Search results for: enterprise data warehouse
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 25515

Search results for: enterprise data warehouse

24495 An Exploratory Study on Business Leadership, Workplace Assessment, and Change Management in the Middle East and North Africa

Authors: C. Akhras

Abstract:

Change is the life blood of business. Dynamic factors inspire change yet may act as barriers, influencing the company’s position in the market and challenging its organizational mission and culture. Today, the business context has globalized with business enterprises in the North and South joint in mergers and the East forges a strategic alliance with the West. Moreover, given that very little remains stable in certain industries, national business goals in the millennial marketplaces might be rapid, accelerated, and differentiated growth while distinctive competitive advantage might mark new qualitative excellence in others. In a new age culture marked by change, organizations, leaders, and followers are impacted; indigenous business leaders seem to have a very important role to play in change management. This case study was carried out on 178 business employees employed in local industry to evaluate perceptions of indigenous business leadership, workplace assessment, and organizational change management in the Middle East and North Africa. Three research questions were posed: (1) In your work context, do you think business leaders are essentially changing agents? (2) In your work context, is workplace change more effective in business leaders perceived as a hierarchical change agent rather than those perceived as an empowering change agent? (3) In your work context, is workplace change more efficient in business leaders perceived as a hierarchical change agent rather than those perceived as an empowering change agent? The results of the study and its limitations imposed by time and space indicate that more comprehensive research is required in this area.

Keywords: catalyst, change management, business enterprise, workplace assessment

Procedia PDF Downloads 291
24494 Process Data-Driven Representation of Abnormalities for Efficient Process Control

Authors: Hyun-Woo Cho

Abstract:

Unexpected operational events or abnormalities of industrial processes have a serious impact on the quality of final product of interest. In terms of statistical process control, fault detection and diagnosis of processes is one of the essential tasks needed to run the process safely. In this work, nonlinear representation of process measurement data is presented and evaluated using a simulation process. The effect of using different representation methods on the diagnosis performance is tested in terms of computational efficiency and data handling. The results have shown that the nonlinear representation technique produced more reliable diagnosis results and outperforms linear methods. The use of data filtering step improved computational speed and diagnosis performance for test data sets. The presented scheme is different from existing ones in that it attempts to extract the fault pattern in the reduced space, not in the original process variable space. Thus this scheme helps to reduce the sensitivity of empirical models to noise.

Keywords: fault diagnosis, nonlinear technique, process data, reduced spaces

Procedia PDF Downloads 247
24493 Psychosocial Risks and Occupational Health in a Mexican Small and Medium-Sized Enterprises

Authors: Magdalena Escamilla Quintal, Thelma Cetina Canto, Cecilia Aguilar Ortega

Abstract:

Due to the importance that people represent for companies, the setting of a clear control of the risks that threaten the health and the material and financial resources of workers is essential. It is irrelevant if the company is a small and medium-sized enterprise (SME) or a large multinational, or if it is in the construction or service sector. The risk prevention importance is related to a constitutional and human right that all people have; working in a risk-free environment to prevent accidents or illnesses that may influence their quality of life and the tranquility of their family. Therefore, the objective of this study was to determine the level of psychosocial risks (physical and emotional) of the employees of an SME. The participants of this study were 186 employees of a productive sector SME; 151 men and 35 women, all with an average age of 31.77 years. Their seniority inside the SME was between one month and 19.91 years. Ninety-six workers were from the production area, 28 from the management area, as well as 25 from the sales area and 40 from the supplies area. Ninety-three workers were found in Uman, 78 in Playa del Carmen, 11 in Cancun and seven in Cd. del Carmen. We found a statistically significant relationship between the burnout variable and the engagement and psychosomatic complaints as well as between the variables of sex, burnout and psychosomatic complaints. We can conclude that, for benefit of the SME, that there are low levels of burnout and psychosomatic complaints, the women experience major levels of burnout and the men show major levels of psychosomatic complaints. The findings, contributions, limitations and future proposals will be analyzed.

Keywords: psychosocial risks, SME, burnout, engagement, psychosomatic complaints

Procedia PDF Downloads 366
24492 Text-to-Speech in Azerbaijani Language via Transfer Learning in a Low Resource Environment

Authors: Dzhavidan Zeinalov, Bugra Sen, Firangiz Aslanova

Abstract:

Most text-to-speech models cannot operate well in low-resource languages and require a great amount of high-quality training data to be considered good enough. Yet, with the improvements made in ASR systems, it is now much easier than ever to collect data for the design of custom text-to-speech models. In this work, our work on using the ASR model to collect data to build a viable text-to-speech system for one of the leading financial institutions of Azerbaijan will be outlined. NVIDIA’s implementation of the Tacotron 2 model was utilized along with the HiFiGAN vocoder. As for the training, the model was first trained with high-quality audio data collected from the Internet, then fine-tuned on the bank’s single speaker call center data. The results were then evaluated by 50 different listeners and got a mean opinion score of 4.17, displaying that our method is indeed viable. With this, we have successfully designed the first text-to-speech model in Azerbaijani and publicly shared 12 hours of audiobook data for everyone to use.

