Search results for: frequency estimation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5673

Search results for: frequency estimation

4653 Thermal and Geometric Effects on Nonlinear Response of Incompressible Hyperelastic Cylindrical Shells

Authors: Morteza Shayan Arani, Mohammadamin Esmailzadehazimi, Mohammadreza Moeini, Mohammad Toorani, Aouni A. Lakis

Abstract:

This paper investigates the nonlinear response of thin, incompressible, hyperelastic cylindrical shells in the presence of a time-varying temperature field while considering initial geometric imperfections. The governing equations of motion are derived using an improved Donnell's shallow shell theory. The hyperelastic material is modeled using the Mooney-Rivlin model with two parameters, incorporating temperature-dependent terms. The Lagrangian method is applied to obtain the equation of motion. The resulting governing equation is addressed through the Lindstedt-Poincaré and Multiple Scale methods. The linear and nonlinear models presented in this study are verified against existing open literature, demonstrating the accuracy and reliability of the presented model. The study focuses on understanding the influence of temperature variations and geometrical imperfections on the natural frequency and amplitude-frequency response of the systems. Notably, the investigation reveals the coexistence of hardening and softening peaks in the amplitude-frequency response, which vary in magnitude depending on these parameters. Additionally, resonance peaks exhibit changes as a result of temperature and geometric imperfections.

Keywords: hyperelastic material, cylindrical shell, geometrical nonlinearity, material naolinearity, initial geometric imperfection, temperature gradient, hardening and softening

Procedia PDF Downloads 53
4652 Study on Effect of Reverse Cyclic Loading on Fracture Resistance Curve of Equivalent Stress Gradient (ESG) Specimen

Authors: Jaegu Choi, Jae-Mean Koo, Chang-Sung Seok, Byungwoo Moon

Abstract:

Since massive earthquakes in the world have been reported recently, the safety of nuclear power plants for seismic loading has become a significant issue. Seismic loading is the reverse cyclic loading, consisting of repeated tensile and compression by longitudinal and transverse wave. Up to this time, the study on characteristics of fracture toughness under reverse cyclic loading has been unsatisfactory. Therefore, it is necessary to obtain the fracture toughness under reverse cyclic load for the integrity estimation of nuclear power plants under seismic load. Fracture resistance (J-R) curves, which are used for determination of fracture toughness or integrity estimation in terms of elastic-plastic fracture mechanics, can be derived by the fracture resistance test using single specimen technique. The objective of this paper is to study the effects of reverse cyclic loading on a fracture resistance curve of ESG specimen, having a similar stress gradient compared to the crack surface of the real pipe. For this, we carried out the fracture toughness test under the reverse cyclic loading, while changing incremental plastic displacement. Test results showed that the J-R curves were decreased with a decrease of the incremental plastic displacement.

Keywords: reverse cyclic loading, j-r curve, ESG specimen, incremental plastic displacement

Procedia PDF Downloads 369
4651 Evaluation of Earthquake Induced Cost for Mid-Rise Buildings

Authors: Gulsah Olgun, Ozgur Bozdag, Yildirim Ertutar

Abstract:

This paper mainly focuses on performance assessment of buildings by associating the damage level with the damage cost. For this purpose a methodology is explained and applied to the representative mid-rise concrete building residing in Izmir. In order to consider uncertainties in occurrence of earthquakes, the structural analyses are conducted for all possible earthquakes in the region through the hazard curve. By means of the analyses, probability of the structural response being in different limit states are obtained and used to calculate expected damage cost. The expected damage cost comprises diverse cost components related to earthquake such as cost of casualties, replacement or repair cost of building etc. In this study, inter-story drift is used as an effective response variable to associate expected damage cost with different damage levels. The structural analysis methods performed to obtain inter story drifts are response spectrum method as a linear one, accurate push-over and time history methods to demonstrate the nonlinear effects on loss estimation. Comparison of the results indicates that each method provides similar values of expected damage cost. To sum up, this paper explains an approach which enables to minimize the expected damage cost of buildings and relate performance level to damage cost.

Keywords: expected damage cost, limit states, loss estimation, performance based design

Procedia PDF Downloads 252
4650 Human Absorbed Dose Estimation of a New In-111 Imaging Agent Based on Rat Data

Authors: H. Yousefnia, S. Zolghadri

Abstract:

The measurement of organ radiation exposure dose is one of the most important steps to be taken initially, for developing a new radiopharmaceutical. In this study, the dosimetric studies of a novel agent for SPECT-imaging of the bone metastasis, 111In-1,4,7,10-tetraazacyclododecane-1,4,7,10 tetraethylene phosphonic acid (111In-DOTMP) complex, have been carried out to estimate the dose in human organs based on the data derived from rats. The radiolabeled complex was prepared with high radiochemical purity in the optimal conditions. Biodistribution studies of the complex was investigated in the male Syrian rats at selected times after injection (2, 4, 24 and 48 h). The human absorbed dose estimation of the complex was made based on data derived from the rats by the radiation absorbed dose assessment resource (RADAR) method. 111In-DOTMP complex was prepared with high radiochemical purity of >99% (ITLC). Total body effective absorbed dose for 111In-DOTMP was 0.061 mSv/MBq. This value is comparable to the other 111In clinically used complexes. The results show that the dose with respect to the critical organs is satisfactory within the acceptable range for diagnostic nuclear medicine procedures. Generally, 111In-DOTMP has interesting characteristics and can be considered as a viable agent for SPECT-imaging of the bone metastasis in the near future.

