the mandibular arch with extension on occlusal, buccal, lingual, and palatal surfaces with just parts of occlusal surfaces of few upper and lower molars visible resulting in open mouth, difficulty in mastication and speech. Biopsy report confirmed the diagnosis of fibromatosis gingivae. Gingivectomy was carried out in all four quadrants by using external bevel incision. Conclusion: Though total esthetics could not be restored due to unusual bony enlargement, the general appearance improved satisfactorily. Treatment after complete excision however, improved the masticatory competence to a great extent.

Keywords: idiopathic gingival fibromatosis, gingival enlargement, gingivectomy, medical and health sciences

Procedia PDF Downloads 329
2098 Providing Security to Private Cloud Using Advanced Encryption Standard Algorithm

Authors: Annapureddy Srikant Reddy, Atthanti Mahendra, Samala Chinni Krishna, N. Neelima

Abstract:

In our present world, we are generating a lot of data and we, need a specific device to store all these data. Generally, we store data in pen drives, hard drives, etc. Sometimes we may loss the data due to the corruption of devices. To overcome all these issues, we implemented a cloud space for storing the data, and it provides more security to the data. We can access the data with just using the internet from anywhere in the world. We implemented all these with the java using Net beans IDE. Once user uploads the data, he does not have any rights to change the data. Users uploaded files are stored in the cloud with the file name as system time and the directory will be created with some random words. Cloud accepts the data only if the size of the file is less than 2MB.

Keywords: cloud space, AES, FTP, NetBeans IDE

Procedia PDF Downloads 206
2097 Burnout and Personality Characteristics of University Students

Authors: Tazvin Ijaz, Rabia Khan

Abstract:

The current study was conducted to identify the predictors of burnout among university students. The sample for the study was collected through simple random sampling. The tools to measure burnout and personality characteristics included Indigenous burnout scale and Eysenck personality inventory respectively. Results indicated that neurotic personality traits significantly predicts burnout among university students while extraversion does not lead to burnout. Results also indicated female students experience more burnout than male students. It was also found that family size and birth order did not affected the level of burnout. Results of the study are discussed to explain association between etiological factors and burnout with in Pakistani cultural context.

Keywords: burnout, students, neuroticism, extraversion

Procedia PDF Downloads 295
2096 Evaluation of Random Forest and Support Vector Machine Classification Performance for the Prediction of Early Multiple Sclerosis from Resting State FMRI Connectivity Data

Authors: V. Saccà, A. Sarica, F. Novellino, S. Barone, T. Tallarico, E. Filippelli, A. Granata, P. Valentino, A. Quattrone

Abstract:

The work aim was to evaluate how well Random Forest (RF) and Support Vector Machine (SVM) algorithms could support the early diagnosis of Multiple Sclerosis (MS) from resting-state functional connectivity data. In particular, we wanted to explore the ability in distinguishing between controls and patients of mean signals extracted from ICA components corresponding to 15 well-known networks. Eighteen patients with early-MS (mean-age 37.42±8.11, 9 females) were recruited according to McDonald and Polman, and matched for demographic variables with 19 healthy controls (mean-age 37.55±14.76, 10 females). MRI was acquired by a 3T scanner with 8-channel head coil: (a)whole-brain T1-weighted; (b)conventional T2-weighted; (c)resting-state functional MRI (rsFMRI), 200 volumes. Estimated total lesion load (ml) and number of lesions were calculated using LST-toolbox from the corrected T1 and FLAIR. All rsFMRIs were pre-processed using tools from the FMRIB's Software Library as follows: (1) discarding of the first 5 volumes to remove T1 equilibrium effects, (2) skull-stripping of images, (3) motion and slice-time correction, (4) denoising with high-pass temporal filter (128s), (5) spatial smoothing with a Gaussian kernel of FWHM 8mm. No statistical significant differences (t-test, p < 0.05) were found between the two groups in the mean Euclidian distance and the mean Euler angle. WM and CSF signal together with 6 motion parameters were regressed out from the time series. We applied an independent component analysis (ICA) with the GIFT-toolbox using the Infomax approach with number of components=21. Fifteen mean components were visually identified by two experts. The resulting z-score maps were thresholded and binarized to extract the mean signal of the 15 networks for each subject. Statistical and machine learning analysis were then conducted on this dataset composed of 37 rows (subjects) and 15 features (mean signal in the network) with R language. The dataset was randomly splitted into training (75%) and test sets and two different classifiers were trained: RF and RBF-SVM. We used the intrinsic feature selection of RF, based on the Gini index, and recursive feature elimination (rfe) for the SVM, to obtain a rank of the most predictive variables. Thus, we built two new classifiers only on the most important features and we evaluated the accuracies (with and without feature selection) on test-set. The classifiers, trained on all the features, showed very poor accuracies on training (RF:58.62%, SVM:65.52%) and test sets (RF:62.5%, SVM:50%). Interestingly, when feature selection by RF and rfe-SVM were performed, the most important variable was the sensori-motor network I in both cases. Indeed, with only this network, RF and SVM classifiers reached an accuracy of 87.5% on test-set. More interestingly, the only misclassified patient resulted to have the lowest value of lesion volume. We showed that, with two different classification algorithms and feature selection approaches, the best discriminant network between controls and early MS, was the sensori-motor I. Similar importance values were obtained for the sensori-motor II, cerebellum and working memory networks. These findings, in according to the early manifestation of motor/sensorial deficits in MS, could represent an encouraging step toward the translation to the clinical diagnosis and prognosis.