Keywords: Azerbaijani language, HiFiGAN, Tacotron 2, text-to-speech, transfer learning, whisper

Procedia PDF Downloads 44
24491 An Empirical Evaluation of Performance of Machine Learning Techniques on Imbalanced Software Quality Data

Authors: Ruchika Malhotra, Megha Khanna

Abstract:

The development of change prediction models can help the software practitioners in planning testing and inspection resources at early phases of software development. However, a major challenge faced during the training process of any classification model is the imbalanced nature of the software quality data. A data with very few minority outcome categories leads to inefficient learning process and a classification model developed from the imbalanced data generally does not predict these minority categories correctly. Thus, for a given dataset, a minority of classes may be change prone whereas a majority of classes may be non-change prone. This study explores various alternatives for adeptly handling the imbalanced software quality data using different sampling methods and effective MetaCost learners. The study also analyzes and justifies the use of different performance metrics while dealing with the imbalanced data. In order to empirically validate different alternatives, the study uses change data from three application packages of open-source Android data set and evaluates the performance of six different machine learning techniques. The results of the study indicate extensive improvement in the performance of the classification models when using resampling method and robust performance measures.

Keywords: change proneness, empirical validation, imbalanced learning, machine learning techniques, object-oriented metrics

Procedia PDF Downloads 418
24490 Work in the Industry of the Future-Investigations of Human-Machine Interactions

Authors: S. Schröder, P. Ennen, T. Langer, S. Müller, M. Shehadeh, M. Haberstroh, F. Hees

Abstract:

Since a bit over a year ago, Festo AG and Co. KG, Festo Didactic SE, robomotion GmbH, the researchers of the Cybernetics-Lab IMA/ZLW and IfU, as well as the Human-Computer Interaction Center at the RWTH Aachen University, have been working together in the focal point of assembly competences to realize different scenarios in the field of human-machine interaction (HMI). In the framework of project ARIZ, questions concerning the future of production within the fourth industrial revolution are dealt with. There are many perspectives of human-robot collaboration that consist Industry 4.0 on an individual, organization and enterprise level, and these will be addressed in ARIZ. The aim of the ARIZ projects is to link AI-Approaches to assembly problems and to implement them as prototypes in demonstrators. To do so, island and flow based production scenarios will be simulated and realized as prototypes. These prototypes will serve as applications of flexible robotics as well as AI-based planning and control of production process. Using the demonstrators, human interaction strategies will be examined with an information system on one hand, and a robotic system on the other. During the tests, prototypes of workspaces that illustrate prospective production work forms will be represented. The human being will remain a central element in future productions and will increasingly be in charge of managerial tasks. Questions thus arise within the overall perspective, primarily concerning the role of humans within these technological revolutions, as well as their ability to act and design respectively to the acceptance of such systems. Roles, such as the 'Trainer' of intelligent systems may become a possibility in such assembly scenarios.

Keywords: human-machine interaction, information technology, island based production, assembly competences

Procedia PDF Downloads 205
24489 Variance-Aware Routing and Authentication Scheme for Harvesting Data in Cloud-Centric Wireless Sensor Networks

Authors: Olakanmi Oladayo Olufemi, Bamifewe Olusegun James, Badmus Yaya Opeyemi, Adegoke Kayode

Abstract:

The wireless sensor network (WSN) has made a significant contribution to the emergence of various intelligent services or cloud-based applications. Most of the time, these data are stored on a cloud platform for efficient management and sharing among different services or users. However, the sensitivity of the data makes them prone to various confidentiality and performance-related attacks during and after harvesting. Various security schemes have been developed to ensure the integrity and confidentiality of the WSNs' data. However, their specificity towards particular attacks and the resource constraint and heterogeneity of WSNs make most of these schemes imperfect. In this paper, we propose a secure variance-aware routing and authentication scheme with two-tier verification to collect, share, and manage WSN data. The scheme is capable of classifying WSN into different subnets, detecting any attempt of wormhole and black hole attack during harvesting, and enforcing access control on the harvested data stored in the cloud. The results of the analysis showed that the proposed scheme has more security functionalities than other related schemes, solves most of the WSNs and cloud security issues, prevents wormhole and black hole attacks, identifies the attackers during data harvesting, and enforces access control on the harvested data stored in the cloud at low computational, storage, and communication overheads.

Keywords: data block, heterogeneous IoT network, data harvesting, wormhole attack, blackhole attack access control

Procedia PDF Downloads 84
24488 Quality of Age Reporting from Tanzania 2012 Census Results: An Assessment Using Whipple’s Index, Myer’s Blended Index, and Age-Sex Accuracy Index

Authors: A. Sathiya Susuman, Hamisi F. Hamisi

Abstract:

Background: Many socio-economic and demographic data are age-sex attributed. However, a variety of irregularities and misstatement are noted with respect to age-related data and less to sex data because of its biological differences between the genders. Noting the misstatement/misreporting of age data regardless of its significance importance in demographics and epidemiological studies, this study aims at assessing the quality of 2012 Tanzania Population and Housing Census Results. Methods: Data for the analysis are downloaded from Tanzania National Bureau of Statistics. Age heaping and digit preference were measured using summary indices viz., Whipple’s index, Myers’ blended index, and Age-Sex Accuracy index. Results: The recorded Whipple’s index for both sexes was 154.43; male has the lowest index of about 152.65 while female has the highest index of about 156.07. For Myers’ blended index, the preferences were at digits ‘0’ and ‘5’ while avoidance were at digits ‘1’ and ‘3’ for both sexes. Finally, Age-sex index stood at 59.8 where sex ratio score was 5.82 and age ratio scores were 20.89 and 21.4 for males and female respectively. Conclusion: The evaluation of the 2012 PHC data using the demographic techniques has qualified the data inaccurate as the results of systematic heaping and digit preferences/avoidances. Thus, innovative methods in data collection along with measuring and minimizing errors using statistical techniques should be used to ensure accuracy of age data.

