Search results for: energy anomaly detection
10790 Energy Performance of Buildings Due to Downscaled Seasonal Models
Authors: Anastasia K. Eleftheriadou, Athanasios Sfetsos, Nikolaos Gounaris
Abstract:
The present work examines the suitability of a seasonal forecasting model downscaled with a very high spatial resolution in order to assess the energy performance and requirements of buildings. The application of the developed model is applied on Greece for a period and with a forecast horizon of 5 months in the future. Greece, as a country in the middle of a financial crisis and facing serious societal challenges, is also very sensitive to climate changes. The commonly used method for the correlation of climate change with the buildings energy consumption is the concept of Degree Days (DD). This method can be applied to heating and cooling systems for a better management of environmental, economic and energy crisis, and can be used as medium (3-6 months) planning tools in order to predict the building needs and country’s requirements for residential energy use.Keywords: downscaled seasonal models, degree days, energy performance
Procedia PDF Downloads 45610789 Engineering Strategies Towards Improvement in Energy Storage Performance of Ceramic Capacitors for Pulsed Power Applications
Authors: Abdul Manan
Abstract:
The necessity for efficient and cost-effective energy storage devices to intelligently store the inconsistent energy output from modern renewable energy sources is peaked today. The scientific community is struggling to identify the appropriate material system for energy storage applications. Countless contributions by researchers worldwide have now helped us identify the possible snags and limitations associated with each material/method. Energy storage has attracted great attention for its use in portable electronic devices military field. Different devices, such as dielectric capacitors, supercapacitors, and batteries, are used for energy storage. Of these, dielectric capacitors have high energy output, a long life cycle, fast charging and discharging capabilities, work at high temperatures, and excellent fatigue resistance. The energy storage characteristics have been studied to be highly affected by various factors, such as grain size, optimized compositions, grain orientation, energy band gap, processing techniques, defect engineering, core-shell formation, interface engineering, electronegativity difference, the addition of additives, density, secondary phases, the difference of Pmax-Pr, sample thickness, area of the electrode, testing frequency, and AC/DC conditions. The data regarding these parameters/factors are scattered in the literature, and the aim of this study is to gather the data into a single paper that will be beneficial for new researchers in the field of interest. Furthermore, control over and optimizing these parameters will lead to enhancing the energy storage properties.Keywords: strategies, ceramics, energy storage, capacitors
Procedia PDF Downloads 8210788 A Comparative Study of Malware Detection Techniques Using Machine Learning Methods
Authors: Cristina Vatamanu, Doina Cosovan, Dragos Gavrilut, Henri Luchian
Abstract:
In the past few years, the amount of malicious software increased exponentially and, therefore, machine learning algorithms became instrumental in identifying clean and malware files through semi-automated classification. When working with very large datasets, the major challenge is to reach both a very high malware detection rate and a very low false positive rate. Another challenge is to minimize the time needed for the machine learning algorithm to do so. This paper presents a comparative study between different machine learning techniques such as linear classifiers, ensembles, decision trees or various hybrids thereof. The training dataset consists of approximately 2 million clean files and 200.000 infected files, which is a realistic quantitative mixture. The paper investigates the above mentioned methods with respect to both their performance (detection rate and false positive rate) and their practicability.Keywords: ensembles, false positives, feature selection, one side class algorithm
Procedia PDF Downloads 29310787 Energy Use, Emissions, Economic Growth and Trade: Evidence from Mauritius
Authors: B. Seetanah, H. Neeliah
Abstract:
This paper investigates the relationship among energy, emissions and economic growth in Mauritius in the presence of trade activities, with capital and labour as other control variables. Using annual data from 1960 to 2011, it is found that the variables are non-stationary and cointegrated. The relationship among the various variables are thus examined in a dynamic VECM framework. Our empirical results comply with the growth hypothesis. Output elasticities of 0.17, 0.25 and 0.43 show that increases in energy consumption cause increases in economic growth, capital accumulation and trade in the long run. We also found that CO2 negatively affects output, but has no significant effect on trade. Findings for the long-run generally tend to tally with those in the short-run. Interestingly we found that energy consumption has a significant impact on CO2 emissions. Our results tend to suggest that implementing energy conservation strategies to mitigate the negative impact of CO2 emissions can dent economic growth, and that promoting cleaner energy production could be a better alternative for Mauritius.Keywords: energy, emissions, economic growth, export, VECM
Procedia PDF Downloads 48010786 Improve Divers Tracking and Classification in Sonar Images Using Robust Diver Wake Detection Algorithm
Authors: Mohammad Tarek Al Muallim, Ozhan Duzenli, Ceyhun Ilguy
Abstract:
