Search results for: automatic target recognition
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5071

Search results for: automatic target recognition

4051 The Asia-European Union (EU) Traffic Safety Benchmarking

Authors: Ghazwan Al-Haji

Abstract:

Traffic safety has become a major concern in Southeast Asia due to the increasing number of road accidents resulting in fatalities and injuries. Southeast Asia has one of the highest road traffic fatality rates in the world, in terms of both population and number of cars, nearly six times higher than the EU region. One of the reasons for this concerning trend is the increasing share of motorcycles as a form of transportation throughout Southeast Asia. The purpose of this study is to benchmark traffic safety situations and statistics in six countries in Asia and the EU, which Indonesia, Malaysia, Vietnam, Italy, Portugal and Sweden. The research will assess the priorities and causes of road accidents in the target nations. Further, the study will analyze the existing practices and promote best practices that can be implemented toward safer roads in Asian target countries. In order to achieve this goal, the study categorizes various factors contributing to traffic accidents and best practices into 4 pillars (Safer Behavior, Safer Roads, Safer Vehicles and Road Safety Management). The result of the study consists of a list of recommendations that can be applied by policymakers to promote safer roads in Asia towards 2030. The study is co-financed by the EU project ASIASAFE.

Keywords: traffic safety, ASIASAFE, Southeast Asia, EU project

Procedia PDF Downloads 69
4050 Simultaneous Measurement of Displacement and Roll Angle of Object

Authors: R. Furutani, K. Ishii

Abstract:

Laser interferometers are now widely used for length and displacement measurement. In conventional methods, the optical path difference between two mirrors, one of which is a reference mirror and the other is a target mirror, is measured, as in Michelson interferometry, or two target mirrors are set up and the optical path difference between the two targets is measured, as in differential interferometry. In these interferometers, the two laser beams pass through different optical elements so that the measurement result is affected by the vibration and other effects in the optical paths. In addition, it is difficult to measure the roll angle around the optical axis. The proposed interferometer simultaneously measures both the translational motion along the optical axis and the roll motion around it by combining the retroreflective principle of the ball lens (BL) and the polarization. This interferometer detects the interferogram by the two beams traveling along the identical optical path from the beam source to BL. This principle is expected to reduce external influences by using the interferogram between the two lasers in an identical optical path. The proposed interferometer uses a BL so that the reflected light from the lens travels on the identical optical path as the incident light. After reaching the aperture of the He-Ne laser oscillator, the reflected light is reflected by a mirror with a very high reflectivity installed in the aperture and is irradiated back toward the BL. Both the first laser beam that enters the BL and the second laser beam that enters the BL after the round trip interferes with each other, enabling the measurement of displacement along the optical axis. In addition, for the measurement of the roll motion, a quarter-wave plate is installed on the optical path to change the polarization state of the laser. The polarization states of the first laser beam and second laser beam are different by the roll angle of the target. As a result, this system can measure the displacement and the roll angle of BL simultaneously. It was verified by the simulation and the experiment that the proposed optical system could measure the displacement and the roll angle simultaneously.

Keywords: common path interferometer, displacement measurement, laser interferometer, simultaneous measurement, roll angle measurement

Procedia PDF Downloads 89
4049 E-Learning Platform for School Kids

Authors: Gihan Thilakarathna, Fernando Ishara, Rathnayake Yasith, Bandara A. M. R. Y.

Abstract:

E-learning is a crucial component of intelligent education. Even in the midst of a pandemic, E-learning is becoming increasingly important in the educational system. Several e-learning programs are accessible for students. Here, we decided to create an e-learning framework for children. We've found a few issues that teachers are having with their online classes. When there are numerous students in an online classroom, how does a teacher recognize a student's focus on academics and below-the-surface behaviors? Some kids are not paying attention in class, and others are napping. The teacher is unable to keep track of each and every student. Key challenge in e-learning is online exams. Because students can cheat easily during online exams. Hence there is need of exam proctoring is occurred. In here we propose an automated online exam cheating detection method using a web camera. The purpose of this project is to present an E-learning platform for math education and include games for kids as an alternative teaching method for math students. The game will be accessible via a web browser. The imagery in the game is drawn in a cartoonish style. This will help students learn math through games. Everything in this day and age is moving towards automation. However, automatic answer evaluation is only available for MCQ-based questions. As a result, the checker has a difficult time evaluating the theory solution. The current system requires more manpower and takes a long time to evaluate responses. It's also possible to mark two identical responses differently and receive two different grades. As a result, this application employs machine learning techniques to provide an automatic evaluation of subjective responses based on the keyword provided to the computer as student input, resulting in a fair distribution of marks. In addition, it will save time and manpower. We used deep learning, machine learning, image processing and natural language technologies to develop these research components.

Keywords: math, education games, e-learning platform, artificial intelligence

Procedia PDF Downloads 156
4048 A Study to Identify Resistant Hypertension and Role of Spironolactone in its Management

Authors: A. Kumar, D. Himanshu, Ak Vaish, K. Usman , A. Singh, R. Misra, V. Atam, S. P. Verma, S. Singhal

Abstract:

Introduction: Resistant and uncontrolled hypertension offer great challenge, in terms of higher risk of morbidity, mortality and not the least, difficulty in diagnosis and management. Our study tries to identify the importance of two crucial aspects of hypertension management, i.e. drug compliance and optimum dosing and also the effect of spironolactone on blood pressure in cases of resistant hypertension. Methodology: A prospective study was carried out among patients, who were referred as case of resistant hypertension to Hypertension Clinic at Gandhi memorial and associated hospital, Lucknow, India from August, 2013 to July 2014. A total of 122 Subjects having uncontrolled BP with ≥3 antihypertensives were selected. After ruling out secondary resistance and with appropriate lifestyle modifications, effect of adherence and optimum doses was seen with monitoring of BP. Only those having blood pressure still uncontrolled were true resistant. These patients were given spironolactone to see its effect on BP over next 12 weeks. Results: Mean baseline BP of all (n=122) patients was 150.4±7.2 mmHg systolic and 92.1±5.7 mmHg diastolic. After promoting adherence to the regimen, there was reduction of 4.20±3.65 mmHg systolic and 2.08±4.74 mmHg Diastolic blood pressure, with 26 patients achieving target blood pressure goal. Further reduction of 6.66±5.99 mmHg in systolic and 2.59±3.67 mmHg in diastolic BP was observed after optimizing the drug doses with another 66 patients achieving target blood pressure goal. Only 30 patients were true resistant hypertensive and prescribed spironolactone. Over 12 weeks, mean reduction of 20.62±3.65 mmHg in systolic and 10.08 ± 6.46 mmHg in diastolic BP was observed. Out of these 30, BP was controlled in 24 patients. Side effects observed were hyperkalemia in 2 patients and breast tenderness in 2 patients. Conclusion: Improper adherence and suboptimal regimen appear to be the important reasons for uncontrolled hypertension. By virtue of maintaining proper adherence to an optimum regimen, target BP goal can be reached in many without adding much to the regimen. Spironolactone is effective in patients with resistant hypertension, in terms of blood pressure reduction with minimal side effects.

Keywords: resistant, hypertension, spironolactone, blood pressure

Procedia PDF Downloads 278
4047 Linguistic Analysis of Argumentation Structures in Georgian Political Speeches

Authors: Mariam Matiashvili

Abstract:

Argumentation is an integral part of our daily communications - formal or informal. Argumentative reasoning, techniques, and language tools are used both in personal conversations and in the business environment. Verbalization of the opinions requires the use of extraordinary syntactic-pragmatic structural quantities - arguments that add credibility to the statement. The study of argumentative structures allows us to identify the linguistic features that make the text argumentative. Knowing what elements make up an argumentative text in a particular language helps the users of that language improve their skills. Also, natural language processing (NLP) has become especially relevant recently. In this context, one of the main emphases is on the computational processing of argumentative texts, which will enable the automatic recognition and analysis of large volumes of textual data. The research deals with the linguistic analysis of the argumentative structures of Georgian political speeches - particularly the linguistic structure, characteristics, and functions of the parts of the argumentative text - claims, support, and attack statements. The research aims to describe the linguistic cues that give the sentence a judgmental/controversial character and helps to identify reasoning parts of the argumentative text. The empirical data comes from the Georgian Political Corpus, particularly TV debates. Consequently, the texts are of a dialogical nature, representing a discussion between two or more people (most often between a journalist and a politician). The research uses the following approaches to identify and analyze the argumentative structures Lexical Classification & Analysis - Identify lexical items that are relevant in argumentative texts creating process - Creating the lexicon of argumentation (presents groups of words gathered from a semantic point of view); Grammatical Analysis and Classification - means grammatical analysis of the words and phrases identified based on the arguing lexicon. Argumentation Schemas - Describe and identify the Argumentation Schemes that are most likely used in Georgian Political Speeches. As a final step, we analyzed the relations between the above mentioned components. For example, If an identified argument scheme is “Argument from Analogy”, identified lexical items semantically express analogy too, and they are most likely adverbs in Georgian. As a result, we created the lexicon with the words that play a significant role in creating Georgian argumentative structures. Linguistic analysis has shown that verbs play a crucial role in creating argumentative structures.

Keywords: georgian, argumentation schemas, argumentation structures, argumentation lexicon

Procedia PDF Downloads 74
4046 Anthraquinone Labelled DNA for Direct Detection and Discrimination of Closely Related DNA Targets

Authors: Sarah A. Goodchild, Rachel Gao, Philip N. Bartlett

Abstract:

A novel detection approach using immobilized DNA probes labeled with Anthraquinone (AQ) as an electrochemically active reporter moiety has been successfully developed as a new, simple, reliable method for the detection of DNA. This method represents a step forward in DNA detection as it can discriminate between multiple nucleotide polymorphisms within target DNA strands without the need for any additional reagents, reporters or processes such as melting of DNA strands. The detection approach utilizes single-stranded DNA probes immobilized on gold surfaces labeled at the distal terminus with AQ. The effective immobilization has been monitored using techniques such as AC impedance and Raman spectroscopy. Simple voltammetry techniques (Differential Pulse Voltammetry, Cyclic Voltammetry) are then used to monitor the reduction potential of the AQ before and after the addition of complementary strand of target DNA. A reliable relationship between the shift in reduction potential and the number of base pair mismatch has been established and can be used to discriminate between DNA from highly related pathogenic organisms of clinical importance. This indicates that this approach may have great potential to be exploited within biosensor kits for detection and diagnosis of pathogenic organisms in Point of Care devices.

Keywords: Anthraquinone, discrimination, DNA detection, electrochemical biosensor

Procedia PDF Downloads 393
4045 The Impact of Content Familiarity of Receptive Skills on Language Learning

Authors: Sara Fallahi

Abstract:

This paper reviews the importance of content familiarity of receptive skills and offers solutions to the issue of content unfamiliarity in language learning materials. Presently, language learning materials are mainly comprised of global issues and target language speakers’ culture(s) in receptive skills. This might leadlearners to focus on content rather than the language. As a solution, materials on receptive skills can be developed with a focus on learners’culture and social concerns, especially in the beginner levels of learning. Language learners often learn their target language through the receptive skills of listening and reading before language production ensues through speaking and writing. Students’ journey from receptive skills to productive skills is mainly concentrated on by teachers. There are barriers to language learning, such as time and energy, that can hinder learners’ understanding and ability to build the required background knowledge of the content. This is generated due to learners’ unfamiliarity with the skill’s content. Therefore, materials that improve content familiarity will help learners improve their language comprehension, learning, and usage. This presentation will conclude with practical solutions to help teachers and learners more authentically integrate language and culture to elevate language learning.