Keywords: age heaping, digit preference/avoidance, summary indices, Whipple’s index, Myer’s index, age-sex accuracy index

Procedia PDF Downloads 476
24487 [Keynote Talk]: Production Flow Coordination on Supply Chains: Brazilian Case Studies

Authors: Maico R. Severino, Laura G. Caixeta, Nadine M. Costa, Raísa L. T. Napoleão, Éverton F. V. Valle, Diego D. Calixto, Danielle Oliveira

Abstract:

One of the biggest barriers that companies find nowadays is the coordination of production flow in their Supply Chains (SC). In this study, coordination is understood as a mechanism for incorporating the entire production channel, with everyone involved focused on achieving the same goals. Sometimes, this coordination is attempted by the use of logistics practices or production plan and control methods. No papers were found in the literature that presented the combined use of logistics practices and production plan and control methods. The main objective of this paper is to propose solutions for six case studies combining logistics practices and Ordering Systems (OS). The methodology used in this study was a conceptual model of decision making. This model contains six phases: a) the analysis the types and characteristics of relationships in the SC; b) the choice of the OS; c) the choice of the logistics practices; d) the development of alternative proposals of combined use; e) the analysis of the consistency of the chosen alternative; f) the qualitative and quantitative assessment of the impact on the coordination of the production flow and the verification of applicability of the proposal in the real case. This study was conducted on six Brazilian SC of different sectors: footwear, food and beverages, garment, sugarcane, mineral and metal mechanical. The results from this study showed that there was improvement in the coordination of the production flow through the following proposals: a) for the footwear industry the use of Period Bath Control (PBC), Quick Response (QR) and Enterprise Resource Planning (ERP); b) for the food and beverage sector firstly the use of Electronic Data Interchange (EDI), ERP, Continuous Replenishment (CR) and Drum-Buffer-Rope Order (DBR) (for situations in which the plants of both companies are distant), and secondly EDI, ERP, Milk-Run and Review System Continues (for situations in which the plants of both companies are close); c) for the garment industry the use of Collaborative Planning, Forecasting, and Replenishment (CPFR) and Constant Work-In-Process (CONWIP) System; d) for the sugarcane sector the use of EDI, ERP and CONWIP System; e) for the mineral processes industry the use of Vendor Managed Inventory (VMI), EDI and MaxMin Control System; f) for the metal mechanical sector the use of CONWIP System and Continuous Replenishment (CR). It should be emphasized that the proposals are exclusively recommended for the relationship between client and supplier studied. Therefore, it cannot be generalized to other cases. However, what can be generalized is the methodology used to choose the best practices for each case. Based on the study, it can be concluded that the combined use of OS and logistics practices enable a better coordination of flow production on SC.

Keywords: supply chain management, production flow coordination, logistics practices, ordering systems

Procedia PDF Downloads 208
24486 Model for Introducing Products to New Customers through Decision Tree Using Algorithm C4.5 (J-48)

Authors: Komol Phaisarn, Anuphan Suttimarn, Vitchanan Keawtong, Kittisak Thongyoun, Chaiyos Jamsawang

Abstract:

This article is intended to analyze insurance information which contains information on the customer decision when purchasing life insurance pay package. The data were analyzed in order to present new customers with Life Insurance Perfect Pay package to meet new customers’ needs as much as possible. The basic data of insurance pay package were collect to get data mining; thus, reducing the scattering of information. The data were then classified in order to get decision model or decision tree using Algorithm C4.5 (J-48). In the classification, WEKA tools are used to form the model and testing datasets are used to test the decision tree for the accurate decision. The validation of this model in classifying showed that the accurate prediction was 68.43% while 31.25% were errors. The same set of data were then tested with other models, i.e. Naive Bayes and Zero R. The results showed that J-48 method could predict more accurately. So, the researcher applied the decision tree in writing the program used to introduce the product to new customers to persuade customers’ decision making in purchasing the insurance package that meets the new customers’ needs as much as possible.