Keywords: In-111, DOTMP, Internal Dosimetry, RADAR

Procedia PDF Downloads 391
4649 Use of Ing-Formed and Derived Verbal Nominalization in American English: A Survey Applied to Native American English Speakers

Authors: Yujia Sun

Abstract:

Research on nominalizations in English can be traced back to at least the 1960s and even centered in the field nowadays. At the very beginning, the discussion was about the relationship between verbs and nouns, but then it moved to the distinct senses embodied in different forms of nominals, namely, various types of nominalizations. This paper tries to address the issue that how speakers perceive different forms of verbal nouns, and what might influence their perceptions. The data are collected through a self-designed questionnaire targeted at native speakers of American English, and the employment of the Corpus of Contemporary American English (COCA). The results show that semantic differences between different forms of nominals do play a role in people’s preference to certain form than another. But it still awaits more explorations to see how the frequency of usage is interrelates to this issue.

Keywords: corpus of contemporary American English, derived nominalization, frequency of usage, ing-formed nominalization

Procedia PDF Downloads 161
4648 Quantification of Magnetic Resonance Elastography for Tissue Shear Modulus using U-Net Trained with Finite-Differential Time-Domain Simulation

Authors: Jiaying Zhang, Xin Mu, Chang Ni, Jeff L. Zhang

Abstract:

Magnetic resonance elastography (MRE) non-invasively assesses tissue elastic properties, such as shear modulus, by measuring tissue’s displacement in response to mechanical waves. The estimated metrics on tissue elasticity or stiffness have been shown to be valuable for monitoring physiologic or pathophysiologic status of tissue, such as a tumor or fatty liver. To quantify tissue shear modulus from MRE-acquired displacements (essentially an inverse problem), multiple approaches have been proposed, including Local Frequency Estimation (LFE) and Direct Inversion (DI). However, one common problem with these methods is that the estimates are severely noise-sensitive due to either the inverse-problem nature or noise propagation in the pixel-by-pixel process. With the advent of deep learning (DL) and its promise in solving inverse problems, a few groups in the field of MRE have explored the feasibility of using DL methods for quantifying shear modulus from MRE data. Most of the groups chose to use real MRE data for DL model training and to cut training images into smaller patches, which enriches feature characteristics of training data but inevitably increases computation time and results in outcomes with patched patterns. In this study, simulated wave images generated by Finite Differential Time Domain (FDTD) simulation are used for network training, and U-Net is used to extract features from each training image without cutting it into patches. The use of simulated data for model training has the flexibility of customizing training datasets to match specific applications. The proposed method aimed to estimate tissue shear modulus from MRE data with high robustness to noise and high model-training efficiency. Specifically, a set of 3000 maps of shear modulus (with a range of 1 kPa to 15 kPa) containing randomly positioned objects were simulated, and their corresponding wave images were generated. The two types of data were fed into the training of a U-Net model as its output and input, respectively. For an independently simulated set of 1000 images, the performance of the proposed method against DI and LFE was compared by the relative errors (root mean square error or RMSE divided by averaged shear modulus) between the true shear modulus map and the estimated ones. The results showed that the estimated shear modulus by the proposed method achieved a relative error of 4.91%±0.66%, substantially lower than 78.20%±1.11% by LFE. Using simulated data, the proposed method significantly outperformed LFE and DI in resilience to increasing noise levels and in resolving fine changes of shear modulus. The feasibility of the proposed method was also tested on MRE data acquired from phantoms and from human calf muscles, resulting in maps of shear modulus with low noise. In future work, the method’s performance on phantom and its repeatability on human data will be tested in a more quantitative manner. In conclusion, the proposed method showed much promise in quantifying tissue shear modulus from MRE with high robustness and efficiency.

Keywords: deep learning, magnetic resonance elastography, magnetic resonance imaging, shear modulus estimation

Procedia PDF Downloads 47
4647 Analysis and Design of Simultaneous Dual Band Harvesting System with Enhanced Efficiency

Authors: Zina Saheb, Ezz El-Masry, Jean-François Bousquet

Abstract:

This paper presents an enhanced efficiency simultaneous dual band energy harvesting system for wireless body area network. A bulk biasing is used to enhance the efficiency of the adapted rectifier design to reduce Vth of MOSFET. The presented circuit harvests the radio frequency (RF) energy from two frequency bands: 1 GHz and 2.4 GHz. It is designed with TSMC 65-nm CMOS technology and high quality factor dual matching network to boost the input voltage. Full circuit analysis and modeling is demonstrated. The simulation results demonstrate a harvester with an efficiency of 23% at 1 GHz and 46% at 2.4 GHz at an input power as low as -30 dBm.

Keywords: energy harvester, simultaneous, dual band, CMOS, differential rectifier, voltage boosting, TSMC 65nm

Procedia PDF Downloads 390
4646 Smart Unmanned Parking System Based on Radio Frequency Identification Technology

Authors: Yu Qin

Abstract:

In order to tackle the ever-growing problem of the lack of parking space, this paper presents the design and implementation of a smart unmanned parking system that is based on RFID (radio frequency identification) technology and Wireless communication technology. This system uses RFID technology to achieve the identification function (transmitted by 2.4 G wireless module) and is equipped with an STM32L053 micro controller as the main control chip of the smart vehicle. This chip can accomplish automatic parking (in/out), charging and other functions. On this basis, it can also help users easily query the information that is stored in the database through the Internet. Experimental tests have shown that the system has the features of low power consumption and stable operation, among others. It can effectively improve the level of automation control of the parking lot management system and has enormous application prospects.