Keywords: language learning, listening content, reading content, content familiarity, ESL books, language learning books, cultural familiarity

Procedia PDF Downloads 118
4044 Detecting Hate Speech And Cyberbullying Using Natural Language Processing

Authors: Nádia Pereira, Paula Ferreira, Sofia Francisco, Sofia Oliveira, Sidclay Souza, Paula Paulino, Ana Margarida Veiga Simão

Abstract:

Social media has progressed into a platform for hate speech among its users, and thus, there is an increasing need to develop automatic detection classifiers of offense and conflicts to help decrease the prevalence of such incidents. Online communication can be used to intentionally harm someone, which is why such classifiers could be essential in social networks. A possible application of these classifiers is the automatic detection of cyberbullying. Even though identifying the aggressive language used in online interactions could be important to build cyberbullying datasets, there are other criteria that must be considered. Being able to capture the language, which is indicative of the intent to harm others in a specific context of online interaction is fundamental. Offense and hate speech may be the foundation of online conflicts, which have become commonly used in social media and are an emergent research focus in machine learning and natural language processing. This study presents two Portuguese language offense-related datasets which serve as examples for future research and extend the study of the topic. The first is similar to other offense detection related datasets and is entitled Aggressiveness dataset. The second is a novelty because of the use of the history of the interaction between users and is entitled the Conflicts/Attacks dataset. Both datasets were developed in different phases. Firstly, we performed a content analysis of verbal aggression witnessed by adolescents in situations of cyberbullying. Secondly, we computed frequency analyses from the previous phase to gather lexical and linguistic cues used to identify potentially aggressive conflicts and attacks which were posted on Twitter. Thirdly, thorough annotation of real tweets was performed byindependent postgraduate educational psychologists with experience in cyberbullying research. Lastly, we benchmarked these datasets with other machine learning classifiers.

Keywords: aggression, classifiers, cyberbullying, datasets, hate speech, machine learning

Procedia PDF Downloads 228
4043 Effective Nutrition Label Use on Smartphones

Authors: Vladimir Kulyukin, Tanwir Zaman, Sarat Kiran Andhavarapu

Abstract:

Research on nutrition label use identifies four factors that impede comprehension and retention of nutrition information by consumers: label’s location on the package, presentation of information within the label, label’s surface size, and surrounding visual clutter. In this paper, a system is presented that makes nutrition label use more effective for nutrition information comprehension and retention. The system’s front end is a smartphone application. The system’s back end is a four node Linux cluster for image recognition and data storage. Image frames captured on the smartphone are sent to the back end for skewed or aligned barcode recognition. When barcodes are recognized, corresponding nutrition labels are retrieved from a cloud database and presented to the user on the smartphone’s touchscreen. Each displayed nutrition label is positioned centrally on the touchscreen with no surrounding visual clutter. Wikipedia links to important nutrition terms are embedded to improve comprehension and retention of nutrition information. Standard touch gestures (e.g., zoom in/out) available on mainstream smartphones are used to manipulate the label’s surface size. The nutrition label database currently includes 200,000 nutrition labels compiled from public web sites by a custom crawler. Stress test experiments with the node cluster are presented. Implications for proactive nutrition management and food policy are discussed.

Keywords: mobile computing, cloud computing, nutrition label use, nutrition management, barcode scanning

Procedia PDF Downloads 373
4042 Reading Knowledge Development and Its Phases with Generation Z

Authors: Onur Özdemir, M.Erhan ORHAN

Abstract:

Knowledge Development (KD) is just one of the important phases of Knowledge Management (KM). KD is the phase in which intelligence is used to see the big picture. In order to understand whether information is important or not, we have to use the intelligence cycle that includes four main steps: aiming, collecting data, processing and utilizing. KD also needs these steps. To make a precise decision, the decision maker has to be aware of his subordinates’ ideas. If the decision maker ignores the ideas of his subordinates or participants of the organization, it is not possible for him to get the target. KD is a way of using wisdom to accumulate the puzzle. If the decision maker does not bring together the puzzle pieces, he cannot get the big picture, and this shows its effects on the battlefield. In order to understand the battlefield, the decision maker has to use the intelligence cycle. To convert information to knowledge, KD is the main means for the intelligence cycle. On the other hand, the “Z Generation” born after the millennium are really the game changers. They have different attitudes from their elders. Their understanding of life is different - the definition of freedom and independence have different meanings to them than others. Decision makers have to consider these factors and rethink their decisions accordingly. This article tries to explain the relation between KD and Generation Z. KD is the main method of target managing. But if leaders neglect their people, the world will be seeing much more movements like the Arab Spring and other insurgencies.

Keywords: knowledge development, knowledge management, generation Z, intelligence cycle

Procedia PDF Downloads 517
4041 Recurrent Torsades de Pointes Post Direct Current Cardioversion for Atrial Fibrillation with Rapid Ventricular Response

Authors: Taikchan Lildar, Ayesha Samad, Suraj Sookhu

Abstract:

Atrial fibrillation with rapid ventricular response results in the loss of atrial kick and shortened ventricular filling time, which often leads to decompensated heart failure. Pharmacologic rhythm control is the treatment of choice, and patients frequently benefit from the restoration of sinus rhythm. When pharmacologic treatment is unsuccessful or a patient declines hemodynamically, direct cardioversion is the treatment of choice. Torsades de pointes or “twisting of the points'' in French, is a rare but under-appreciated risk of cardioversion therapy and accounts for a significant number of sudden cardiac death each year. A 61-year-old female with no significant past medical history presented to the Emergency Department with worsening dyspnea. An electrocardiogram showed atrial fibrillation with rapid ventricular response, and a chest X-ray was significant for bilateral pulmonary vascular congestion. Full-dose anticoagulation and diuresis were initiated with moderate improvement in symptoms. A transthoracic echocardiogram revealed biventricular systolic dysfunction with a left ventricular ejection fraction of 30%. After consultation with an electrophysiologist, the consensus was to proceed with the restoration of sinus rhythm, which would likely improve the patient’s heart failure symptoms and possibly the ejection fraction. A transesophageal echocardiogram was negative for left atrial appendage thrombus; the patient was treated with a loading dose of amiodarone and underwent successful direct current cardioversion with 200 Joules. The patient was placed on telemetry monitoring for 24 hours and was noted to have frequent premature ventricular contractions with subsequent degeneration to torsades de pointes. The patient was found unresponsive and pulseless; cardiopulmonary resuscitation was initiated with cardioversion, and return of spontaneous circulation was achieved after four minutes to normal sinus rhythm. Post-cardiac arrest electrocardiogram showed sinus bradycardia with heart-rate corrected QT interval of 592 milliseconds. The patient continued to have frequent premature ventricular contractions and required two additional cardioversions to achieve a return of spontaneous circulation with intravenous magnesium and lidocaine. An automatic implantable cardioverter-defibrillator was subsequently implanted for secondary prevention of sudden cardiac death. The backup pacing rate of the automatic implantable cardioverter-defibrillator was set higher than usual in an attempt to prevent premature ventricular contractions-induced torsades de pointes. The patient did not have any further ventricular arrhythmias after implantation of the automatic implantable cardioverter-defibrillator. Overdrive pacing is a method utilized to treat premature ventricular contractions-induced torsades de pointes by preventing a patient’s susceptibility to R on T-wave-induced ventricular arrhythmias. Pacing at a rate of 90 beats per minute succeeded in controlling the arrhythmia without the need for traumatic cardiac defibrillation. In our patient, conversion of atrial fibrillation with rapid ventricular response to normal sinus rhythm resulted in a slower heart rate and an increased probability of premature ventricular contraction occurring on the T-wave and ensuing ventricular arrhythmia. This case highlights direct current cardioversion for atrial fibrillation with rapid ventricular response resulting in persistent ventricular arrhythmia requiring an automatic implantable cardioverter-defibrillator placement with overdrive pacing to prevent a recurrence.

Keywords: refractory atrial fibrillation, atrial fibrillation, overdrive pacing, torsades de pointes

Procedia PDF Downloads 147
4040 Precise Spatially Selective Photothermolysis Skin Treatment by Multiphoton Absorption

Authors: Yimei Huang, Harvey Lui, Jianhua Zhao, Zhenguo Wu, Haishan Zeng

Abstract:

Conventional laser treatment of skin diseases and cosmetic surgery is based on the principle of one-photon absorption selective photothermolysis which relies strongly on the difference in the light absorption between the therapeutic target and its surrounding tissue. However, when the difference in one-photon absorption is not sufficient, collateral damage would occur due to indiscriminate and nonspecific tissue heating. To overcome this problem, we developed a spatially selective photothermolysis method based on multiphoton absorption in which the heat generation is restricted to the focal point of a tightly focused near-infrared femtosecond laser beam aligned with the target of interest. A multimodal optical microscope with co-registered reflectance confocal imaging (RCM), two-photon fluorescence imaging (TPF), and second harmonic generation imaging (SHG) capabilities was used to perform and monitor the spatially selective photothermolysis. Skin samples excised from the shaved backs of euthanized NODSCID mice were used in this study. Treatments were performed by focusing and scaning the laser beam in the dermis with a 50µm×50µm target area. Treatment power levels of 200 mW to 400 mW and modulated pulse trains of different duration and period were experimented. Different treatment parameters achieved different degrees of spatial confinement of tissue alterations as visualized by 3-D RCM/TPF/SHG imaging. At 200 mW power level, 0.1 s pulse train duration, 4.1 s pulse train period, the tissue damage was found to be restricted precisely to the 50µm×50µm×10µm volume, where the laser focus spot had scanned through. The overlying epidermis/dermis tissue and the underneath dermis tissue were intact although there was light passing through these regions.

Keywords: multiphoton absorption photothermolysis, reflectance confocal microscopy, second harmonic generation microscopy, spatially selective photothermolysis, two-photon fluorescence microscopy

Procedia PDF Downloads 515
4039 Efficient Residual Road Condition Segmentation Network Based on Reconstructed Images

Authors: Xiang Shijie, Zhou Dong, Tian Dan

Abstract:

This paper focuses on the application of real-time semantic segmentation technology in complex road condition recognition, aiming to address the critical issue of how to improve segmentation accuracy while ensuring real-time performance. Semantic segmentation technology has broad application prospects in fields such as autonomous vehicle navigation and remote sensing image recognition. However, current real-time semantic segmentation networks face significant technical challenges and optimization gaps in balancing speed and accuracy. To tackle this problem, this paper conducts an in-depth study and proposes an innovative Guided Image Reconstruction Module. By resampling high-resolution images into a set of low-resolution images, this module effectively reduces computational complexity, allowing the network to more efficiently extract features within limited resources, thereby improving the performance of real-time segmentation tasks. In addition, a dual-branch network structure is designed in this paper to fully leverage the advantages of different feature layers. A novel Hybrid Attention Mechanism is also introduced, which can dynamically capture multi-scale contextual information and effectively enhance the focus on important features, thus improving the segmentation accuracy of the network in complex road condition. Compared with traditional methods, the proposed model achieves a better balance between accuracy and real-time performance and demonstrates competitive results in road condition segmentation tasks, showcasing its superiority. Experimental results show that this method not only significantly improves segmentation accuracy while maintaining real-time performance, but also remains stable across diverse and complex road conditions, making it highly applicable in practical scenarios. By incorporating the Guided Image Reconstruction Module, dual-branch structure, and Hybrid Attention Mechanism, this paper presents a novel approach to real-time semantic segmentation tasks, which is expected to further advance the development of this field.