Harbor protection systems are so important. The need for automatic protection systems has increased over the last years. Diver detection active sonar has great significance. It used to detect underwater threats such as divers and autonomous underwater vehicle. To automatically detect such threats the sonar image is processed by algorithms. These algorithms used to detect, track and classify of underwater objects. In this work, divers tracking and classification algorithm is improved be proposing a robust wake detection method. To detect objects the sonar images is normalized then segmented based on fixed threshold. Next, the centroids of the segments are found and clustered based on distance metric. Then to track the objects linear Kalman filter is applied. To reduce effect of noise and creation of false tracks, the Kalman tracker is fine tuned. The tuning is done based on our active sonar specifications. After the tracks are initialed and updated they are subjected to a filtering stage to eliminate the noisy and unstable tracks. Also to eliminate object with a speed out of the diver speed range such as buoys and fast boats. Afterwards the result tracks are subjected to a classification stage to deiced the type of the object been tracked. Here the classification stage is to deice wither if the tracked object is an open circuit diver or a close circuit diver. At the classification stage, a small area around the object is extracted and a novel wake detection method is applied. The morphological features of the object with his wake is extracted. We used support vector machine to find the best classifier. The sonar training images and the test images are collected by ARMELSAN Defense Technologies Company using the portable diver detection sonar ARAS-2023. After applying the algorithm to the test sonar data, we get fine and stable tracks of the divers. The total classification accuracy achieved with the diver type is 97%.Keywords: harbor protection, diver detection, active sonar, wake detection, diver classification
Procedia PDF Downloads 24010785 A Real-Time Moving Object Detection and Tracking Scheme and Its Implementation for Video Surveillance System
Authors: Mulugeta K. Tefera, Xiaolong Yang, Jian Liu
Abstract:
Detection and tracking of moving objects are very important in many application contexts such as detection and recognition of people, visual surveillance and automatic generation of video effect and so on. However, the task of detecting a real shape of an object in motion becomes tricky due to various challenges like dynamic scene changes, presence of shadow, and illumination variations due to light switch. For such systems, once the moving object is detected, tracking is also a crucial step for those applications that used in military defense, video surveillance, human computer interaction, and medical diagnostics as well as in commercial fields such as video games. In this paper, an object presents in dynamic background is detected using adaptive mixture of Gaussian based analysis of the video sequences. Then the detected moving object is tracked using the region based moving object tracking and inter-frame differential mechanisms to address the partial overlapping and occlusion problems. Firstly, the detection algorithm effectively detects and extracts the moving object target by enhancing and post processing morphological operations. Secondly, the extracted object uses region based moving object tracking and inter-frame difference to improve the tracking speed of real-time moving objects in different video frames. Finally, the plotting method was applied to detect the moving objects effectively and describes the object’s motion being tracked. The experiment has been performed on image sequences acquired both indoor and outdoor environments and one stationary and web camera has been used.Keywords: background modeling, Gaussian mixture model, inter-frame difference, object detection and tracking, video surveillance
Procedia PDF Downloads 48310784 An Explanatory Study Approach Using Artificial Intelligence to Forecast Solar Energy Outcome
Authors: Agada N. Ihuoma, Nagata Yasunori
Abstract:
Artificial intelligence (AI) techniques play a crucial role in predicting the expected energy outcome and its performance, analysis, modeling, and control of renewable energy. Renewable energy is becoming more popular for economic and environmental reasons. In the face of global energy consumption and increased depletion of most fossil fuels, the world is faced with the challenges of meeting the ever-increasing energy demands. Therefore, incorporating artificial intelligence to predict solar radiation outcomes from the intermittent sunlight is crucial to enable a balance between supply and demand of energy on loads, predict the performance and outcome of solar energy, enhance production planning and energy management, and ensure proper sizing of parameters when generating clean energy. However, one of the major problems of forecasting is the algorithms used to control, model, and predict performances of the energy systems, which are complicated and involves large computer power, differential equations, and time series. Also, having unreliable data (poor quality) for solar radiation over a geographical location as well as insufficient long series can be a bottleneck to actualization. To overcome these problems, this study employs the anaconda Navigator (Jupyter Notebook) for machine learning which can combine larger amounts of data with fast, iterative processing and intelligent algorithms allowing the software to learn automatically from patterns or features to predict the performance and outcome of Solar Energy which in turns enables the balance of supply and demand on loads as well as enhance production planning and energy management.Keywords: artificial Intelligence, backward elimination, linear regression, solar energy
Procedia PDF Downloads 16210783 Graph Neural Networks and Rotary Position Embedding for Voice Activity Detection
Authors: YingWei Tan, XueFeng Ding
Abstract:
Attention-based voice activity detection models have gained significant attention in recent years due to their fast training speed and ability to capture a wide contextual range. The inclusion of multi-head style and position embedding in the attention architecture are crucial. Having multiple attention heads allows for differential focus on different parts of the sequence, while position embedding provides guidance for modeling dependencies between elements at various positions in the input sequence. In this work, we propose an approach by considering each head as a node, enabling the application of graph neural networks (GNN) to identify correlations among the different nodes. In addition, we adopt an implementation named rotary position embedding (RoPE), which encodes absolute positional information into the input sequence by a rotation matrix, and naturally incorporates explicit relative position information into a self-attention module. We evaluate the effectiveness of our method on a synthetic dataset, and the results demonstrate its superiority over the baseline CRNN in scenarios with low signal-to-noise ratio and noise, while also exhibiting robustness across different noise types. In summary, our proposed framework effectively combines the strengths of CNN and RNN (LSTM), and further enhances detection performance through the integration of graph neural networks and rotary position embedding.Keywords: voice activity detection, CRNN, graph neural networks, rotary position embedding