Keywords: decision tree, data mining, customers, life insurance pay package

Procedia PDF Downloads 427
24485 On the Causes of Boko Haram Terrorism: Socio-Economic versus Religious Injunctions

Authors: Sogo Angel Olofinbiyi

Abstract:

There have been widespread assumptions across the globe that the root cause of Boko Haram terrorism in Nigeria is religious rather than socio-economic. An investigation into this dichotomy allowed this study to fully demonstrate that the root cause of Boko Haram’s terrorist actions emanates from the non-fulfillment of socio-economic goals that are prompted by the violation of fundamental human rights, corruption, poverty, unconstitutional and undemocratic practices in the northern part of the Nigerian state. To achieve its aim of establishing the root cause of the terrorism crisis in the latter country, the study critically appraised the socio-economic context of the insurgency by adopting one-on-one in-depth interviews involving forty (40) participants to interrogate the phenomenon. Empirical evidence from the study demonstrated that the evolution of Boko Haram terrorism was a response to socio-economic phlebotomy, political and moral putrescence, and the dehumanization of people that stem from a combination of decades of mismanagement and pervasive corruption by various Nigerian leaders. The study concludes that, as long as the endemic socio-economic problems caused by global capitalism vis-a-vis unequal hegemonic power exchange as expressed in socio-political, ethno-religious and cultural forms persist in the Nigerian society, the terrorism insurgency will recur and remain an inevitable enterprise and indeed a normal social reaction to every undesirable state of affairs. Based on the findings, the study urges the need for the amelioration of the conditions of the vast majority of the Nigerian populace by making socio-economic facilities available to them through the political state.

Keywords: Boko Haram Terrorism, insurgency, socio-economic, religious injunctions

Procedia PDF Downloads 184
24484 Exploring the Role of Data Mining in Crime Classification: A Systematic Literature Review

Authors: Faisal Muhibuddin, Ani Dijah Rahajoe

Abstract:

This in-depth exploration, through a systematic literature review, scrutinizes the nuanced role of data mining in the classification of criminal activities. The research focuses on investigating various methodological aspects and recent developments in leveraging data mining techniques to enhance the effectiveness and precision of crime categorization. Commencing with an exposition of the foundational concepts of crime classification and its evolutionary dynamics, this study details the paradigm shift from conventional methods towards approaches supported by data mining, addressing the challenges and complexities inherent in the modern crime landscape. Specifically, the research delves into various data mining techniques, including K-means clustering, Naïve Bayes, K-nearest neighbour, and clustering methods. A comprehensive review of the strengths and limitations of each technique provides insights into their respective contributions to improving crime classification models. The integration of diverse data sources takes centre stage in this research. A detailed analysis explores how the amalgamation of structured data (such as criminal records) and unstructured data (such as social media) can offer a holistic understanding of crime, enriching classification models with more profound insights. Furthermore, the study explores the temporal implications in crime classification, emphasizing the significance of considering temporal factors to comprehend long-term trends and seasonality. The availability of real-time data is also elucidated as a crucial element in enhancing responsiveness and accuracy in crime classification.

Keywords: data mining, classification algorithm, naïve bayes, k-means clustering, k-nearest neigbhor, crime, data analysis, sistematic literature review

Procedia PDF Downloads 64
24483 Assessing Supply Chain Performance through Data Mining Techniques: A Case of Automotive Industry

Authors: Emin Gundogar, Burak Erkayman, Nusret Sazak

Abstract:

Providing effective management performance through the whole supply chain is critical issue and hard to applicate. The proper evaluation of integrated data may conclude with accurate information. Analysing the supply chain data through OLAP (On-Line Analytical Processing) technologies may provide multi-angle view of the work and consolidation. In this study, association rules and classification techniques are applied to measure the supply chain performance metrics of an automotive manufacturer in Turkey. Main criteria and important rules are determined. The comparison of the results of the algorithms is presented.

Keywords: supply chain performance, performance measurement, data mining, automotive

Procedia PDF Downloads 513
24482 Multimodal Data Fusion Techniques in Audiovisual Speech Recognition

Authors: Hadeer M. Sayed, Hesham E. El Deeb, Shereen A. Taie

Abstract:

In the big data era, we are facing a diversity of datasets from different sources in different domains that describe a single life event. These datasets consist of multiple modalities, each of which has a different representation, distribution, scale, and density. Multimodal fusion is the concept of integrating information from multiple modalities in a joint representation with the goal of predicting an outcome through a classification task or regression task. In this paper, multimodal fusion techniques are classified into two main classes: model-agnostic techniques and model-based approaches. It provides a comprehensive study of recent research in each class and outlines the benefits and limitations of each of them. Furthermore, the audiovisual speech recognition task is expressed as a case study of multimodal data fusion approaches, and the open issues through the limitations of the current studies are presented. This paper can be considered a powerful guide for interested researchers in the field of multimodal data fusion and audiovisual speech recognition particularly.

Keywords: multimodal data, data fusion, audio-visual speech recognition, neural networks

Procedia PDF Downloads 111
24481 Investigating the Feasibility of Berry Production in Central Oregon under Protected and Unprotected Culture

Authors: Clare S. Sullivan

Abstract:

The high desert of central Oregon, USA is a challenging growing environment: short growing season (70-100 days); average annual precipitation of 280 mm; drastic swings in diurnal temperatures; possibility of frost any time of year; and sandy soils low in organic matter. Despite strong demand, there is almost no fruit grown in central Oregon due to potential yield loss caused by early and late frosts. Elsewhere in the USA, protected culture (i.e., high tunnels) has been used to extend fruit production seasons and improve yields. In central Oregon, high tunnels are used to grow multiple high-value vegetable crops, and farmers are unlikely to plant a perennial crop in a high tunnel unless proven profitable. In May 2019, two berry trials were established on a farm in Alfalfa, OR, to evaluate raspberry and strawberry yield, season length, and fruit quality in protected (high tunnels) vs. unprotected culture (open field). The main objective was to determine whether high tunnel berry production is a viable enterprise for the region. Each trial was arranged using a split-plot design. The main factor was the production system (high tunnel vs. open field), and the replicated, subplot factor was berry variety. Four day-neutral strawberry varieties and four primocane-bearing raspberry varieties were planted for the study and were managed using organic practices. Berries were harvested once a week early in the season, and twice a week as production increased. Harvested berries were separated into ‘marketable’ and ‘unmarketable’ in order to calculate percent cull. First-year results revealed berry yield and quality differences between varieties and production systems. Strawberry marketable yield and berry fruit size increased significantly in the high tunnel compared to the field; percent yield increase ranged from 7-46% by variety. Evie 2 was the highest yielding strawberry, although berry quality was lower than other berries. Raspberry marketable yield and berry fruit size tended to increase in the high tunnel compared to the field, although variety had a more significant effect. Joan J was the highest yielding raspberry and out-yielded the other varieties by 250% outdoor and 350% indoor. Overall, strawberry and raspberry yields tended to improve in high tunnels as compared to the field, but data from a second year will help determine whether high tunnel investment is worthwhile. It is expected that the production system will have more of an effect on berry yield and season length for second-year plants in 2020.

Keywords: berries, high tunnel, local food, organic

Procedia PDF Downloads 118
24480 The Reasons and the Practical Benefits Behind the Motivation of Businesses to Participate in the Dual Education System (DLS)

Authors: Ainur Bulasheva

Abstract:

During the last decade, the dual learning system (DLS) has been actively introduced in various industries in Kazakhstan, including both vocational, post-secondary, and higher education levels. It is a relatively new practice-oriented approach to training qualified personnel in Kazakhstan, officially introduced in 2012. Dual learning was integrated from the German vocational education and training system, combining practical training with part-time work in production and training in an educational institution. The policy of DLS has increasingly focused on decreasing youth unemployment and the shortage of mid-level professionals by providing incentives for employers to involve in this system. By participating directly in the educational process, the enterprise strives to train its future personnel to meet fast-changing market demands. This study examines the effectiveness of DLS from the perspective of employers to understand the motivations of businesses to participate (invest) in this program. The human capital theory of Backer, which predicts that employers will invest in training their workers (in our case, dual students) when they expect that the return on investment will be greater than the cost - acts as a starting point. Further extensionists of this theory will be considered to understand investing intentions of businesses. By comparing perceptions of DLS employers and non-dual practices, this study determines the efficiency of promoted training approach for enterprises in the Kazakhstan agri-food industry.

Keywords: vocational and technical education, dualeducation, human capital theory, argi-food industry

Procedia PDF Downloads 69
24479 Back to Basics: Redefining Quality Measurement for Hybrid Software Development Organizations

Authors: Satya Pradhan, Venky Nanniyur

Abstract:

As the software industry transitions from a license-based model to a subscription-based Software-as-a-Service (SaaS) model, many software development groups are using a hybrid development model that incorporates Agile and Waterfall methodologies in different parts of the organization. The traditional metrics used for measuring software quality in Waterfall or Agile paradigms do not apply to this new hybrid methodology. In addition, to respond to higher quality demands from customers and to gain a competitive advantage in the market, many companies are starting to prioritize quality as a strategic differentiator. As a result, quality metrics are included in the decision-making activities all the way up to the executive level, including board of director reviews. This paper presents key challenges associated with measuring software quality in organizations using the hybrid development model. We introduce a framework called Prevention-Inspection-Evaluation-Removal (PIER) to provide a comprehensive metric definition for hybrid organizations. The framework includes quality measurements, quality enforcement, and quality decision points at different organizational levels and project milestones. The metrics framework defined in this paper is being used for all Cisco systems products used in customer premises. We present several field metrics for one product portfolio (enterprise networking) to show the effectiveness of the proposed measurement system. As the results show, this metrics framework has significantly improved in-process defect management as well as field quality.

Keywords: quality management system, quality metrics framework, quality metrics, agile, waterfall, hybrid development system

Procedia PDF Downloads 174
24478 The Study of Dengue Fever Outbreak in Thailand Using Geospatial Techniques, Satellite Remote Sensing Data and Big Data

Authors: Tanapat Chongkamunkong

Abstract:

The objective of this paper is to present a practical use of Geographic Information System (GIS) to the public health from spatial correlation between multiple factors and dengue fever outbreak. Meteorological factors, demographic factors and environmental factors are compiled using GIS techniques along with the Global Satellite Mapping Remote Sensing (RS) data. We use monthly dengue fever cases, population density, precipitation, Digital Elevation Model (DEM) data. The scope cover study area under climate change of the El Niño–Southern Oscillation (ENSO) indicated by sea surface temperature (SST) and study area in 12 provinces of Thailand as remote sensing (RS) data from January 2007 to December 2014.