Keywords: hybrid attention mechanism, image reconstruction, real-time, road status recognition

Procedia PDF Downloads 24
4038 3D Interferometric Imaging Using Compressive Hardware Technique

Authors: Mor Diama L. O., Matthieu Davy, Laurent Ferro-Famil

Abstract:

In this article, inverse synthetic aperture radar (ISAR) is combined with compressive imaging techniques in order to perform 3D interferometric imaging. Interferometric ISAR (InISAR) imaging relies on a two-dimensional antenna array providing diversities in the elevation and azimuth directions. However, the signals measured over several antennas must be acquired by coherent receivers resulting in costly and complex hardware. This paper proposes to use a chaotic cavity as a compressive device to encode the signals arising from several antennas into a single output port. These signals are then reconstructed by solving an inverse problem. Our approach is demonstrated experimentally with a 3-elements L-shape array connected to a metallic compressive enclosure. The interferometric phases estimated from a unique broadband signal are used to jointly estimate the target’s effective rotation rate and the height of the dominant scattering centers of our target. Our experimental results show that the use of the compressive device does not adversely affect the performance of our imaging process. This study opens new perspectives to reduce the hardware complexity of high-resolution ISAR systems.

Keywords: interferometric imaging, inverse synthetic aperture radar, compressive device, computational imaging

Procedia PDF Downloads 160
4037 Re-identification Risk and Mitigation in Federated Learning: Human Activity Recognition Use Case

Authors: Besma Khalfoun

Abstract:

In many current Human Activity Recognition (HAR) applications, users' data is frequently shared and centrally stored by third parties, posing a significant privacy risk. This practice makes these entities attractive targets for extracting sensitive information about users, including their identity, health status, and location, thereby directly violating users' privacy. To tackle the issue of centralized data storage, a relatively recent paradigm known as federated learning has emerged. In this approach, users' raw data remains on their smartphones, where they train the HAR model locally. However, users still share updates of their local models originating from raw data. These updates are vulnerable to several attacks designed to extract sensitive information, such as determining whether a data sample is used in the training process, recovering the training data with inversion attacks, or inferring a specific attribute or property from the training data. In this paper, we first introduce PUR-Attack, a parameter-based user re-identification attack developed for HAR applications within a federated learning setting. It involves associating anonymous model updates (i.e., local models' weights or parameters) with the originating user's identity using background knowledge. PUR-Attack relies on a simple yet effective machine learning classifier and produces promising results. Specifically, we have found that by considering the weights of a given layer in a HAR model, we can uniquely re-identify users with an attack success rate of almost 100%. This result holds when considering a small attack training set and various data splitting strategies in the HAR model training. Thus, it is crucial to investigate protection methods to mitigate this privacy threat. Along this path, we propose SAFER, a privacy-preserving mechanism based on adaptive local differential privacy. Before sharing the model updates with the FL server, SAFER adds the optimal noise based on the re-identification risk assessment. Our approach can achieve a promising tradeoff between privacy, in terms of reducing re-identification risk, and utility, in terms of maintaining acceptable accuracy for the HAR model.

Keywords: federated learning, privacy risk assessment, re-identification risk, privacy preserving mechanisms, local differential privacy, human activity recognition

Procedia PDF Downloads 11
4036 Performance Assessment of Multi-Level Ensemble for Multi-Class Problems

Authors: Rodolfo Lorbieski, Silvia Modesto Nassar

Abstract:

Many supervised machine learning tasks require decision making across numerous different classes. Multi-class classification has several applications, such as face recognition, text recognition and medical diagnostics. The objective of this article is to analyze an adapted method of Stacking in multi-class problems, which combines ensembles within the ensemble itself. For this purpose, a training similar to Stacking was used, but with three levels, where the final decision-maker (level 2) performs its training by combining outputs from the tree-based pair of meta-classifiers (level 1) from Bayesian families. These are in turn trained by pairs of base classifiers (level 0) of the same family. This strategy seeks to promote diversity among the ensembles forming the meta-classifier level 2. Three performance measures were used: (1) accuracy, (2) area under the ROC curve, and (3) time for three factors: (a) datasets, (b) experiments and (c) levels. To compare the factors, ANOVA three-way test was executed for each performance measure, considering 5 datasets by 25 experiments by 3 levels. A triple interaction between factors was observed only in time. The accuracy and area under the ROC curve presented similar results, showing a double interaction between level and experiment, as well as for the dataset factor. It was concluded that level 2 had an average performance above the other levels and that the proposed method is especially efficient for multi-class problems when compared to binary problems.

Keywords: stacking, multi-layers, ensemble, multi-class

Procedia PDF Downloads 269
4035 DNA-Based Gold Nanoprobe Biosensor to Detect Pork Contaminant

Authors: Rizka Ardhiyana, Liesbetini Haditjaroko, Sri Mulijani, Reki Ashadi Wicaksono, Raafqi Ranasasmita

Abstract:

Designing a sensitive, specific and easy to use method to detect pork contamination in the food industry remains a major challenge. In the current study, we developed a sensitive thiol-bond AuNP-Probe biosensor that will change color when detecting pork DNA in the Cytochrome B region. The interaction between the biosensors and DNA sample is measured by spectrophotometer at 540 nm. The biosensor is made by reducing gold with trisodium citrate to produce gold nanoparticle with 39.05 nm diameter. The AuNP-Probe biosensor (gold nanoprobe) achieved 16.04 ng DNA/µl limit of detection and 53.48 ng DNA/µl limit of quantification. The linearity (R2) between color absorbance changes and DNA concentration is 0.9916. The biosensor has a good specificty as it does not cross-react with DNA of chicken and beef. To verify specificity towards the target sequence, PCR was tested to the target sequence and reacted to the PCR product with the biosensor. The PCR DNA isolate resulted in a 2.7 fold higher absorbance compared to pork-DNA isolate alone (without PCR). The sensitivity and specificity of the method show the promising application of the thiol-bond AuNP biosensor in pork-detection.