Keywords: feature selection, machine learning, multiple sclerosis, random forest, support vector machine

Procedia PDF Downloads 240
2095 Manufacture and Characterization of Poly (Tri Methylene Terephthalate) Nanofibers by Electrospinning

Authors: Omid Saligheh

Abstract:

Poly (tri methylene terephthalate) (PTT) nanofibers were prepared by electrospinning, being directly deposited in the form of a random fibers web. The effect of changing processing parameters such as solution concentration and electrospinning voltage on the morphology of the electrospun PTT nanofibers was investigated with scanning electron microscopy (SEM). The electrospun fibers diameter increased with rising concentration and decreased by increasing the electrospinning voltage, thermal and mechanical properties of electrospun fibers were characterized by DSC and tensile testing, respectively.

Keywords: poly tri methylene terephthalate, electrospinning, morphology, thermal behavior, mechanical properties

Procedia PDF Downloads 87
2094 Determinants of Extra Charges for Container Shipments: A Case Study of Nexus Zone Logistics

Authors: Zety Shakila Binti Mohd Yusof, Muhammad Adib Bin Ishak, Hajah Fatimah Binti Hussein

Abstract:

The international shipping business is related to numerous controls or regulations of export and import shipments. It is costly and time consuming, and when something goes wrong or when the buyer or seller fails to comply with the regulations, it can result in penalties, delays, and unexpected costs etc. For the focus of this study, the researchers have selected a local forwarder that provides forwarding and clearance services, Nexus Zone Logistics. It was identified that this company currently has many extra costs to be paid including local and detention charges, which negatively impacts the flow of income and reduces overall stability. Two variables have been identified as factors of extra charges; loaded containers entering the port by exceeded closing time and late delivery of empty containers to the container yard. This study is a qualitative in nature and the secondary data collected was analyzed using self-administered observation. The findings of this study were covered by one selected case for each export and import shipment between July and December 2014. The data were analyzed using frequency analysis based on tables and graphs. The researcher recommends Nexus Zone Logistics impose a 1% deposit payment per container for each shipment (export and import) to its customers.

Keywords: international shipping, export and import, detention charges, container shipment

Procedia PDF Downloads 383
2093 Estimation of Coefficient of Discharge of Side Trapezoidal Labyrinth Weir Using Group Method of Data Handling Technique

Authors: M. A. Ansari, A. Hussain, A. Uddin

Abstract:

A side weir is a flow diversion structure provided in the side wall of a channel to divert water from the main channel to a branch channel. The trapezoidal labyrinth weir is a special type of weir in which crest length of the weir is increased to pass higher discharge. Experimental and numerical studies related to the coefficient of discharge of trapezoidal labyrinth weir in an open channel have been presented in the present study. Group Method of Data Handling (GMDH) with the transfer function of quadratic polynomial has been used to predict the coefficient of discharge for the side trapezoidal labyrinth weir. A new model is developed for coefficient of discharge of labyrinth weir by regression method. Generalized models for predicting the coefficient of discharge for labyrinth weir using Group Method of Data Handling (GMDH) network have also been developed. The prediction based on GMDH model is more satisfactory than those given by traditional regression equations.