Keywords: RFID, embedded system, unmanned, parking management

Procedia PDF Downloads 315
4645 Performance Analysis of 180 nm Low Voltage Low Power CMOS OTA for High Frequency Application

Authors: D. J. Dahigaonkar, D. G. Wakde

Abstract:

The performance analysis of low voltage low power CMOS OTA is presented in this paper. The differential input single output OTA is simulated in 180nm CMOS process technology. The simulation results indicate high bandwidth of the order of 7.04GHz with 0.766mW power consumption and transconductance of -71.20dB. The total harmonic distortion for 100mV input at a frequency of 1MHz is found to be 2.3603%. In addition to this, to establish comparative analysis of designed OTA and analyze effect of technology scaling, the differential input single output OTA is further simulated using 350nm CMOS process technology and the comparative analysis is presented in this paper.

Keywords: Operational Transconductance Amplifier, Total Harmonic Distortions, low voltage/low power, power dissipation

Procedia PDF Downloads 392
4644 Astronomical Object Classification

Authors: Alina Muradyan, Lina Babayan, Arsen Nanyan, Gohar Galstyan, Vigen Khachatryan

Abstract:

We present a photometric method for identifying stars, galaxies and quasars in multi-color surveys, which uses a library of ∼> 65000 color templates for comparison with observed objects. The method aims for extracting the information content of object colors in a statistically correct way, and performs a classification as well as a redshift estimation for galaxies and quasars in a unified approach based on the same probability density functions. For the redshift estimation, we employ an advanced version of the Minimum Error Variance estimator which determines the redshift error from the redshift dependent probability density function itself. The method was originally developed for the Calar Alto Deep Imaging Survey (CADIS), but is now used in a wide variety of survey projects. We checked its performance by spectroscopy of CADIS objects, where the method provides high reliability (6 errors among 151 objects with R < 24), especially for the quasar selection, and redshifts accurate within σz ≈ 0.03 for galaxies and σz ≈ 0.1 for quasars. For an optimization of future survey efforts, a few model surveys are compared, which are designed to use the same total amount of telescope time but different sets of broad-band and medium-band filters. Their performance is investigated by Monte-Carlo simulations as well as by analytic evaluation in terms of classification and redshift estimation. If photon noise were the only error source, broad-band surveys and medium-band surveys should perform equally well, as long as they provide the same spectral coverage. In practice, medium-band surveys show superior performance due to their higher tolerance for calibration errors and cosmic variance. Finally, we discuss the relevance of color calibration and derive important conclusions for the issues of library design and choice of filters. The calibration accuracy poses strong constraints on an accurate classification, which are most critical for surveys with few, broad and deeply exposed filters, but less severe for surveys with many, narrow and less deep filters.

Keywords: VO, ArVO, DFBS, FITS, image processing, data analysis

Procedia PDF Downloads 56
4643 Association of 1565C/T Polymorphism of Integrin Beta-3 (ITGB3) Gene and Increased Risk for Myocardial Infarction in Patients with Premature Coronary Artery Disease among Iranian Population

Authors: Mehrdad Sheikhvatan, Mohammad Ali Boroumand, Mehrdad Behmanesh, Shayan Ziaee

Abstract:

Contradictory results have been obtained regarding the role of integrin, beta 3 (ITGB3) gene polymorphisms in occurrence of acute myocardial infarction (MI) in patients with coronary artery disease (CAD). Hence, we aimed to assess the association between 1565C/T polymorphism of ITGB3 gene and increased risk for acute MI in patients who suffered premature CAD in Iranian population. Our prospective study included 1000 patients (492 men and 508 women aged 21 to 55 years) referred to Tehran Heart center during a period of four years from 2008 to 2011 with the final diagnosis of premature CAD and classified into two groups with history of MI (n = 461) and without of MI (n = 539). The polymorphism variants were determined by PCR-RFLP technique by entering 10% of randomized samples and then genotyping of the polymorphism was also conducted by High Resolution Melting (HRM) method. Among study samples, 640 were followed with a median follow-up time 45.74 months for determining association of long-term major adverse cardiac events (MACE) and genotypes of polymorphisms. There was no significant difference in the frequency of 1565C/T polymorphism between the MI and non-MI groups. The frequency of wild genotype was 69.2% and 72.2%, the frequency of homozygous genotype was 21.3% and 18.4%, and the frequency of mutant genotype was 9.5% and 9.5%, respectively (p=0.505). Results were also similar when adjusted for covariates in a multivariate logistic regression model. No significant difference was also found in total-MACE free survival rate between the patients with different genotypes of 1565C/T polymorphism in both MI and non-MI group. The carriage of the 1565C/T polymorphism of ITGB3 gene seems unlikely to be a significant risk factor for the development of MI in Iranian patients with premature CAD. The presence of this ITGB3 gene polymorphism may not also predict long-term cardiac events.