Keywords: biosensor, DNA probe, gold nanoparticle (AuNP), pork meat, qPCR

Procedia PDF Downloads 359
4034 South Asia’s Political Landscape: Precipitating Terrorism

Authors: Saroj Kumar Rath

Abstract:

India's Muslims represent 15 percent of the nation's population, the world's third largest group in any nation after Indonesia and Pakistan. Extremist groups like the Islamic State, Al Qaeda, the Taliban and the Haqqani network increasingly view India as a target. Several trends explain the rise: Terrorism threats in South Asia are linked and mobile - if one source is batted down, jihadists relocate to find another Islamic cause. As NATO withdraws from Afghanistan, some jihadists will eye India. Pakistan regards India as a top enemy and some officials even encourage terrorists to target areas like Kashmir or Mumbai. Meanwhile, a stream of Wahhabi preachers have visited India, offering hard-line messages; extremist groups like Al Qaeda and the Islamic State compete for influence, and militants even pay jihadists. Muslims as a minority population in India could offer fertile ground for the extremist recruiters. This paper argues that there is an urgent need for the Indian government to profile militants and examine social media sites to attack Wahhabi indoctrination while supporting education and entrepreneurship for all of India's citizens.

Keywords: Al Qaeda, terrorism, Islamic state, India, haqqani network, Pakistan, Taliban

Procedia PDF Downloads 617
4033 Entrepreneurial Leadership in Malaysian Public University: Competency and Behavior in the Face of Institutional Adversity

Authors: Noorlizawati Abd Rahim, Zainai Mohamed, Zaidatun Tasir, Astuty Amrin, Haliyana Khalid, Nina Diana Nawi

Abstract:

Entrepreneurial leaders have been sought as in-demand talents to lead profit-driven organizations during turbulent and unprecedented times. However, research regarding the pertinence of their roles in the public sector has been limited. This paper examined the characteristics of the challenging experiences encountered by senior leaders in public universities that require them to embrace entrepreneurialism in their leadership. Through a focus group interview with five Malaysian university top senior leaders with experience being Vice-Chancellor, we explored and developed a framework of institutional adversity characteristics and exemplary entrepreneurial leadership competency in the face of adversity. Complexity of diverse stakeholders, multiplicity of academic disciplines, unfamiliarity to lead different and broader roles, leading new directions, and creating change in high velocity and uncertain environment are among the dimensions that characterise institutional adversities. Our findings revealed that learning agility, opportunity recognition capacity, and bridging capability are among the characteristics of entrepreneurial university leaders. The findings reinforced that the presence of specific attributes in institutional adversity and experiences in overcoming those challenges may contribute to the development of entrepreneurial leadership capabilities.

Keywords: bridging capability, entrepreneurial leadership, leadership development, learning agility, opportunity recognition, university leaders

Procedia PDF Downloads 110
4032 Description of the Non-Iterative Learning Algorithm of Artificial Neuron

Authors: B. S. Akhmetov, S. T. Akhmetova, A. I. Ivanov, T. S. Kartbayev, A. Y. Malygin

Abstract:

The problem of training of a network of artificial neurons in biometric appendices is that this process has to be completely automatic, i.e. the person operator should not participate in it. Therefore, this article discusses the issues of training the network of artificial neurons and the description of the non-iterative learning algorithm of artificial neuron.

Keywords: artificial neuron, biometrics, biometrical applications, learning of neuron, non-iterative algorithm

Procedia PDF Downloads 496
4031 Target Drug Delivery of Pamidronate Nanoparticles for Enhancing Osteoblastic Activity in Osteoporosis

Authors: Purnima Rawat, Divya Vohora, Sarika Gupta, Farhan J. Ahmad, Sushama Talegaonkar

Abstract:

Nanoparticles (NPs) that target bone tissue were developed using PLGA–mPEG (poly(lactic-co-glycolic-acid)–polyethylene glycol) diblock copolymers by using pamidronate as a bone-targeting moieties. These NPs are expected to enable the transport of hydrophilic drugs. The NP was prepared by in situ polymerization method, and their in- vitro characteristics were evaluated using dynamic light scattering, transmission electron microscopy (TEM) and in phosphate-buffered solution. The bone targeting potential of the NP was also evaluated on in-vitro pre-osteoblast MCT3E1 cell line using ALP activity, degree of mineralization and RT-PCR assay. The average particle size of the NP was 101.6 ± 3.7nm, zeta potential values were negative (-25±0.34mV) of the formulations and the entrapment efficiency was 93± 3.1 % obtained. The moiety of the PLGA–mPEG–pamidronate NPs exhibited the best apatite mineral binding ability in-vitro MCT3E1 pre-osteoblast cell line. Our results suggested that the developed nanoparticles may use as a delivery system for Pamidronate in bone repair and regeneration, warranting further evaluation of the treatment of bone disease.

Keywords: nanoparticle, pamidronate, in-situ polymerization, osteoblast

Procedia PDF Downloads 482
4030 Optimization of the Dental Direct Digital Imaging by Applying the Self-Recognition Technology

Authors: Mina Dabirinezhad, Mohsen Bayat Pour, Amin Dabirinejad

Abstract:

This paper is intended to introduce the technology to solve some of the deficiencies of the direct digital radiology. Nowadays, digital radiology is the latest progression in dental imaging, which has become an essential part of dentistry. There are two main parts of the direct digital radiology comprised of an intraoral X-ray machine and a sensor (digital image receptor). The dentists and the dental nurses experience afflictions during the taking image process by the direct digital X-ray machine. For instance, sometimes they need to readjust the sensor in the mouth of the patient to take the X-ray image again due to the low quality of that. Another problem is, the position of the sensor may move in the mouth of the patient and it triggers off an inappropriate image for the dentists. It means that it is a time-consuming process for dentists or dental nurses. On the other hand, taking several the X-ray images brings some problems for the patient such as being harmful to their health and feeling pain in their mouth due to the pressure of the sensor to the jaw. The author provides a technology to solve the above-mentioned issues that is called “Self-Recognition Direct Digital Radiology” (SDDR). This technology is based on the principle that the intraoral X-ray machine is capable to diagnose the location of the sensor in the mouth of the patient automatically. In addition, to solve the aforementioned problems, SDDR technology brings out fewer environmental impacts in comparison to the previous version.