Procedia PDF Downloads 7910782 A Tool to Measure Efficiency and Trust Towards eXplainable Artificial Intelligence in Conflict Detection Tasks
Authors: Raphael Tuor, Denis Lalanne
Abstract:
The ATM research community is missing suitable tools to design, test, and validate new UI prototypes. Important stakes underline the implementation of both DSS and XAI methods into current systems. ML-based DSS are gaining in relevance as ATFM becomes increasingly complex. However, these systems only prove useful if a human can understand them, and thus new XAI methods are needed. The human-machine dyad should work as a team and should understand each other. We present xSky, a configurable benchmark tool that allows us to compare different versions of an ATC interface in conflict detection tasks. Our main contributions to the ATC research community are (1) a conflict detection task simulator (xSky) that allows to test the applicability of visual prototypes on scenarios of varying difficulty and outputting relevant operational metrics (2) a theoretical approach to the explanations of AI-driven trajectory predictions. xSky addresses several issues that were identified within available research tools. Researchers can configure the dimensions affecting scenario difficulty with a simple CSV file. Both the content and appearance of the XAI elements can be customized in a few steps. As a proof-of-concept, we implemented an XAI prototype inspired by the maritime field.Keywords: air traffic control, air traffic simulation, conflict detection, explainable artificial intelligence, explainability, human-automation collaboration, human factors, information visualization, interpretability, trajectory prediction
Procedia PDF Downloads 16310781 Energy Efficient Lighting in Educational Buildings through the Example of a High School in Istanbul
Authors: Nihan Gurel Ulusan
Abstract:
It is obvious that electrical energy, which is an inseparable part of modern day’s human and also the most important power source of our age, should be generated on a level that will suffice the nation’s requirements. The electrical energy used for a sustainable architectural design should be reduced as much as possible. Designing the buildings as energy efficient systems which aim at reducing the artificial illumination loads has been a current subject of our times as a result of concepts gaining importance like conscious consumption of energy sources, environment-friendly designs and sustainability. Reducing the consumption of electrical energy regarding the artificial lighting carries great significance, especially in the volumes which are used all day long like the educational buildings. Starting out with such an aim in this paper, the educational buildings are explored in terms of energy efficient lighting. Firstly, illumination techniques, illumination systems, light sources, luminaries, illumination controls and 'efficient energy' usage in lighting are mentioned. In addition, natural and artificial lighting systems used in educational buildings and also the spaces building up these kind buildings are examined in terms of energy efficient lighting. Lastly, the illumination properties of the school sample chosen for this study, Kağıthane Anadolu Lisesi, a typical high school in Istanbul, is observed. Suggestions are made in order to improve the system by evaluating the illumination properties of the classes with the survey carried out with the users.Keywords: educational buildings, energy efficient, illumination techniques, lighting
Procedia PDF Downloads 28710780 Detection of Pharmaceutical Personal Protective Equipment in Video Stream
Authors: Michael Leontiev, Danil Zhilikov, Dmitry Lobanov, Lenar Klimov, Vyacheslav Chertan, Daniel Bobrov, Vladislav Maslov, Vasilii Vologdin, Ksenia Balabaeva
Abstract:
Pharmaceutical manufacturing is a complex process, where each stage requires a high level of safety and sterility. Personal Protective Equipment (PPE) is used for this purpose. Despite all the measures of control, the human factor (improper PPE wearing) causes numerous losses to human health and material property. This research proposes a solid computer vision system for ensuring safety in pharmaceutical laboratories. For this, we have tested a wide range of state-of-the-art object detection methods. Composing previously obtained results in this sphere with our own approach to this problem, we have reached a high accuracy ([email protected]) ranging from 0.77 up to 0.98 in detecting all the elements of a common set of PPE used in pharmaceutical laboratories. Our system is a step towards safe medicine production.Keywords: sterility and safety in pharmaceutical development, personal protective equipment, computer vision, object detection, monitoring in pharmaceutical development, PPE
Procedia PDF Downloads 9210779 Computer-Aided Classification of Liver Lesions Using Contrasting Features Difference
Authors: Hussein Alahmer, Amr Ahmed
Abstract:
Liver cancer is one of the common diseases that cause the death. Early detection is important to diagnose and reduce the incidence of death. Improvements in medical imaging and image processing techniques have significantly enhanced interpretation of medical images. Computer-Aided Diagnosis (CAD) systems based on these techniques play a vital role in the early detection of liver disease and hence reduce liver cancer death rate. This paper presents an automated CAD system consists of three stages; firstly, automatic liver segmentation and lesion’s detection. Secondly, extracting features. Finally, classifying liver lesions into benign and malignant by using the novel contrasting feature-difference approach. Several types of intensity, texture features are extracted from both; the lesion area and its surrounding normal liver tissue. The difference between the features of both areas is then used as the new lesion descriptors. Machine learning classifiers are then trained on the new descriptors to automatically classify liver lesions into benign or malignant. The experimental results show promising improvements. Moreover, the proposed approach can overcome the problems of varying ranges of intensity and textures between patients, demographics, and imaging devices and settings.Keywords: CAD system, difference of feature, fuzzy c means, lesion detection, liver segmentation