Keywords: coronary artery disease, myocardial infarction, gene, integrin, beta 3, polymorphism

Procedia PDF Downloads 383
4642 A Neural Network Classifier for Estimation of the Degree of Infestation by Late Blight on Tomato Leaves

Authors: Gizelle K. Vianna, Gabriel V. Cunha, Gustavo S. Oliveira

Abstract:

Foliage diseases in plants can cause a reduction in both quality and quantity of agricultural production. Intelligent detection of plant diseases is an essential research topic as it may help monitoring large fields of crops by automatically detecting the symptoms of foliage diseases. This work investigates ways to recognize the late blight disease from the analysis of tomato digital images, collected directly from the field. A pair of multilayer perceptron neural network analyzes the digital images, using data from both RGB and HSL color models, and classifies each image pixel. One neural network is responsible for the identification of healthy regions of the tomato leaf, while the other identifies the injured regions. The outputs of both networks are combined to generate the final classification of each pixel from the image and the pixel classes are used to repaint the original tomato images by using a color representation that highlights the injuries on the plant. The new images will have only green, red or black pixels, if they came from healthy or injured portions of the leaf, or from the background of the image, respectively. The system presented an accuracy of 97% in detection and estimation of the level of damage on the tomato leaves caused by late blight.

Keywords: artificial neural networks, digital image processing, pattern recognition, phytosanitary

Procedia PDF Downloads 314
4641 Influential Parameters in Estimating Soil Properties from Cone Penetrating Test: An Artificial Neural Network Study

Authors: Ahmed G. Mahgoub, Dahlia H. Hafez, Mostafa A. Abu Kiefa

Abstract:

The Cone Penetration Test (CPT) is a common in-situ test which generally investigates a much greater volume of soil more quickly than possible from sampling and laboratory tests. Therefore, it has the potential to realize both cost savings and assessment of soil properties rapidly and continuously. The principle objective of this paper is to demonstrate the feasibility and efficiency of using artificial neural networks (ANNs) to predict the soil angle of internal friction (Φ) and the soil modulus of elasticity (E) from CPT results considering the uncertainties and non-linearities of the soil. In addition, ANNs are used to study the influence of different parameters and recommend which parameters should be included as input parameters to improve the prediction. Neural networks discover relationships in the input data sets through the iterative presentation of the data and intrinsic mapping characteristics of neural topologies. General Regression Neural Network (GRNN) is one of the powerful neural network architectures which is utilized in this study. A large amount of field and experimental data including CPT results, plate load tests, direct shear box, grain size distribution and calculated data of overburden pressure was obtained from a large project in the United Arab Emirates. This data was used for the training and the validation of the neural network. A comparison was made between the obtained results from the ANN's approach, and some common traditional correlations that predict Φ and E from CPT results with respect to the actual results of the collected data. The results show that the ANN is a very powerful tool. Very good agreement was obtained between estimated results from ANN and actual measured results with comparison to other correlations available in the literature. The study recommends some easily available parameters that should be included in the estimation of the soil properties to improve the prediction models. It is shown that the use of friction ration in the estimation of Φ and the use of fines content in the estimation of E considerable improve the prediction models.

Keywords: angle of internal friction, cone penetrating test, general regression neural network, soil modulus of elasticity

Procedia PDF Downloads 405
4640 Circuit Models for Conducted Susceptibility Analyses of Multiconductor Shielded Cables

Authors: Saih Mohamed, Rouijaa Hicham, Ghammaz Abdelilah

Abstract:

This paper presents circuit models to analyze the conducted susceptibility of multiconductor shielded cables in frequency domains using Branin’s method, which is referred to as the method of characteristics. These models, Which can be used directly in the time and frequency domains, take into account the presence of both the transfer impedance and admittance. The conducted susceptibility is studied by using an injection current on the cable shield as the source. Two examples are studied, a coaxial shielded cable and shielded cables with two parallel wires (i.e., twinax cables). This shield has an asymmetry (one slot on the side). Results obtained by these models are in good agreement with those obtained by other methods.

Keywords: circuit models, multiconductor shielded cables, Branin’s method, coaxial shielded cable, twinax cables

Procedia PDF Downloads 493
4639 The Time-Frequency Domain Reflection Method for Aircraft Cable Defects Localization

Authors: Reza Rezaeipour Honarmandzad

Abstract:

This paper introduces an aircraft cable fault detection and location method in light of TFDR keeping in mind the end goal to recognize the intermittent faults adequately and to adapt to the serial and after-connector issues being hard to be distinguished in time domain reflection. In this strategy, the correlation function of reflected and reference signal is used to recognize and find the airplane fault as per the qualities of reflected and reference signal in time-frequency domain, so the hit rate of distinguishing and finding intermittent faults can be enhanced adequately. In the work process, the reflected signal is interfered by the noise and false caution happens frequently, so the threshold de-noising technique in light of wavelet decomposition is used to diminish the noise interference and lessen the shortcoming alert rate. At that point the time-frequency cross connection capacity of the reference signal and the reflected signal based on Wigner-Ville appropriation is figured so as to find the issue position. Finally, LabVIEW is connected to execute operation and control interface, the primary capacity of which is to connect and control MATLAB and LABSQL. Using the solid computing capacity and the bottomless capacity library of MATLAB, the signal processing turn to be effortlessly acknowledged, in addition LabVIEW help the framework to be more dependable and upgraded effectively.