Keywords: Dental direct digital imaging, digital image receptor, digital x-ray machine, and environmental impacts

Procedia PDF Downloads 138
4029 Searchable Encryption in Cloud Storage

Authors: Ren Junn Hwang, Chung-Chien Lu, Jain-Shing Wu

Abstract:

Cloud outsource storage is one of important services in cloud computing. Cloud users upload data to cloud servers to reduce the cost of managing data and maintaining hardware and software. To ensure data confidentiality, users can encrypt their files before uploading them to a cloud system. However, retrieving the target file from the encrypted files exactly is difficult for cloud server. This study proposes a protocol for performing multikeyword searches for encrypted cloud data by applying k-nearest neighbor technology. The protocol ranks the relevance scores of encrypted files and keywords, and prevents cloud servers from learning search keywords submitted by a cloud user. To reduce the costs of file transfer communication, the cloud server returns encrypted files in order of relevance. Moreover, when a cloud user inputs an incorrect keyword and the number of wrong alphabet does not exceed a given threshold; the user still can retrieve the target files from cloud server. In addition, the proposed scheme satisfies security requirements for outsourced data storage.

Keywords: fault-tolerance search, multi-keywords search, outsource storage, ranked search, searchable encryption

Procedia PDF Downloads 383
4028 Development of a New Characterization Method to Analyse Cypermethrin Penetration in Wood Material by Immunolabelling

Authors: Sandra Tapin-Lingua, Katia Ruel, Jean-Paul Joseleau, Daouia Messaoudi, Olivier Fahy, Michel Petit-Conil

Abstract:

The preservative efficacy of organic biocides is strongly related to their capacity of penetration and retention within wood tissues. The specific detection of the pyrethroid insecticide is currently obtained after extraction followed by chemical analysis by chromatography techniques. However visualizing the insecticide molecule within the wood structure requires specific probes together with microscopy techniques. Therefore, the aim of the present work was to apply a new methodology based on antibody-antigen recognition and electronic microscopy to visualize directly pyrethroids in the wood material. A polyclonal antibody directed against cypermethrin was developed and implement it on Pinus sylvestris wood samples coated with technical cypermethrin. The antibody was tested on impregnated wood and the specific recognition of the insecticide was visualized in transmission electron microscopy (TEM). The immunogold-TEM assay evidenced the capacity of the synthetic biocide to penetrate in the wood. The depth of penetration was measured on sections taken at increasing distances from the coated surface of the wood. Such results correlated with chemical analyzes carried out by GC-ECD after extraction. In addition, the immuno-TEM investigation allowed visualizing, for the first time at the ultrastructure scale of resolution, that cypermethrin was able to diffuse within the secondary wood cell walls.

Keywords: cypermethrin, insecticide, wood penetration, wood retention, immuno-transmission electron microscopy, polyclonal antibody

Procedia PDF Downloads 413
4027 Expressing Locality in Learning English: A Study of English Textbooks for Junior High School Year VII-IX in Indonesia Context

Authors: Agnes Siwi Purwaning Tyas, Dewi Cahya Ambarwati

Abstract:

This paper concerns the language learning that develops as a habit formation and a constructive process while exercising an oppressive power to construct the learners. As a locus of discussion, the investigation problematizes the transfer of English language to Indonesian students of junior high school through the use of English textbooks ‘Real Time: An Interactive English Course for Junior High School Students Year VII-IX’. English language has long performed as a global language and it is a demand upon the non-English native speakers to master the language if they desire to become internationally recognized individuals. Generally, English teachers teach the language in accordance with the nature of language learning in which they are trained and expected to teach the language within the culture of the target language. This provides a potential soft cultural penetration of a foreign ideology through language transmission. In the context of Indonesia, learning English as international language is considered dilemmatic. Most English textbooks in Indonesia incorporate cultural elements of the target language which in some extent may challenge the sensitivity towards local cultural values. On the other hand, local teachers demand more English textbooks for junior high school students which can facilitate cultural dissemination of both local and global values and promote learners’ cultural traits of both cultures to avoid misunderstanding and confusion. It also aims to support language learning as bidirectional process instead of instrument of oppression. However, sensitizing and localizing this foreign language is not sufficient to restrain its soft infiltration. In due course, domination persists making the English language as an authoritative language and positioning the locality as ‘the other’. Such critical premise has led to a discursive analysis referring to how the cultural elements of the target language are presented in the textbooks and whether the local characteristics of Indonesia are able to gradually reduce the degree of the foreign oppressive ideology. The three textbooks researched were written by non-Indonesian author edited by two Indonesia editors published by a local commercial publishing company, PT Erlangga. The analytical elaboration examines the cultural characteristics in the forms of names, terminologies, places, objects and imageries –not the linguistic aspect– of both cultural domains; English and Indonesia. Comparisons as well as categorizations were made to identify the cultural traits of each language and scrutinize the contextual analysis. In the analysis, 128 foreign elements and 27 local elements were found in textbook for grade VII, 132 foreign elements and 23 local elements were found in textbook for grade VIII, while 144 foreign elements and 35 local elements were found in grade IX textbook, demonstrating the unequal distribution of both cultures. Even though the ideal pedagogical approach of English learning moves to a different direction by the means of inserting local elements, the learners are continuously imposed to the culture of the target language and forced to internalize the concept of values under the influence of the target language which tend to marginalize their native culture.