Procedia PDF Downloads 32810778 Efficiency-Based Model for Solar Urban Planning
Authors: M. F. Amado, A. Amado, F. Poggi, J. Correia de Freitas
Abstract:
Today it is widely understood that global energy consumption patterns are directly related to the ongoing urban expansion and development process. This expansion is based on the natural growth of human activities and has left most urban areas totally dependent on fossil fuel derived external energy inputs. This status-quo of production, transportation, storage and consumption of energy has become inefficient and is set to become even more so when the continuous increases in energy demand are factored in. The territorial management of land use and related activities is a central component in the search for more efficient models of energy use, models that can meet current and future regional, national and European goals. In this paper, a methodology is developed and discussed with the aim of improving energy efficiency at the municipal level. The development of this methodology is based on the monitoring of energy consumption and its use patterns resulting from the natural dynamism of human activities in the territory and can be utilized to assess sustainability at the local scale. A set of parameters and indicators are defined with the objective of constructing a systemic model based on the optimization, adaptation and innovation of the current energy framework and the associated energy consumption patterns. The use of the model will enable local governments to strike the necessary balance between human activities, economic development, and the local and global environment while safeguarding fairness in the energy sector.Keywords: solar urban planning, solar smart city, urban development, energy efficiency
Procedia PDF Downloads 33310777 A Method for Harvesting Atmospheric Lightning-Energy and Utilization of Extra Generated Power of Nuclear Power Plants during the Low Energy Demand Periods
Authors: Akbar Rahmani Nejad, Pejman Rahmani Nejad, Ahmad Rahmani Nejad
Abstract:
we proposed the arresting of atmospheric lightning and passing the electrical current of lightning-bolts through underground water tanks to produce Hydrogen and restoring Hydrogen in reservoirs to be used later as clean and sustainable energy. It is proposed to implement this method for storage of extra electrical power (instead of lightning energy) during low energy demand periods to produce hydrogen as a clean energy source to store in big reservoirs and later generate electricity by burning the stored hydrogen at an appropriate time. This method prevents the complicated process of changing the output power of nuclear power plants. It is possible to pass an electric current through sodium chloride solution to produce chlorine and sodium or human waste to produce Methane, etc. however atmospheric lightning is an accidental phenomenon, but using this free energy just by connecting the output of lightning arresters to the output of power plant during low energy demand period which there is no significant change in the design of power plant or have no cost, can be considered completely an economical designKeywords: hydrogen gas, lightning energy, power plant, resistive element
Procedia PDF Downloads 14510776 Simulation and Analysis of Passive Parameters of Building in eQuest: A Case Study in Istanbul, Turkey
Authors: Mahdiyeh Zafaranchi
Abstract:
With rapid development of urbanization and improvement of living standards in the world, energy consumption and carbon emissions of the building sector are expected to increase in the near future; because of that, energy-saving issues have become more important among the engineers. Besides, the building sector is a major contributor to energy consumption and carbon emissions. The concept of efficient building appeared as a response to the need for reducing energy demand in this sector which has the main purpose of shifting from standard buildings to low-energy buildings. Although energy-saving should happen in all steps of a building during the life cycle (material production, construction, demolition), the main concept of efficient energy building is saving energy during the life expectancy of a building by using passive and active systems, and should not sacrifice comfort and quality to reach these goals. The main aim of this study is to investigate passive strategies (do not need energy consumption or use renewable energy) to achieve energy-efficient buildings. Energy retrofit measures were explored by eQuest software using a case study as a base model. The study investigates predictive accuracy for the major factors like thermal transmittance (U-value) of the material, windows, shading devices, thermal insulation, rate of the exposed envelope, window/wall ration, lighting system in the energy consumption of the building. The base model was located in Istanbul, Turkey. The impact of eight passive parameters on energy consumption had been indicated. After analyzing the base model by eQuest, a final scenario was suggested which had a good energy performance. The results showed a decrease in the U-values of materials, the rate of exposing buildings, and windows had a significant effect on energy consumption. Finally, savings in electric consumption of about 10.5%, and gas consumption by about 8.37% in the suggested model were achieved annually.Keywords: efficient building, electric and gas consumption, eQuest, Passive parameters
Procedia PDF Downloads 11510775 Detection of Safety Goggles on Humans in Industrial Environment Using Faster-Region Based on Convolutional Neural Network with Rotated Bounding Box
Authors: Ankit Kamboj, Shikha Talwar, Nilesh Powar
Abstract:
To successfully deliver our products in the market, the employees need to be in a safe environment, especially in an industrial and manufacturing environment. The consequences of delinquency in wearing safety glasses while working in industrial plants could be high risk to employees, hence the need to develop a real-time automatic detection system which detects the persons (violators) not wearing safety glasses. In this study a convolutional neural network (CNN) algorithm called faster region based CNN (Faster RCNN) with rotated bounding box has been used for detecting safety glasses on persons; the algorithm has an advantage of detecting safety glasses with different orientation angles on the persons. The proposed method of rotational bounding boxes with a convolutional neural network first detects a person from the images, and then the method detects whether the person is wearing safety glasses or not. The video data is captured at the entrance of restricted zones of the industrial environment (manufacturing plant), which is further converted into images at 2 frames per second. In the first step, the CNN with pre-trained weights on COCO dataset is used for person detection where the detections are cropped as images. Then the safety goggles are labelled on the cropped images using the image labelling tool called roLabelImg, which is used to annotate the ground truth values of rotated objects more accurately, and the annotations obtained are further modified to depict four coordinates of the rectangular bounding box. Next, the faster RCNN with rotated bounding box is used to detect safety goggles, which is then compared with traditional bounding box faster RCNN in terms of detection accuracy (average precision), which shows the effectiveness of the proposed method for detection of rotatory objects. The deep learning benchmarking is done on a Dell workstation with a 16GB Nvidia GPU.Keywords: CNN, deep learning, faster RCNN, roLabelImg rotated bounding box, safety goggle detection
Procedia PDF Downloads 13410774 Economic Development and New Challenges: Biomass Energy and Sustainability
Authors: Fabricia G. F. S. Rossato, Ieda G. Hidalgo, Andres Susseta, Felipe Casale, Leticia H. Nakamiti
Abstract:
This research was conducted to show the useful source of biomass energy provided from forest waste and the black liquor from the pulping process. This energy source could be able to assist and improve its area environment in a sustainable way. The research will demonstrate the challenges from producing the biomass energy and the implantation of the pulp industry in the city of Três Lagoas, MS. – Brazil. Planted forest’s potential, energy production in the pulp industries and its consequence of impacts on the local region environmental was also studied and examined. The present study is classified as descriptive purposes as it exposes the characteristics of a given population and the means such as bibliographical and documentary. All the data and information collected and demonstrate in this study was carefully analyzed and provided from reliable sources such as official government agencies.Keywords: Brazil, pulp industry, renewable energy, Três Lagoas
Procedia PDF Downloads 33110773 A Policy Strategy for Building Energy Data Management in India
Authors: Shravani Itkelwar, Deepak Tewari, Bhaskar Natarajan
Abstract:
The energy consumption data plays a vital role in energy efficiency policy design, implementation, and impact assessment. Any demand-side energy management intervention's success relies on the availability of accurate, comprehensive, granular, and up-to-date data on energy consumption. The Building sector, including residential and commercial, is one of the largest consumers of energy in India after the Industrial sector. With economic growth and increasing urbanization, the building sector is projected to grow at an unprecedented rate, resulting in a 5.6 times escalation in energy consumption till 2047 compared to 2017. Therefore, energy efficiency interventions will play a vital role in decoupling the floor area growth and associated energy demand, thereby increasing the need for robust data. In India, multiple institutions are involved in the collection and dissemination of data. This paper focuses on energy consumption data management in the building sector in India for both residential and commercial segments. It evaluates the robustness of data available through administrative and survey routes to estimate the key performance indicators and identify critical data gaps for making informed decisions. The paper explores several issues in the data, such as lack of comprehensiveness, non-availability of disaggregated data, the discrepancy in different data sources, inconsistent building categorization, and others. The identified data gaps are justified with appropriate examples. Moreover, the paper prioritizes required data in order of relevance to policymaking and groups it into "available," "easy to get," and "hard to get" categories. The paper concludes with recommendations to address the data gaps by leveraging digital initiatives, strengthening institutional capacity, institutionalizing exclusive building energy surveys, and standardization of building categorization, among others, to strengthen the management of building sector energy consumption data.Keywords: energy data, energy policy, energy efficiency, buildings
Procedia PDF Downloads 18710772 Impact of the Non-Energy Sectors Diversification on the Energy Dependency Mitigation: Visualization by the “IntelSymb” Software Application
Authors: Ilaha Rzayeva, Emin Alasgarov, Orkhan Karim-Zada
Abstract:
This study attempts to consider the linkage between management and computer sciences in order to develop the software named “IntelSymb” as a demo application to prove data analysis of non-energy* fields’ diversification, which will positively influence on energy dependency mitigation of countries. Afterward, we analyzed 18 years of economic fields of development (5 sectors) of 13 countries by identifying which patterns mostly prevailed and which can be dominant in the near future. To make our analysis solid and plausible, as a future work, we suggest developing a gateway or interface, which will be connected to all available on-line data bases (WB, UN, OECD, U.S. EIA) for countries’ analysis by fields. Sample data consists of energy (TPES and energy import indicators) and non-energy industries’ (Main Science and Technology Indicator, Internet user index, and Sales and Production indicators) statistics from 13 OECD countries over 18 years (1995-2012). Our results show that the diversification of non-energy industries can have a positive effect on energy sector dependency (energy consumption and import dependence on crude oil) deceleration. These results can provide empirical and practical support for energy and non-energy industries diversification’ policies, such as the promoting of Information and Communication Technologies (ICTs), services and innovative technologies efficiency and management, in other OECD and non-OECD member states with similar energy utilization patterns and policies. Industries, including the ICT sector, generate around 4 percent of total GHG, but this is much higher — around 14 percent — if indirect energy use is included. The ICT sector itself (excluding the broadcasting sector) contributes approximately 2 percent of global GHG emissions, at just under 1 gigatonne of carbon dioxide equivalent (GtCO2eq). Ergo, this can be a good example and lesson for countries which are dependent and independent on energy, and mainly emerging oil-based economies, as well as to motivate non-energy industries diversification in order to be ready to energy crisis and to be able to face any economic crisis as well.Keywords: energy policy, energy diversification, “IntelSymb” software, renewable energy