Keywords: discharge coefficient, group method of data handling, open channel, side labyrinth weir

Procedia PDF Downloads 160
2092 Syllogistic Reasoning with 108 Inference Rules While Case Quantities Change

Authors: Mikhail Zarechnev, Bora I. Kumova

Abstract:

A syllogism is a deductive inference scheme used to derive a conclusion from a set of premises. In a categorical syllogisms, there are only two premises and every premise and conclusion is given in form of a quantified relationship between two objects. The different order of objects in premises give classification known as figures. We have shown that the ordered combinations of 3 generalized quantifiers with certain figure provide in total of 108 syllogistic moods which can be considered as different inference rules. The classical syllogistic system allows to model human thought and reasoning with syllogistic structures always attracted the attention of cognitive scientists. Since automated reasoning is considered as part of learning subsystem of AI agents, syllogistic system can be applied for this approach. Another application of syllogistic system is related to inference mechanisms on the Semantic Web applications. In this paper we proposed the mathematical model and algorithm for syllogistic reasoning. Also the model of iterative syllogistic reasoning in case of continuous flows of incoming data based on case–based reasoning and possible applications of proposed system were discussed.

Keywords: categorical syllogism, case-based reasoning, cognitive architecture, inference on the semantic web, syllogistic reasoning

Procedia PDF Downloads 411
2091 An Investigation on Designing and Enhancing the Performance of H-Darrieus Wind Turbine of 10KW at the Medium Range of Wind Speed in Vietnam

Authors: Ich Long Ngo, Dinh Tai Dang, Ngoc Tu Nguyen, Minh Duc Nguyen

Abstract:

This paper describes an investigation on designing and enhancing the performance of H-Darrieus wind turbine (HDWT) of 10kW at the medium wind speed. The aerodynamic characteristics of this turbine were investigated by both theoretical and numerical approaches. The optimal design procedure was first proposed to enhance the power coefficient under various effects, such as airfoil type, number of blades, solidity, aspect ratio, and tip speed ratio. As a result, the overall design of the 10kW HDWT was well achieved, and the power characteristic of this turbine was found by numerical approach. Additionally, the maximum power coefficient predicted is up to 0.41 at the tip speed ratio of 3.7 and wind speed of 8 m/s. Particularly, a generalized correlation of power coefficient with tip speed ratio and wind speed is first proposed. These results obtained are very useful for enhancing the performance of the HDWTs placed in a country with high wind power potential like Vietnam.

Keywords: computational fluid dynamics, double multiple stream tube, h-darrieus wind turbine, renewable energy

Procedia PDF Downloads 119
2090 First Principle Calculations of the Structural and Optoelectronic Properties of Cubic Perovskite CsSrF3

Authors: Meriem Harmel, Houari Khachai

Abstract:

We have investigated the structural, electronic and optical properties of a compound perovskite CsSrF3 using the full-potential linearized augmented plane wave (FP-LAPW) method within density functional theory (DFT). In this approach, both the local density approximation (LDA) and the generalized gradient approximation (GGA) were used for exchange-correlation potential calculation. The ground state properties such as lattice parameter, bulk modulus and its pressure derivative were calculated and the results are compared whit experimental and theoretical data. Electronic and bonding properties are discussed from the calculations of band structure, density of states and electron charge density, where the fundamental energy gap is direct under ambient conditions. The contribution of the different bands was analyzed from the total and partial density of states curves. The optical properties (namely: the real and the imaginary parts of the dielectric function ε(ω), the refractive index n(ω) and the extinction coefficient k(ω)) were calculated for radiation up to 35.0 eV. This is the first quantitative theoretical prediction of the optical properties for the investigated compound and still awaits experimental confirmations.

Keywords: DFT, fluoroperovskite, electronic structure, optical properties

Procedia PDF Downloads 477
2089 Decision Support: How Explainable A.I. Can Improve Transparency and Trust with Human Users

Authors: Devon Brown, Liu Chunmei

Abstract:

This paper will present an analysis as part of the researchers dissertation topic focusing on the intersection of affective and analytical directed acyclic graphs (DAGs) in the context of Decision Support Systems (DSS). The researcher’s work involves analyzing decision theory models like Affective and Bayesian Decision theory models and how they could be implemented under an Affective Computing Framework using Information Fusion and Human-Centered Design. Additionally, the researcher is beginning research on an Affective-Analytic Decision Framework (AADF) model for their dissertation research and are looking to merge logic and analytic models with empathetic insights into affective DAGs. Data-collection efforts begin Fall 2024 and in preparation for the efforts this paper looks to analyze previous research in this area and introduce the AADF framework and propose conceptual models for consideration. For this paper, the research emphasis is placed on analyzing Bayesian networks and Markov models which offer probabilistic techniques during uncertainty in decision-making. Ideally, including affect into analytic models will ensure algorithms can increase user trust with algorithms by including emotional states and the user’s experience with the goal of developing emotionally intelligent A.I. systems that can start to navigate the complex fabric of human emotion during decision-making.