Keywords: dengue fever, sea surface temperature, Geographic Information System (GIS), remote sensing

Procedia PDF Downloads 198
24477 Model of Optimal Centroids Approach for Multivariate Data Classification

Authors: Pham Van Nha, Le Cam Binh

Abstract:

Particle swarm optimization (PSO) is a population-based stochastic optimization algorithm. PSO was inspired by the natural behavior of birds and fish in migration and foraging for food. PSO is considered as a multidisciplinary optimization model that can be applied in various optimization problems. PSO’s ideas are simple and easy to understand but PSO is only applied in simple model problems. We think that in order to expand the applicability of PSO in complex problems, PSO should be described more explicitly in the form of a mathematical model. In this paper, we represent PSO in a mathematical model and apply in the multivariate data classification. First, PSOs general mathematical model (MPSO) is analyzed as a universal optimization model. Then, Model of Optimal Centroids (MOC) is proposed for the multivariate data classification. Experiments were conducted on some benchmark data sets to prove the effectiveness of MOC compared with several proposed schemes.

Keywords: analysis of optimization, artificial intelligence based optimization, optimization for learning and data analysis, global optimization

Procedia PDF Downloads 208
24476 Study of Inhibition of the End Effect Based on AR Model Predict of Combined Data Extension and Window Function

Authors: Pan Hongxia, Wang Zhenhua

Abstract:

In this paper, the EMD decomposition in the process of endpoint effect adopted data based on AR model to predict the continuation and window function method of combining the two effective inhibition. Proven by simulation of the simulation signal obtained the ideal effect, then, apply this method to the gearbox test data is also achieved good effect in the process, for the analysis of the subsequent data processing to improve the calculation accuracy. In the end, under various working conditions for the gearbox fault diagnosis laid a good foundation.

Keywords: gearbox, fault diagnosis, ar model, end effect

Procedia PDF Downloads 366
24475 Exploring the Intersection Between the General Data Protection Regulation and the Artificial Intelligence Act

Authors: Maria Jędrzejczak, Patryk Pieniążek

Abstract:

The European legal reality is on the eve of significant change. In European Union law, there is talk of a “fourth industrial revolution”, which is driven by massive data resources linked to powerful algorithms and powerful computing capacity. The above is closely linked to technological developments in the area of artificial intelligence, which has prompted an analysis covering both the legal environment as well as the economic and social impact, also from an ethical perspective. The discussion on the regulation of artificial intelligence is one of the most serious yet widely held at both European Union and Member State level. The literature expects legal solutions to guarantee security for fundamental rights, including privacy, in artificial intelligence systems. There is no doubt that personal data have been increasingly processed in recent years. It would be impossible for artificial intelligence to function without processing large amounts of data (both personal and non-personal). The main driving force behind the current development of artificial intelligence is advances in computing, but also the increasing availability of data. High-quality data are crucial to the effectiveness of many artificial intelligence systems, particularly when using techniques involving model training. The use of computers and artificial intelligence technology allows for an increase in the speed and efficiency of the actions taken, but also creates security risks for the data processed of an unprecedented magnitude. The proposed regulation in the field of artificial intelligence requires analysis in terms of its impact on the regulation on personal data protection. It is necessary to determine what the mutual relationship between these regulations is and what areas are particularly important in the personal data protection regulation for processing personal data in artificial intelligence systems. The adopted axis of considerations is a preliminary assessment of two issues: 1) what principles of data protection should be applied in particular during processing personal data in artificial intelligence systems, 2) what regulation on liability for personal data breaches is in such systems. The need to change the regulations regarding the rights and obligations of data subjects and entities processing personal data cannot be excluded. It is possible that changes will be required in the provisions regarding the assignment of liability for a breach of personal data protection processed in artificial intelligence systems. The research process in this case concerns the identification of areas in the field of personal data protection that are particularly important (and may require re-regulation) due to the introduction of the proposed legal regulation regarding artificial intelligence. The main question that the authors want to answer is how the European Union regulation against data protection breaches in artificial intelligence systems is shaping up. The answer to this question will include examples to illustrate the practical implications of these legal regulations.

Keywords: data protection law, personal data, AI law, personal data breach

Procedia PDF Downloads 65
24474 A Method for Identifying Unusual Transactions in E-commerce Through Extended Data Flow Conformance Checking

Authors: Handie Pramana Putra, Ani Dijah Rahajoe

Abstract:

The proliferation of smart devices and advancements in mobile communication technologies have permeated various facets of life with the widespread influence of e-commerce. Detecting abnormal transactions holds paramount significance in this realm due to the potential for substantial financial losses. Moreover, the fusion of data flow and control flow assumes a critical role in the exploration of process modeling and data analysis, contributing significantly to the accuracy and security of business processes. This paper introduces an alternative approach to identify abnormal transactions through a model that integrates both data and control flows. Referred to as the Extended Data Petri net (DPNE), our model encapsulates the entire process, encompassing user login to the e-commerce platform and concluding with the payment stage, including the mobile transaction process. We scrutinize the model's structure, formulate an algorithm for detecting anomalies in pertinent data, and elucidate the rationale and efficacy of the comprehensive system model. A case study validates the responsive performance of each system component, demonstrating the system's adeptness in evaluating every activity within mobile transactions. Ultimately, the results of anomaly detection are derived through a thorough and comprehensive analysis.