Procedia PDF Downloads 22910771 A Study on Changing of Energy-Saving Performance of GHP Air Conditioning System with Time-Series Variation
Authors: Ying Xin, Shigeki Kametani
Abstract:
This paper deals the energy saving performance of GHP (Gas engine heat pump) air conditioning system has improved with time-series variation. There are two types of air conditioning systems, VRF (Variable refrigerant flow) and central cooling and heating system. VRF is classified as EHP (Electric driven heat pump) and GHP. EHP drives the compressor with electric motor. GHP drives the compressor with the gas engine. The electric consumption of GHP is less than one tenth of EHP does. In this study, the energy consumption data of GHP installed the junior high schools was collected. An annual and monthly energy consumption per rated thermal output power of each apparatus was calculated, and then their energy efficiency was analyzed. From these data, we investigated improvement of the energy saving of the GHP air conditioning system by the change in the generation.Keywords: energy-saving, variable refrigerant flow, gas engine heat pump, electric driven heat pump, air conditioning system
Procedia PDF Downloads 30110770 Developing Heat-Power Efficiency Criteria for Characterization of Technosphere Structural Elements
Authors: Victoria Y. Garnova, Vladimir G. Merzlikin, Sergey V. Khudyakov, Aleksandr A. Gajour, Andrei P. Garnov
Abstract:
This paper refers to the analysis of the characteristics of industrial and lifestyle facilities heat- energy objects as a part of the thermal envelope of Earth's surface for inclusion in any database of economic forecasting. The idealized model of the Earth's surface is discussed. This model gives the opportunity to obtain the energy equivalent for each element of terrain and world ocean. Energy efficiency criterion of comfortable human existence is introduced. Dynamics of changes of this criterion offers the possibility to simulate the possible technogenic catastrophes with a spontaneous industrial development of the certain Earth areas. Calculated model with the confirmed forecast of the Gulf Stream freezing in the Polar Regions in 2011 due to the heat-energy balance disturbance for the oceanic subsurface oil polluted layer is given. Two opposing trends of human development under the limited and unlimited amount of heat-energy resources are analyzed.Keywords: Earth's surface, heat-energy consumption, energy criteria, technogenic catastrophes
Procedia PDF Downloads 32610769 Energy Efficiency Analysis of Discharge Modes of an Adiabatic Compressed Air Energy Storage System
Authors: Shane D. Inder, Mehrdad Khamooshi
Abstract:
Efficient energy storage is a crucial factor in facilitating the uptake of renewable energy resources. Among the many options available for energy storage systems required to balance imbalanced supply and demand cycles, compressed air energy storage (CAES) is a proven technology in grid-scale applications. This paper reviews the current state of micro scale CAES technology and describes a micro-scale advanced adiabatic CAES (A-CAES) system, where heat generated during compression is stored for use in the discharge phase. It will also describe a thermodynamic model, developed in EES (Engineering Equation Solver) to evaluate the performance and critical parameters of the discharge phase of the proposed system. Three configurations are explained including: single turbine without preheater, two turbines with preheaters, and three turbines with preheaters. It is shown that the micro-scale A-CAES is highly dependent upon key parameters including; regulator pressure, air pressure and volume, thermal energy storage temperature and flow rate and the number of turbines. It was found that a micro-scale AA-CAES, when optimized with an appropriate configuration, could deliver energy input to output efficiency of up to 70%.Keywords: CAES, adiabatic compressed air energy storage, expansion phase, micro generation, thermodynamic
Procedia PDF Downloads 31610768 Localization of Radioactive Sources with a Mobile Radiation Detection System using Profit Functions
Authors: Luís Miguel Cabeça Marques, Alberto Manuel Martinho Vale, José Pedro Miragaia Trancoso Vaz, Ana Sofia Baptista Fernandes, Rui Alexandre de Barros Coito, Tiago Miguel Prates da Costa
Abstract:
The detection and localization of hidden radioactive sources are of significant importance in countering the illicit traffic of Special Nuclear Materials and other radioactive sources and materials. Radiation portal monitors are commonly used at airports, seaports, and international land borders for inspecting cargo and vehicles. However, these equipment can be expensive and are not available at all checkpoints. Consequently, the localization of SNM and other radioactive sources often relies on handheld equipment, which can be time-consuming. The current study presents the advantages of real-time analysis of gamma-ray count rate data from a mobile radiation detection system based on simulated data and field tests. The incorporation of profit functions and decision criteria to optimize the detection system's path significantly enhances the radiation field information and reduces survey time during cargo inspection. For source position estimation, a maximum likelihood estimation algorithm is employed, and confidence intervals are derived using the Fisher information. The study also explores the impact of uncertainties, baselines, and thresholds on the performance of the profit function. The proposed detection system, utilizing a plastic scintillator with silicon photomultiplier sensors, boasts several benefits, including cost-effectiveness, high geometric efficiency, compactness, and lightweight design. This versatility allows for seamless integration into any mobile platform, be it air, land, maritime, or hybrid, and it can also serve as a handheld device. Furthermore, integration of the detection system into drones, particularly multirotors, and its affordability enable the automation of source search and substantial reduction in survey time, particularly when deploying a fleet of drones. While the primary focus is on inspecting maritime container cargo, the methodologies explored in this research can be applied to the inspection of other infrastructures, such as nuclear facilities or vehicles.Keywords: plastic scintillators, profit functions, path planning, gamma-ray detection, source localization, mobile radiation detection system, security scenario