Keywords: aircraft cable, fault location, TFDR, LabVIEW

Procedia PDF Downloads 462
4638 Effect of the Poisson’s Ratio on the Behavior of Epoxy Microbeam

Authors: Mohammad Tahmasebipour, Hosein Salarpour

Abstract:

Researchers suggest that variations in Poisson’s ratio affect the behavior of Timoshenko micro beam. Therefore, in this study, two epoxy Timoshenko micro beams with different dimensions were modeled using the finite element method considering all boundary conditions and initial conditions that govern the problem. The effect of Poisson’s ratio on the resonant frequency, maximum deflection, and maximum rotation of the micro beams was examined. The analyses suggest that an increased Poisson’s ratio reduces the maximum rotation and the maximum rotation and increases the resonant frequency. Results were consistent with those obtained using the couple stress, classical, and strain gradient elasticity theories.

Keywords: microbeam, microsensor, epoxy, poisson’s ratio, dynamic behavior, static behavior, finite element method

Procedia PDF Downloads 449
4637 Possible Exposure of Persons with Cardiac Pacemakers to Extremely Low Frequency (ELF) Electric and Magnetic Fields

Authors: Leena Korpinen, Rauno Pääkkönen, Fabriziomaria Gobba, Vesa Virtanen

Abstract:

The number of persons with implanted cardiac pacemakers (PM) has increased in Western countries. The aim of this paper is to investigate the possible situations where persons with a PM may be exposed to extremely low frequency (ELF) electric (EF) and magnetic fields (MF) that may disturb their PM. Based on our earlier studies, it is possible to find such high public exposure to EFs only in some places near 400 kV power lines, where an EF may disturb a PM in unipolar mode. Such EFs cannot be found near 110 kV power lines. Disturbing MFs can be found near welding machines. However, we do not have measurement data from welding. Based on literature and earlier studies at Tampere University of Technology, it is difficult to find public EF or MF exposure that is high enough to interfere with PMs.

Keywords: cardiac pacemaker, electric field, magnetic field, electrical engineering

Procedia PDF Downloads 414
4636 Semiconductor Variable Wavelength Generator of Near-Infrared-to-Terahertz Regions

Authors: Isao Tomita

Abstract:

Power characteristics are obtained for laser beams of near-infrared and terahertz wavelengths when produced by difference-frequency generation with a quasi-phase-matched (QPM) waveguide made of gallium phosphide (GaP). A refractive-index change of the QPM GaP waveguide is included in computations with Sellmeier’s formula for varying input wavelengths, where optical loss is also included. Although the output power decreases with decreasing photon energy as the beam wavelength changes from near-infrared to terahertz wavelengths, the beam generation with such greatly different wavelengths, which is not achievable with an ordinary laser diode without the replacement of semiconductor material with a different bandgap one, can be made with the same semiconductor (GaP) by changing the QPM period, where a way of changing the period is provided.

Keywords: difference-frequency generation, gallium phosphide, quasi-phase-matching, waveguide

Procedia PDF Downloads 103
4635 Design of Broadband W-Slotted Microstrip Patch Antenna

Authors: Neeraj G. Nahata, K. S. Bhagat

Abstract:

Microstrip patch antenna widely used in communication area because it offers low profile, narrow bandwidth, high gain, and compact in size. It has big disadvantage of narrow bandwidth. To improve the bandwidth a W-slot technique is used, it is efficient to enhance the bandwidth of antenna. The feeding point of antenna is very important for efficient operation, so coaxial feeding technique is applied to microstrip patch antenna for impedance matching. A broadband W-slot microstrip patch antenna is designed successfully which attains a bandwidth of 22.74% at 10dB return loss with centre frequency of 4.5GHz and also it attains maximum directivity 8.78dBi. It is designed by cutting a W-slot into the patch of antenna, because of this resonant slot, the antenna gives broad bandwidth. This antenna is best suitable for C-band frequency spectrum. The proposed antenna is designed and simulated using IE3D software.

Keywords: broadband, microstrip antenna, VSWR, W-slotted patch

Procedia PDF Downloads 305
4634 Approximate-Based Estimation of Single Event Upset Effect on Statistic Random-Access Memory-Based Field-Programmable Gate Arrays

Authors: Mahsa Mousavi, Hamid Reza Pourshaghaghi, Mohammad Tahghighi, Henk Corporaal

Abstract:

Recently, Statistic Random-Access Memory-based (SRAM-based) Field-Programmable Gate Arrays (FPGAs) are widely used in aeronautics and space systems where high dependability is demanded and considered as a mandatory requirement. Since design’s circuit is stored in configuration memory in SRAM-based FPGAs; they are very sensitive to Single Event Upsets (SEUs). In addition, the adverse effects of SEUs on the electronics used in space are much higher than in the Earth. Thus, developing fault tolerant techniques play crucial roles for the use of SRAM-based FPGAs in space. However, fault tolerance techniques introduce additional penalties in system parameters, e.g., area, power, performance and design time. In this paper, an accurate estimation of configuration memory vulnerability to SEUs is proposed for approximate-tolerant applications. This vulnerability estimation is highly required for compromising between the overhead introduced by fault tolerance techniques and system robustness. In this paper, we study applications in which the exact final output value is not necessarily always a concern meaning that some of the SEU-induced changes in output values are negligible. We therefore define and propose Approximate-based Configuration Memory Vulnerability Factor (ACMVF) estimation to avoid overestimating configuration memory vulnerability to SEUs. In this paper, we assess the vulnerability of configuration memory by injecting SEUs in configuration memory bits and comparing the output values of a given circuit in presence of SEUs with expected correct output. In spite of conventional vulnerability factor calculation methods, which accounts any deviations from the expected value as failures, in our proposed method a threshold margin is considered depending on user-case applications. Given the proposed threshold margin in our model, a failure occurs only when the difference between the erroneous output value and the expected output value is more than this margin. The ACMVF is subsequently calculated by acquiring the ratio of failures with respect to the total number of SEU injections. In our paper, a test-bench for emulating SEUs and calculating ACMVF is implemented on Zynq-7000 FPGA platform. This system makes use of the Single Event Mitigation (SEM) IP core to inject SEUs into configuration memory bits of the target design implemented in Zynq-7000 FPGA. Experimental results for 32-bit adder show that, when 1% to 10% deviation from correct output is considered, the counted failures number is reduced 41% to 59% compared with the failures number counted by conventional vulnerability factor calculation. It means that estimation accuracy of the configuration memory vulnerability to SEUs is improved up to 58% in the case that 10% deviation is acceptable in output results. Note that less than 10% deviation in addition result is reasonably tolerable for many applications in approximate computing domain such as Convolutional Neural Network (CNN).