Keywords: decision support systems, explainable AI, HCAI techniques, affective-analytical decision framework

Procedia PDF Downloads 20
2088 A Framework for Chinese Domain-Specific Distant Supervised Named Entity Recognition

Authors: Qin Long, Li Xiaoge

Abstract:

The Knowledge Graphs have now become a new form of knowledge representation. However, there is no consensus in regard to a plausible and definition of entities and relationships in the domain-specific knowledge graph. Further, in conjunction with several limitations and deficiencies, various domain-specific entities and relationships recognition approaches are far from perfect. Specifically, named entity recognition in Chinese domain is a critical task for the natural language process applications. However, a bottleneck problem with Chinese named entity recognition in new domains is the lack of annotated data. To address this challenge, a domain distant supervised named entity recognition framework is proposed. The framework is divided into two stages: first, the distant supervised corpus is generated based on the entity linking model of graph attention neural network; secondly, the generated corpus is trained as the input of the distant supervised named entity recognition model to train to obtain named entities. The link model is verified in the ccks2019 entity link corpus, and the F1 value is 2% higher than that of the benchmark method. The re-pre-trained BERT language model is added to the benchmark method, and the results show that it is more suitable for distant supervised named entity recognition tasks. Finally, it is applied in the computer field, and the results show that this framework can obtain domain named entities.

Keywords: distant named entity recognition, entity linking, knowledge graph, graph attention neural network

Procedia PDF Downloads 95
2087 Ab Initio Studies of Structural and Thermal Properties of Aluminum Alloys

Authors: M. Saadi, S. E. H. Abaidia, M. Y. Mokeddem.

Abstract:

We present the results of a systematic and comparative study of the bulk, the structural properties, and phonon calculations of aluminum alloys using several exchange–correlations functional theory (DFT) with different plane-wave basis pseudo potential techniques. Density functional theory implemented by the Vienna Ab Initio Simulation Package (VASP) technique is applied to calculate the bulk and the structural properties of several structures. The calculations were performed for within several exchange–correlation functional and pseudo pententials available in this code (local density approximation (LDA), generalized gradient approximation (GGA), projector augmented wave (PAW)). The lattice dynamic code “PHON” developed by Dario Alfè was used to calculate some thermodynamics properties and phonon dispersion relation frequency distribution of Aluminium alloys using the VASP LDA PAW and GGA PAW results. The bulk and structural properties of the calculated structures were compared to different experimental and calculated works.

Keywords: DFT, exchange-correlation functional, LDA, GGA, pseudopotential, PAW, VASP, PHON, phonon dispersion

Procedia PDF Downloads 486
2086 Infestation in Omani Date Palm Orchards by Dubas Bug Is Related to Tree Density

Authors: Lalit Kumar, Rashid Al Shidi

Abstract:

Phoenix dactylifera (date palm) is a major crop in many middle-eastern countries, including Oman. The Dubas bug Ommatissus lybicus is the main pest that affects date palm crops. However not all plantations are infested. It is still uncertain why some plantations get infested while others are not. This research investigated whether tree density and the system of planting (random versus systematic) had any relationship with infestation and levels of infestation. Remote Sensing and Geographic Information Systems were used to determine the density of trees (number of trees per unit area) while infestation levels were determined by manual counting of insects on 40 leaflets from two fronds on each tree, with a total of 20-60 trees in each village. The infestation was recorded as the average number of insects per leaflet. For tree density estimation, WorldView-3 scenes, with eight bands and 2m spatial resolution, were used. The Local maxima method, which depends on locating of the pixel of highest brightness inside a certain exploration window, was used to identify the trees in the image and delineating individual trees. This information was then used to determine whether the plantation was random or systematic. The ordinary least square regression (OLS) was used to test the global correlation between tree density and infestation level and the Geographic Weight Regression (GWR) was used to find the local spatial relationship. The accuracy of detecting trees varied from 83–99% in agricultural lands with systematic planting patterns to 50–70% in natural forest areas. Results revealed that the density of the trees in most of the villages was higher than the recommended planting number (120–125 trees/hectare). For infestation correlations, the GWR model showed a good positive significant relationship between infestation and tree density in the spring season with R² = 0.60 and medium positive significant relationship in the autumn season, with R² = 0.30. In contrast, the OLS model results showed a weaker positive significant relationship in the spring season with R² = 0.02, p < 0.05 and insignificant relationship in the autumn season with R² = 0.01, p > 0.05. The results showed a positive correlation between infestation and tree density, which suggests the infestation severity increased as the density of date palm trees increased. The correlation result showed that the density alone was responsible for about 60% of the increase in the infestation. This information can be used by the relevant authorities to better control infestations as well as to manage their pesticide spraying programs.