Keywords: database, data analysis, DPNE, extended data flow, e-commerce

Procedia PDF Downloads 56
24473 Partnership Oriented Innovation Alliance Strategy Based on Market Feedback

Authors: Victor Romanov, Daria Efimenko

Abstract:

The focus on innovation in modern economy is the main factor in surviving business in a competitive environment. The innovations are based on the search and use of knowledge in a global context. Nowadays consumers and market demand are the main innovation drivers. This leads to build a business as a system with feedback, promptly restructuring production and innovation implementation in response to market demands. In modern knowledge economy, because of speed of technical progress, the product's lifecycle became much shorter, what makes more stringent requirements for innovation implementation on the enterprises of and therefore the possibility for enterprise for receiving extra income is decreasing. This circumstance imposes additional requirements for the replacement of obsolete products and the prompt release of innovative products to the market. The development of information technologies has led to the fact that only in the conditions of partnership and knowledge sharing with partners it is possible to update products quickly for innovative products. Many companies pay attention to updating innovations through the search for new partners, but the task of finding new partners presents some difficulties. The search for a suitable one includes several stages such as: determining the moment of innovation-critical, introducing a search, identifying search criteria, justifying and deciding on the choice of a partner. No less important is the question of how to manage an innovative product in response to a changing market. The article considers the problems of information support for the search for the source of innovation and partnership to decrease the time for implementation of novelty products.

Keywords: partnership, novelty, market feedback, alliance

Procedia PDF Downloads 194
24472 Advanced Analytical Competency Is Necessary for Strategic Leadership to Achieve High-Quality Decision-Making

Authors: Amal Mohammed Alqahatni

Abstract:

This paper is a non-empirical analysis of existing literature on digital leadership competency, data-driven organizations, and dealing with AI technology (big data). This paper will provide insights into the importance of developing the leader’s analytical skills and style to be more effective for high-quality decision-making in a data-driven organization and achieve creativity during the organization's transformation to be digitalized. Despite the enormous potential that big data has, there are not enough experts in the field. Many organizations faced an issue with leadership style, which was considered an obstacle to organizational improvement. It investigates the obstacles to leadership style in this context and the challenges leaders face in coaching and development. The leader's lack of analytical skill with AI technology, such as big data tools, was noticed, as was the lack of understanding of the value of that data, resulting in poor communication with others, especially in meetings when the decision should be made. By acknowledging the different dynamics of work competency and organizational structure and culture, organizations can make the necessary adjustments to best support their leaders. This paper reviews prior research studies and applies what is known to assist with current obstacles. This paper addresses how analytical leadership will assist in overcoming challenges in a data-driven organization's work environment.

Keywords: digital leadership, big data, leadership style, digital leadership challenge

Procedia PDF Downloads 69
24471 Analysis of Operating Speed on Four-Lane Divided Highways under Mixed Traffic Conditions

Authors: Chaitanya Varma, Arpan Mehar

Abstract:

The present study demonstrates the procedure to analyse speed data collected on various four-lane divided sections in India. Field data for the study was collected at different straight and curved sections on rural highways with the help of radar speed gun and video camera. The data collected at the sections were analysed and parameters pertain to speed distributions were estimated. The different statistical distribution was analysed on vehicle type speed data and for mixed traffic speed data. It was found that vehicle type speed data was either follows the normal distribution or Log-normal distribution, whereas the mixed traffic speed data follows more than one type of statistical distribution. The most common fit observed on mixed traffic speed data were Beta distribution and Weibull distribution. The separate operating speed model based on traffic and roadway geometric parameters were proposed in the present study. The operating speed model with traffic parameters and curve geometry parameters were established. Two different operating speed models were proposed with variables 1/R and Ln(R) and were found to be realistic with a different range of curve radius. The models developed in the present study are simple and realistic and can be used for forecasting operating speed on four-lane highways.

Keywords: highway, mixed traffic flow, modeling, operating speed

Procedia PDF Downloads 460
24470 Accurate HLA Typing at High-Digit Resolution from NGS Data

Authors: Yazhi Huang, Jing Yang, Dingge Ying, Yan Zhang, Vorasuk Shotelersuk, Nattiya Hirankarn, Pak Chung Sham, Yu Lung Lau, Wanling Yang

Abstract:

Human leukocyte antigen (HLA) typing from next generation sequencing (NGS) data has the potential for applications in clinical laboratories and population genetic studies. Here we introduce a novel technique for HLA typing from NGS data based on read-mapping using a comprehensive reference panel containing all known HLA alleles and de novo assembly of the gene-specific short reads. An accurate HLA typing at high-digit resolution was achieved when it was tested on publicly available NGS data, outperforming other newly-developed tools such as HLAminer and PHLAT.