Keywords: fault tolerance, FPGA, single event upset, approximate computing

Procedia PDF Downloads 178
4633 Efficient Principal Components Estimation of Large Factor Models

Authors: Rachida Ouysse

Abstract:

This paper proposes a constrained principal components (CnPC) estimator for efficient estimation of large-dimensional factor models when errors are cross sectionally correlated and the number of cross-sections (N) may be larger than the number of observations (T). Although principal components (PC) method is consistent for any path of the panel dimensions, it is inefficient as the errors are treated to be homoskedastic and uncorrelated. The new CnPC exploits the assumption of bounded cross-sectional dependence, which defines Chamberlain and Rothschild’s (1983) approximate factor structure, as an explicit constraint and solves a constrained PC problem. The CnPC method is computationally equivalent to the PC method applied to a regularized form of the data covariance matrix. Unlike maximum likelihood type methods, the CnPC method does not require inverting a large covariance matrix and thus is valid for panels with N ≥ T. The paper derives a convergence rate and an asymptotic normality result for the CnPC estimators of the common factors. We provide feasible estimators and show in a simulation study that they are more accurate than the PC estimator, especially for panels with N larger than T, and the generalized PC type estimators, especially for panels with N almost as large as T.

Keywords: high dimensionality, unknown factors, principal components, cross-sectional correlation, shrinkage regression, regularization, pseudo-out-of-sample forecasting

Procedia PDF Downloads 134
4632 Numerical Study of Microdrops Manipulation by MicroFluidic Oscillator

Authors: Tawfiq Chekifi, Brahim Dennai, Rachid Khelfaoui

Abstract:

Over the last few decades, modeling immiscible fluids such as oil and water have been a classical research topic. Droplet-based microfluidics presents a unique platform for mixing, reaction, separation, dispersion of drops and numerous other functions. for this purpose Several devices were studied, as well as microfluidic oscillator. The latter was obtained from wall attachment microfluidic amplifiers using a feedback loop from the outputs to the control inputs, nevertheless this device haven’t well used for microdrops applications. In this paper, we suggest a numerical CFD study of a microfluidic oscillator with two different lengths of feedback loop. In order to produce simultaneous microdrops of gasoil on water, a typical geometry that includes double T-junction is connected to the fluidic oscillator, The generation of microdrops is computed by volume-of-fluid method (VOF). Flow oscillations of microdrops were triggered by the Coanda effect of jet flow. The aim of work is to obtain a high oscillation frequency in output of this passive device, the influence of hydrodynamics and physics parameters on the microdrops frequency in the output of our microsystem is also analyzed, The computational results show that, the length of feedback loop, applied pressure on T-junction and interfacial tension have a significant effect on the dispersion of microdrops and its oscillation frequency. Across the range of low Reynold number, the microdrops generation and its dynamics have been accurately controlled by adjusting applying pressure ratio of two phases.

Keywords: fluidic oscillator, microdrops manipulation, volume of fluid method, microfluidic oscillator

Procedia PDF Downloads 465
4631 Technical and Economic Evaluation of Harmonic Mitigation from Offshore Wind Power Plants by Transmission Owners

Authors: A. Prajapati, K. L. Koo, F. Ghassemi, M. Mulimakwenda

Abstract:

In the UK, as the volume of non-linear loads connected to transmission grid continues to rise steeply, the harmonic distortion levels on transmission network are becoming a serious concern for the network owners and system operators. This paper outlines the findings of the study conducted to verify the proposal that the harmonic mitigation could be optimized and can be managed economically and effectively at the transmission network level by the Transmission Owner (TO) instead of the individual polluter connected to the grid. Harmonic mitigation studies were conducted on selected regions of the transmission network in England for recently connected offshore wind power plants to strategize and optimize selected harmonic filter options. The results – filter volume and capacity – were then compared against the mitigation measures adopted by the individual connections. Estimation ratios were developed based on the actual installed and optimal proposed filters. These estimation ratios were then used to derive harmonic filter requirements for future contracted connections. The study has concluded that a saving of 37% in the filter volume/capacity could be achieved if the TO is to centrally manage the harmonic mitigation instead of individual polluter installing their own mitigation solution.