Keywords: dubas bug, date palm, tree density, infestation levels

Procedia PDF Downloads 193
2085 Headache Masquerading as Common Psychiatric Disorders in Patients of Low Economic Class in a Tertiary Care Setting

Authors: Seema Singh Parmar, Shweta Chauhan

Abstract:

Aims & Objectives: To evaluate the presence of various psychiatric disorders in patients reporting with a headache as the only symptom. Methodology: 200 patients with the chief complain of a headache who visited the psychiatric OPD of a tertiary care were investigated. Out of them 50 who had pure psychiatric illness without any other neurological disease were investigated, and their diagnosis was made. Independent sample t-tests were applied to generate results. Results: The most common psychiatric diagnosis seen in the sample was Depression (64%) out of which 47% showed features of Depression with anxious distress. Other psychiatric disorders seen were Generalized Anxiety Disorder, Panic Attacks, Somatic Symptom Disorder and Obsessive Compulsive Disorder. For pure psychiatry, headache related illnesses female to male ratio was 1.64. Conclusion: The increasing frequency of psychiatric disorders among patients who only visit the doctor seeking treat a headache shows the need for better identification of psychiatric disorders because proper diagnosis and target of psychiatric treatment shall give complete relief to the patient’s symptomatology.

Keywords: anxiety disorders, depression, headache, panic attacks

Procedia PDF Downloads 376
2084 Catalytic Activity Study of Fe, Ti Loaded TUD-1

Authors: Supakorn Tantisriyanurak, Hussaya Maneesuwan, Thanyalak Chaisuwan, Sujitra Wongkasemjit

Abstract:

TUD-1 is a siliceous mesoporous material with a three-dimensional amorphous structure of random, interconnecting pores, large pore size, high surface area (400-1000 m2/g), hydrothermal stability, and tunable porosity. However, the significant disadvantage of the mesoporous silicates is few catalytic active sites. In this work, a series of bimetallic Fe and Ti incorporated into TUD-1 framework is successfully synthesized by sol–gel method. The synthesized Fe,Ti-TUD-1 is characterized by various techniques. To study the catalytic activity of Fe, Ti–TUD-1, phenol hydroxylation was selected as a model reaction. The amounts of residual phenol and oxidation products were determined by high performance liquid chromatography coupled with UV-detector (HPLC-UV).

Keywords: iron, phenol hydroxylation, titanium, TUD-1

Procedia PDF Downloads 258
2083 Analysis of Decentralized on Demand Cross Layer in Cognitive Radio Ad Hoc Network

Authors: A. Sri Janani, K. Immanuel Arokia James

Abstract:

Cognitive radio ad hoc networks different unlicensed users may acquire different available channel sets. This non-uniform spectrum availability imposes special design challenges for broadcasting in CR ad hoc networks. Cognitive radio automatically detects available channels in wireless spectrum. This is a form of dynamic spectrum management. Cross-layer optimization is proposed, using this can allow far away secondary users can also involve into channel work. So it can increase the throughput and it will overcome the collision and time delay.