Keywords: human leukocyte antigens, next generation sequencing, whole exome sequencing, HLA typing

Procedia PDF Downloads 663
24469 Early Childhood Education: Teachers Ability to Assess

Authors: Ade Dwi Utami

Abstract:

Pedagogic competence is the basic competence of teachers to perform their tasks as educators. The ability to assess has become one of the demands in teachers pedagogic competence. Teachers ability to assess is related to curriculum instructions and applications. This research is aimed at obtaining data concerning teachers ability to assess that comprises of understanding assessment, determining assessment type, tools and procedure, conducting assessment process, and using assessment result information. It uses mixed method of explanatory technique in which qualitative data is used to verify the quantitative data obtained through a survey. The technique of quantitative data collection is by test whereas the qualitative data collection is by observation, interview and documentation. Then, the analyzed data is processed through a proportion study technique to be categorized into high, medium and low. The result of the research shows that teachers ability to assess can be grouped into 3 namely, 2% of high, 4% of medium and 94% of low. The data shows that teachers ability to assess is still relatively low. Teachers are lack of knowledge and comprehension in assessment application. The statement is verified by the qualitative data showing that teachers did not state which aspect was assessed in learning, record children’s behavior, and use the data result as a consideration to design a program. Teachers have assessment documents yet they only serve as means of completing teachers administration for the certification program. Thus, assessment documents were not used with the basis of acquired knowledge. The condition should become a consideration of the education institution of educators and the government to improve teachers pedagogic competence, including the ability to assess.

Keywords: assessment, early childhood education, pedagogic competence, teachers

Procedia PDF Downloads 245
24468 Statistical Analysis for Overdispersed Medical Count Data

Authors: Y. N. Phang, E. F. Loh

Abstract:

Many researchers have suggested the use of zero inflated Poisson (ZIP) and zero inflated negative binomial (ZINB) models in modeling over-dispersed medical count data with extra variations caused by extra zeros and unobserved heterogeneity. The studies indicate that ZIP and ZINB always provide better fit than using the normal Poisson and negative binomial models in modeling over-dispersed medical count data. In this study, we proposed the use of Zero Inflated Inverse Trinomial (ZIIT), Zero Inflated Poisson Inverse Gaussian (ZIPIG) and zero inflated strict arcsine models in modeling over-dispersed medical count data. These proposed models are not widely used by many researchers especially in the medical field. The results show that these three suggested models can serve as alternative models in modeling over-dispersed medical count data. This is supported by the application of these suggested models to a real life medical data set. Inverse trinomial, Poisson inverse Gaussian, and strict arcsine are discrete distributions with cubic variance function of mean. Therefore, ZIIT, ZIPIG and ZISA are able to accommodate data with excess zeros and very heavy tailed. They are recommended to be used in modeling over-dispersed medical count data when ZIP and ZINB are inadequate.

Keywords: zero inflated, inverse trinomial distribution, Poisson inverse Gaussian distribution, strict arcsine distribution, Pearson’s goodness of fit

Procedia PDF Downloads 542
24467 Monotone Rational Trigonometric Interpolation

Authors: Uzma Bashir, Jamaludin Md. Ali

Abstract:

This study is concerned with the visualization of monotone data using a piece-wise C1 rational trigonometric interpolating scheme. Four positive shape parameters are incorporated in the structure of rational trigonometric spline. Conditions on two of these parameters are derived to attain the monotonicity of monotone data and other two are left-free. Figures are used widely to exhibit that the proposed scheme produces graphically smooth monotone curves.

Keywords: trigonometric splines, monotone data, shape preserving, C1 monotone interpolant

Procedia PDF Downloads 271
24466 GPU-Based Back-Projection of Synthetic Aperture Radar (SAR) Data onto 3D Reference Voxels

Authors: Joshua Buli, David Pietrowski, Samuel Britton

Abstract:

Processing SAR data usually requires constraints in extent in the Fourier domain as well as approximations and interpolations onto a planar surface to form an exploitable image. This results in a potential loss of data requires several interpolative techniques, and restricts visualization to two-dimensional plane imagery. The data can be interpolated into a ground plane projection, with or without terrain as a component, all to better view SAR data in an image domain comparable to what a human would view, to ease interpretation. An alternate but computationally heavy method to make use of more of the data is the basis of this research. Pre-processing of the SAR data is completed first (matched-filtering, motion compensation, etc.), the data is then range compressed, and lastly, the contribution from each pulse is determined for each specific point in space by searching the time history data for the reflectivity values for each pulse summed over the entire collection. This results in a per-3D-point reflectivity using the entire collection domain. New advances in GPU processing have finally allowed this rapid projection of acquired SAR data onto any desired reference surface (called backprojection). Mathematically, the computations are fast and easy to implement, despite limitations in SAR phase history data size and 3D-point cloud size. Backprojection processing algorithms are embarrassingly parallel since each 3D point in the scene has the same reflectivity calculation applied for all pulses, independent of all other 3D points and pulse data under consideration. Therefore, given the simplicity of the single backprojection calculation, the work can be spread across thousands of GPU threads allowing for accurate reflectivity representation of a scene. Furthermore, because reflectivity values are associated with individual three-dimensional points, a plane is no longer the sole permissible mapping base; a digital elevation model or even a cloud of points (collected from any sensor capable of measuring ground topography) can be used as a basis for the backprojection technique. This technique minimizes any interpolations and modifications of the raw data, maintaining maximum data integrity. This innovative processing will allow for SAR data to be rapidly brought into a common reference frame for immediate exploitation and data fusion with other three-dimensional data and representations.

Keywords: backprojection, data fusion, exploitation, three-dimensional, visualization

Procedia PDF Downloads 85