Keywords: C-type filter, harmonics, optimization, offshore wind farms, interconnectors, HVDC, renewable energy, transmission owner

Procedia PDF Downloads 147
4630 Experimental-Numerical Inverse Approaches in the Characterization and Damage Detection of Soft Viscoelastic Layers from Vibration Test Data

Authors: Alaa Fezai, Anuj Sharma, Wolfgang Mueller-Hirsch, André Zimmermann

Abstract:

Viscoelastic materials have been widely used in the automotive industry over the last few decades with different functionalities. Besides their main application as a simple and efficient surface damping treatment, they may ensure optimal operating conditions for on-board electronics as thermal interface or sealing layers. The dynamic behavior of viscoelastic materials is generally dependent on many environmental factors, the most important being temperature and strain rate or frequency. Prior to the reliability analysis of systems including viscoelastic layers, it is, therefore, crucial to accurately predict the dynamic and lifetime behavior of these materials. This includes the identification of the dynamic material parameters under critical temperature and frequency conditions along with a precise damage localization and identification methodology. The goal of this work is twofold. The first part aims at applying an inverse viscoelastic material-characterization approach for a wide frequency range and under different temperature conditions. For this sake, dynamic measurements are carried on a single lap joint specimen using an electrodynamic shaker and an environmental chamber. The specimen consists of aluminum beams assembled to adapter plates through a viscoelastic adhesive layer. The experimental setup is reproduced in finite element (FE) simulations, and frequency response functions (FRF) are calculated. The parameters of both the generalized Maxwell model and the fractional derivatives model are identified through an optimization algorithm minimizing the difference between the simulated and the measured FRFs. The second goal of the current work is to guarantee an on-line detection of the damage, i.e., delamination in the viscoelastic bonding of the described specimen during frequency monitored end-of-life testing. For this purpose, an inverse technique, which determines the damage location and size based on the modal frequency shift and on the change of the mode shapes, is presented. This includes a preliminary FE model-based study correlating the delamination location and size to the change in the modal parameters and a subsequent experimental validation achieved through dynamic measurements of specimen with different, pre-generated crack scenarios and comparing it to the virgin specimen. The main advantage of the inverse characterization approach presented in the first part resides in the ability of adequately identifying the material damping and stiffness behavior of soft viscoelastic materials over a wide frequency range and under critical temperature conditions. Classic forward characterization techniques such as dynamic mechanical analysis are usually linked to limitations under critical temperature and frequency conditions due to the material behavior of soft viscoelastic materials. Furthermore, the inverse damage detection described in the second part guarantees an accurate prediction of not only the damage size but also its location using a simple test setup and outlines; therefore, the significance of inverse numerical-experimental approaches in predicting the dynamic behavior of soft bonding layers applied in automotive electronics.

Keywords: damage detection, dynamic characterization, inverse approaches, vibration testing, viscoelastic layers

Procedia PDF Downloads 193
4629 Development of Lipid Architectonics for Improving Efficacy and Ameliorating the Oral Bioavailability of Elvitegravir

Authors: Bushra Nabi, Saleha Rehman, Sanjula Baboota, Javed Ali

Abstract:

Aim: The objective of research undertaken is analytical method validation (HPLC method) of an anti-HIV drug Elvitegravir (EVG). Additionally carrying out the forced degradation studies of the drug under different stress conditions to determine its stability. It is envisaged in order to determine the suitable technique for drug estimation, which would be employed in further research. Furthermore, comparative pharmacokinetic profile of the drug from lipid architectonics and drug suspension would be obtained post oral administration. Method: Lipid Architectonics (LA) of EVR was formulated using probe sonication technique and optimized using QbD (Box-Behnken design). For the estimation of drug during further analysis HPLC method has been validation on the parameters (Linearity, Precision, Accuracy, Robustness) and Limit of Detection (LOD) and Limit of Quantification (LOQ) has been determined. Furthermore, HPLC quantification of forced degradation studies was carried out under different stress conditions (acid induced, base induced, oxidative, photolytic and thermal). For pharmacokinetic (PK) study, Albino Wistar rats were used weighing between 200-250g. Different formulations were given per oral route, and blood was collected at designated time intervals. A plasma concentration profile over time was plotted from which the following parameters were determined:

Keywords: AIDS, Elvitegravir, HPLC, nanostructured lipid carriers, pharmacokinetics

Procedia PDF Downloads 125
4628 Design and Implementation of Active Radio Frequency Identification on Wireless Sensor Network-Based System

Authors: Che Z. Zulkifli, Nursyahida M. Noor, Siti N. Semunab, Shafawati A. Malek

Abstract:

Wireless sensors, also known as wireless sensor nodes, have been making a significant impact on human daily life. The Radio Frequency Identification (RFID) and Wireless Sensor Network (WSN) are two complementary technologies; hence, an integrated implementation of these technologies expands the overall functionality in obtaining long-range and real-time information on the location and properties of objects and people. An approach for integrating ZigBee and RFID networks is proposed in this paper, to create an energy-efficient network improved by the benefits of combining ZigBee and RFID architecture. Furthermore, the compatibility and requirements of the ZigBee device and communication links in the typical RFID system which is presented with the real world experiment on the capabilities of the proposed RFID system.