Keywords: cognitive radio, cross layer optimization, CR mesh network, heterogeneous spectrum, mesh topology, random routing optimization technique

Procedia PDF Downloads 359
2082 Characterization of Nickel Based Metallic Superconducting Materials

Authors: Y. Benmalem , A. Abbad, W. Benstaali, T. Lantri

Abstract:

Density functional theory is used to investigate the.the structural, electronic, and magnetic properties of the cubic anti-perovskites InNNi3 and ZnNNi3. The structure of antiperovskite also called (perovskite-inverse) identical to the perovskite structure of the general formula ABX3, where A is a main group (III–V) element or a metallic element, B is carbon or nitrogen, and X is a transition metal, displays a wide range of interesting physical properties, such as giant magnetoresistance. Elastic and electronic properties were determined using generalized gradient approximation (GGA), and local spin density approximation (LSDA) approaches, ), as implemented in the Wien2k computer package. The results show that the two compounds are strong ductile and satisfy the Born-Huang criteria, so they are mechanically stable at normal conditions. Electronic properties show that the two compounds studied are metallic and non-magnetic. The studies of these compounds have confirmed the effectiveness of the two approximations and the ground-state properties are in good agreement with experimental data and theoretical results available.

Keywords: anti-perovskites, elastic anisotropy, electronic band structure, first-principles calculations

Procedia PDF Downloads 286
2081 Land Cover Mapping Using Sentinel-2, Landsat-8 Satellite Images, and Google Earth Engine: A Study Case of the Beterou Catchment

Authors: Ella Sèdé Maforikan

Abstract:

Accurate land cover mapping is essential for effective environmental monitoring and natural resources management. This study focuses on assessing the classification performance of two satellite datasets and evaluating the impact of different input feature combinations on classification accuracy in the Beterou catchment, situated in the northern part of Benin. Landsat-8 and Sentinel-2 images from June 1, 2020, to March 31, 2021, were utilized. Employing the Random Forest (RF) algorithm on Google Earth Engine (GEE), a supervised classification categorized the land into five classes: forest, savannas, cropland, settlement, and water bodies. GEE was chosen due to its high-performance computing capabilities, mitigating computational burdens associated with traditional land cover classification methods. By eliminating the need for individual satellite image downloads and providing access to an extensive archive of remote sensing data, GEE facilitated efficient model training on remote sensing data. The study achieved commendable overall accuracy (OA), ranging from 84% to 85%, even without incorporating spectral indices and terrain metrics into the model. Notably, the inclusion of additional input sources, specifically terrain features like slope and elevation, enhanced classification accuracy. The highest accuracy was achieved with Sentinel-2 (OA = 91%, Kappa = 0.88), slightly surpassing Landsat-8 (OA = 90%, Kappa = 0.87). This underscores the significance of combining diverse input sources for optimal accuracy in land cover mapping. The methodology presented herein not only enables the creation of precise, expeditious land cover maps but also demonstrates the prowess of cloud computing through GEE for large-scale land cover mapping with remarkable accuracy. The study emphasizes the synergy of different input sources to achieve superior accuracy. As a future recommendation, the application of Light Detection and Ranging (LiDAR) technology is proposed to enhance vegetation type differentiation in the Beterou catchment. Additionally, a cross-comparison between Sentinel-2 and Landsat-8 for assessing long-term land cover changes is suggested.

Keywords: land cover mapping, Google Earth Engine, random forest, Beterou catchment

Procedia PDF Downloads 63
2080 Inhibition of 3-Deoxy-D-Arabino-Heptulosonate 7-Phosphate Synthase from Mycobacterium Tuberculosis Using High Throughput Virtual Screening and Molecular Dynamics Studies

Authors: Christy Rosaline, Rathankar Roa, Waheeta Hopper

Abstract:

Persistence of tuberculosis, emergence of multidrug-resistance and extensively drug-resistant forms of the disease, has increased the interest in developing new antitubercular drugs. Developing inhibitors for 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase from Mycobacterium tuberculosis (MtbDAH7Ps), an enzyme involved in shikimate pathway, gives a selective target for antitubercular agents. MtbDAH7Ps was screened against ZINC database, and shortlisted compounds were subjected to induce fit docking. Prime/Molecular Mechanics Generalized Born Surface Area calculation was used to validate the binding energy of ligand-protein complex. Molecular Dynamics analysis for of the lead compounds–MtbDAH7Ps complexes showed that the backbone of MtbDAH7Ps in their complexes were stable. These results suggest that the shortlisted lead compounds ZINC04097114, ZINC15163225, ZINC16857013, ZINC06275603, and ZINC05331260 could be developed into novel drug leads to inhibit DAH7Ps in Mycobacterium tuberculosis.

Keywords: MtbDAH7Ps, Mycobacterium tuberculosis, HTVS, molecular dynamics

Procedia PDF Downloads 179