Procedia PDF Downloads 12310767 Effect of Residential Block Scale Envelope in Buildings Energy Consumption: A Vernacular Case Study in an Iranian Urban Context
Authors: M. Panahian
Abstract:
A global challenge which is of paramount significance today is the issue of devising innovative solutions to tackle the environmental issues, as well as more intelligent and foresightful consumption of and management of natural resources. Changes in global climate resulting from the burning of fossil fuel and the rise in the level of energy consumption are a few examples of environmental issues detrimental to any form of life on earth, which are aggravated year by year. Overall, energy-efficient designs and construction strategies can be studied at three scales: building, block, and city. Nevertheless, as the available literature suggests, the greatest emphasis has been on building and city scales, and little has been done as to the energy-efficient designs at block scale. Therefore, the aim of the current research is to investigate the influences of residential block scale envelope on the energy consumption in buildings. To this end, a case study of residential block scale has been selected in the city of Isfahan, in Iran, situated in a hot and dry climate with cold winters. Eventually, the most effective variables in energy consumption, concerning the block scale envelope, will be concluded.Keywords: sustainability, passive energy saving solutions, residential block scale, energy efficiency
Procedia PDF Downloads 24610766 Global Low Carbon Transitions in the Power Sector: A Machine Learning Archetypical Clustering Approach
Authors: Abdullah Alotaiq, David Wallom, Malcolm McCulloch
Abstract:
This study presents an archetype-based approach to designing effective strategies for low-carbon transitions in the power sector. To achieve global energy transition goals, a renewable energy transition is critical, and understanding diverse energy landscapes across different countries is essential to design effective renewable energy policies and strategies. Using a clustering approach, this study identifies 12 energy archetypes based on the electricity mix, socio-economic indicators, and renewable energy contribution potential of 187 UN countries. Each archetype is characterized by distinct challenges and opportunities, ranging from high dependence on fossil fuels to low electricity access, low economic growth, and insufficient contribution potential of renewables. Archetype A, for instance, consists of countries with low electricity access, high poverty rates, and limited power infrastructure, while Archetype J comprises developed countries with high electricity demand and installed renewables. The study findings have significant implications for renewable energy policymaking and investment decisions, with policymakers and investors able to use the archetype approach to identify suitable renewable energy policies and measures and assess renewable energy potential and risks. Overall, the archetype approach provides a comprehensive framework for understanding diverse energy landscapes and accelerating decarbonisation of the power sector.Keywords: fossil fuels, power plants, energy transition, renewable energy, archetypes
Procedia PDF Downloads 5810765 Fluorescence-Based Biosensor for Dopamine Detection Using Quantum Dots
Authors: Sylwia Krawiec, Joanna Cabaj, Karol Malecha
Abstract:
Nowadays, progress in the field of the analytical methods is of great interest for reliable biological research and medical diagnostics. Classical techniques of chemical analysis, despite many advantages, do not permit to obtain immediate results or automatization of measurements. Chemical sensors have displaced the conventional analytical methods - sensors combine precision, sensitivity, fast response and the possibility of continuous-monitoring. Biosensor is a chemical sensor, which except of conventer also possess a biologically active material, which is the basis for the detection of specific chemicals in the sample. Each biosensor device mainly consists of two elements: a sensitive element, where is recognition of receptor-analyte, and a transducer element which receives the signal and converts it into a measurable signal. Through these two elements biosensors can be divided in two categories: due to the recognition element (e.g immunosensor) and due to the transducer (e.g optical sensor). Working of optical sensor is based on measurements of quantitative changes of parameters characterizing light radiation. The most often analyzed parameters include: amplitude (intensity), frequency or polarization. Changes in the optical properties one of the compound which reacts with biological material coated on the sensor is analyzed by a direct method, in an indirect method indicators are used, which changes the optical properties due to the transformation of the testing species. The most commonly used dyes in this method are: small molecules with an aromatic ring, like rhodamine, fluorescent proteins, for example green fluorescent protein (GFP), or nanoparticles such as quantum dots (QDs). Quantum dots have, in comparison with organic dyes, much better photoluminescent properties, better bioavailability and chemical inertness. These are semiconductor nanocrystals size of 2-10 nm. This very limited number of atoms and the ‘nano’-size gives QDs these highly fluorescent properties. Rapid and sensitive detection of dopamine is extremely important in modern medicine. Dopamine is very important neurotransmitter, which mainly occurs in the brain and central nervous system of mammals. Dopamine is responsible for the transmission information of moving through the nervous system and plays an important role in processes of learning or memory. Detection of dopamine is significant for diseases associated with the central nervous system such as Parkinson or schizophrenia. In developed optical biosensor for detection of dopamine, are used graphene quantum dots (GQDs). In such sensor dopamine molecules coats the GQD surface - in result occurs quenching of fluorescence due to Resonance Energy Transfer (FRET). Changes in fluorescence correspond to specific concentrations of the neurotransmitter in tested sample, so it is possible to accurately determine the concentration of dopamine in the sample.Keywords: biosensor, dopamine, fluorescence, quantum dots