Keywords: mesh network, RFID, wireless sensor network, zigbee

Procedia PDF Downloads 442
4627 Fatigue Life Estimation of Tubular Joints - A Comparative Study

Authors: Jeron Maheswaran, Sudath C. Siriwardane

Abstract:

In fatigue analysis, the structural detail of tubular joint has taken great attention among engineers. The DNV-RP-C203 is covering this topic quite well for simple and clear joint cases. For complex joint and geometry, where joint classification isn’t available and limitation on validity range of non-dimensional geometric parameters, the challenges become a fact among engineers. The classification of joint is important to carry out through the fatigue analysis. These joint configurations are identified by the connectivity and the load distribution of tubular joints. To overcome these problems to some extent, this paper compare the fatigue life of tubular joints in offshore jacket according to the stress concentration factors (SCF) in DNV-RP-C203 and finite element method employed Abaqus/CAE. The paper presents the geometric details, material properties and considered load history of the jacket structure. Describe the global structural analysis and identification of critical tubular joints for fatigue life estimation. Hence fatigue life is determined based on the guidelines provided by design codes. Fatigue analysis of tubular joints is conducted using finite element employed Abaqus/CAE [4] as next major step. Finally, obtained SCFs and fatigue lives are compared and their significances are discussed.

Keywords: fatigue life, stress-concentration factor, finite element analysis, offshore jacket structure

Procedia PDF Downloads 433
4626 Influence of Organizational Culture on Frequency of Disputes in Commercial Projects in Egypt: A Contractor’s Perspective

Authors: Omneya N. Mekhaimer, Elkhayam M. Dorra, A. Samer Ezeldin

Abstract:

Over the recent decades, studies on organizational culture have gained global attention in the business management literature, where it has been established that the cultural factors embedded in the organization have an implicit yet significant influence on the organization’s success. Unlike other industries, the construction industry is widely known to be operating in a dynamic and adversarial nature; considering the unique characteristics it denotes, thereby the level of disputes has propagated in the construction industry throughout the years. In the late 1990s, the International Council for Research and Innovation in Building and Construction (CIB) created a Task Group (TG-23), which later evolved in 2006 into a Working Commission W112, with a strategic objective to promote research in investigating the role and impact of culture in the construction industry worldwide. To that end, this paper aims to study the influence of organizational culture in the contractor’s organization on the frequency of disputes caused between the owner and the contractor that occur in commercial projects based in Egypt. This objective is achieved by using a quantitative approach through a survey questionnaire to explore the dominant cultural attributes that exist in the contractor’s organization based on the Competing Value Framework (CVF) theory, which classifies organizational culture into four main cultural types: (1) clan, (2) adhocracy, (3) market, and (4) hierarchy. Accordingly, the collected data are statistically analyzed using Statistical Package for Social Sciences (SPSS 28) software, whereby a correlation analysis using Pearson Correlation is carried out to assess the relationship between these variables and their statistical significance using the p-value. The results show that there is an influence of organizational culture attributes on the frequency of disputes whereby market culture is identified to be the most dominant organizational culture that is currently practiced in contractor’s organization, which consequently contributes to increasing the frequency of disputes in commercial projects. These findings suggest that alternative management practices should be adopted rather than the existing ones with an aim to minimize dispute occurrence.

Keywords: construction projects, correlation analysis, disputes, Egypt, organizational culture

Procedia PDF Downloads 84
4625 The Palm Oil in Food Products: Frequency of Consumption and Composition

Authors: Kamilia Ounaissa, Sarra Fennira, Asma Ben Brahim, Marwa Omri, Abdelmajid Abid

Abstract:

The palm oil is the vegetable oil the most used by the food-processing industry in the world. It is chosen for its economic and technologic advantages. However, this oil arouses the debate because of its high content in saturated fatty acids, which are fats promoting atherosclerosis. Purposes of the work: To study the frequency and the rate of consumption of industrial products containing some palm oil and specify the rate of this oil in certain consummated products. Methodology: We proceeded to a consumer survey using a questionnaire collecting a list of food containing the palm oil, sold on the Tunisian market. We then analyzed the most consumed food to specify their fat content by “Soxhelt’s” method. Finally, we studied the composition in various fatty acids of the extracted fat using the chromatography in the gas phase (CPG) Results: Our results show that investigated individuals having a normal weight have a more important and more frequent consumption of products rich in palm oil than overweight subjects. The most consumed foods are biscuits, cakes, wafers, chocolates, chips, cereal, creams to be spread and canned pilchard. The content in palm oil of these products varies from 10 % to 31 %. The analysis by CPG showed an important content in saturated fatty acid, in particular in palmitic acid, ranging from 40 % to 63 % of the fat of these products. Conclusion: Our study shows a high frequency of consumption of food products, the analysis of which proved a high content in palm oil. Theses facts justifies the necessity of a regulation of the use of palm oil in food products and the application of a label detailing the type and fat rates used.

Keywords: palm oil, palmitic acid, food industry, fatty acids, atherosclerosis

Procedia PDF Downloads 526
4624 Analysis of EEG Signals Using Wavelet Entropy and Approximate Entropy: A Case Study on Depression Patients

Authors: Subha D. Puthankattil, Paul K. Joseph

Abstract:

Analyzing brain signals of the patients suffering from the state of depression may lead to interesting observations in the signal parameters that is quite different from a normal control. The present study adopts two different methods: Time frequency domain and nonlinear method for the analysis of EEG signals acquired from depression patients and age and sex matched normal controls. The time frequency domain analysis is realized using wavelet entropy and approximate entropy is employed for the nonlinear method of analysis. The ability of the signal processing technique and the nonlinear method in differentiating the physiological aspects of the brain state are revealed using Wavelet entropy and Approximate entropy.

Keywords: EEG, depression, wavelet entropy, approximate entropy, relative wavelet energy, multiresolution decomposition

Procedia PDF Downloads 317