Procedia PDF Downloads 37210764 Energy Efficient Microgrid Design with Hybrid Power Systems
Authors: Pedro Esteban
Abstract:
Today’s electrical networks, including microgrids, are evolving into smart grids. The smart grid concept brings the idea that the power comes from various sources (continuous or intermittent), in various forms (AC or DC, high, medium or low voltage, etc.), and it must be integrated into the electric power system in a smart way to guarantee a continuous and reliable supply that complies with power quality and energy efficiency standards and grid code requirements. This idea brings questions for the different players like how the required power will be generated, what kind of power will be more suitable, how to store exceeding levels for short or long-term usage, and how to combine and distribute all the different generation power sources in an efficient way. To address these issues, there has been lots of development in recent years on the field of on-grid and off-grid hybrid power systems (HPS). These systems usually combine one or more modes of electricity generation together with energy storage to ensure optimal supply reliability and high level of energy security. Hybrid power systems combine power generation and energy storage technologies together with real-time energy management and innovative power quality and energy efficiency improvement functionalities. These systems help customers achieve targets for clean energy generation, they add flexibility to the electrical grid, and they optimize the installation by improving its power quality and energy efficiency.Keywords: microgrids, hybrid power systems, energy storage, power quality improvement
Procedia PDF Downloads 14810763 Resource Assessment of Animal Dung for Power Generation: A Case Study
Authors: Gagandeep Kaur, Yadwinder Singh Brar, D. P. Kothari
Abstract:
The paper has an aggregate analysis of animal dung for converting it into renewable biomass fuel source that could be used to help the Indian state Punjab to meet rising power demand. In Punjab district Bathinda produces over 4567 tonnes of animal dung daily on a renewable basis. The biogas energy potential has been calculated using values for the daily per head animal dung production and total no. of large animals in Bathinda of Punjab. The 379540 no. of animals in district could produce nearly 116918 m3 /day of biogas as renewable energy. By converting this biogas into electric energy could produce 89.8 Gwh energy annually.Keywords: livestock, animal dung, biogas, renewable energy
Procedia PDF Downloads 51810762 Chemical Hazards Impact on Efficiency of Energy Storage Battery and its Possible Mitigation's
Authors: Abirham Simeneh Ayalew, Seada Hussen Adem, Frie Ayalew Yimam
Abstract:
Battery energy storage has a great role on storing energy harnessed from different alternative resources and greatly benefit the power sector by supply energy back to the system during outage and regular operation in power sectors. Most of the study shows that there is an exponential increase in the quantity of lithium - ion battery energy storage system due to their power density, economical aspects and its performance. But this lithium ion battery failures resulted in fire and explosion due to its having flammable electrolytes (chemicals) which can create those hazards. Hazards happen in these energy storage system lead to minimize battery life spans or efficiency. Identifying the real cause of these hazards and its mitigation techniques can be the solution to improve the efficiency of battery technologies and the electrode materials should have high electrical conductivity, large surface area, stable structure and low resistance. This paper asses the real causes of chemical hazards, its impact on efficiency, proposed solution for mitigating those hazards associated with efficiency improvement and summery of researchers new finding related to the field.Keywords: battery energy storage, battery energy storage efficiency, chemical hazards, lithium ion battery
Procedia PDF Downloads 8710761 Applicability of Overhangs for Energy Saving in Existing High-Rise Housing in Different Climates
Authors: Qiong He, S. Thomas Ng
Abstract:
Upgrading the thermal performance of building envelope of existing residential buildings is an effective way to reduce heat gain or heat loss. Overhang device is a common solution for building envelope improvement as it can cut down solar heat gain and thereby can reduce the energy used for space cooling in summer time. Despite that, overhang can increase the demand for indoor heating in winter due to its function of lowering the solar heat gain. Obviously, overhang has different impacts on energy use in different climatic zones which have different energy demand. To evaluate the impact of overhang device on building energy performance under different climates of China, an energy analysis model is built up in a computer-based simulation program known as DesignBuilder based on the data of a typical high-rise residential building. The energy simulation results show that single overhang is able to cut down around 5% of the energy consumption of the case building in the stand-alone situation or about 2% when the building is surrounded by other buildings in regions which predominantly rely on space cooling though it has no contribution to energy reduction in cold region. In regions with cold summer and cold winter, adding overhang over windows can cut down around 4% and 1.8% energy use with and without adjoining buildings, respectively. The results indicate that overhang might not an effective shading device to reduce the energy consumption in the mixed climate or cold regions.Keywords: overhang, energy analysis, computer-based simulation, design builder, high-rise residential building, climate, BIM model
Procedia PDF Downloads 371