Keywords: bidirectional process, English, local culture, oppression

Procedia PDF Downloads 267
4026 Machine Learning and Deep Learning Approach for People Recognition and Tracking in Crowd for Safety Monitoring

Authors: A. Degale Desta, Cheng Jian

Abstract:

Deep learning application in computer vision is rapidly advancing, giving it the ability to monitor the public and quickly identify potentially anomalous behaviour from crowd scenes. Therefore, the purpose of the current work is to improve the performance of safety of people in crowd events from panic behaviour through introducing the innovative idea of Aggregation of Ensembles (AOE), which makes use of the pre-trained ConvNets and a pool of classifiers to find anomalies in video data with packed scenes. According to the theory of algorithms that applied K-means, KNN, CNN, SVD, and Faster-CNN, YOLOv5 architectures learn different levels of semantic representation from crowd videos; the proposed approach leverages an ensemble of various fine-tuned convolutional neural networks (CNN), allowing for the extraction of enriched feature sets. In addition to the above algorithms, a long short-term memory neural network to forecast future feature values and a handmade feature that takes into consideration the peculiarities of the crowd to understand human behavior. On well-known datasets of panic situations, experiments are run to assess the effectiveness and precision of the suggested method. Results reveal that, compared to state-of-the-art methodologies, the system produces better and more promising results in terms of accuracy and processing speed.

Keywords: action recognition, computer vision, crowd detecting and tracking, deep learning

Procedia PDF Downloads 161
4025 The Visible Third: Female Artists’ Participation in the Portuguese Contemporary Art World

Authors: Sonia Bernardo Correia

Abstract:

This paper is part of ongoing research that aims to understand the role of gender in the composition of the Portuguese contemporary art world and the possibilities and limits to the success of the professional paths of women and men artists. The field of visual arts is gender-sensitive as it differentiates the positions occupied by artists in terms of visibility and recognition. Women artists occupy a peripheral space, which may hinder the progression of their professional careers. Based on the collection of data on the participation of artists in Portuguese exhibitions, art fairs, auctions, and art awards between 2012 and 2019, the goal of this study is to portray female artists’ participation as a condition of professional, social, and cultural visibility. From the analysis of a significant sample of institutions from the artistic field, it was possible to observe that the works of female authors are under exhibited, never exceeding one-third of the total of exhibitions. Male artists also enjoy a comfortable majority as gallery artists (around 70%) and as part of institutional collections (around 80%). However, when analysing the younger age cohorts of artists by gender, it appears that there is representation parity, which may be a good sign of change. The data shows that there are persistent gender inequalities in accessing the artist profession. Women are not yet occupying positions of exposure, recognition, and legitimation in the market similar to those of their male counterparts, suggesting that they may face greater obstacles in experiencing successful professional trajectories.

Keywords: inequalities, invisibility of the woman artist, gender, visual arts

Procedia PDF Downloads 136
4024 Sign Language Recognition of Static Gestures Using Kinect™ and Convolutional Neural Networks

Authors: Rohit Semwal, Shivam Arora, Saurav, Sangita Roy

Abstract:

This work proposes a supervised framework with deep convolutional neural networks (CNNs) for vision-based sign language recognition of static gestures. Our approach addresses the acquisition and segmentation of correct inputs for the CNN-based classifier. Microsoft Kinect™ sensor, despite complex environmental conditions, can track hands efficiently. Skin Colour based segmentation is applied on cropped images of hands in different poses, used to depict different sign language gestures. The segmented hand images are used as an input for our classifier. The CNN classifier proposed in the paper is able to classify the input images with a high degree of accuracy. The system was trained and tested on 39 static sign language gestures, including 26 letters of the alphabet and 13 commonly used words. This paper includes a problem definition for building the proposed system, which acts as a sign language translator between deaf/mute and the rest of the society. It is then followed by a focus on reviewing existing knowledge in the area and work done by other researchers. It also describes the working principles behind different components of CNNs in brief. The architecture and system design specifications of the proposed system are discussed in the subsequent sections of the paper to give the reader a clear picture of the system in terms of the capability required. The design then gives the top-level details of how the proposed system meets the requirements.

Keywords: sign language, CNN, HCI, segmentation

Procedia PDF Downloads 157
4023 Designed Purine Molecules and in-silico Evaluation of Aurora Kinase Inhibition in Breast Cancer

Authors: Pooja Kumari, Anandkumar Tengli

Abstract:

Aurora kinase enzyme, a protein on overexpression, leads to metastasis and is extremely important for women’s health in terms of prevention or treatment. While creating a targeted technique, the aim of the work is to design purine molecules that inhibit in aurora kinase enzyme and helps to suppress breast cancer. Purine molecules attached to an amino acid in DNA block protein synthesis or halt the replication and metastasis caused by the aurora kinase enzyme. Various protein related to the overexpression of aurora protein was docked with purine molecule using Biovia Drug Discovery, the perpetual software. Various parameters like X-ray crystallographic structure, presence of ligand, Ramachandran plot, resolution, etc., were taken into consideration for selecting the target protein. A higher negative binding scored molecule has been taken for simulation studies. According to the available research and computational analyses, purine compounds may be powerful enough to demonstrate a greater affinity for the aurora target. Despite being clinically effective now, purines were originally meant to fight breast cancer by inhibiting the aurora kinase enzyme. In in-silico studies, it is observed that purine compounds have a moderate to high potency compared to other molecules, and our research into the literature revealed that purine molecules have a lower risk of side effects. The research involves the design, synthesis, and identification of active purine molecules against breast cancer. Purines are structurally similar to the normal metabolites of adenine and guanine; hence interfere/compete with protein synthesis and suppress the abnormal proliferation of cells/tissues. As a result, purine target metastasis cells and stop the growth of kinase; purine derivatives bind with DNA and aurora protein which may stop the growth of protein or inhibits replication and stop metastasis of overexpressed aurora kinase enzyme.

Keywords: aurora kinases, in silico studies, medicinal chemistry, combination therapies, chronic cancer, clinical translation

Procedia PDF Downloads 86
4022 Track Initiation Method Based on Multi-Algorithm Fusion Learning of 1DCNN And Bi-LSTM

Authors: Zhe Li, Aihua Cai

Abstract:

Aiming at the problem of high-density clutter and interference affecting radar detection target track initiation in ECM and complex radar mission, the traditional radar target track initiation method has been difficult to adapt. To this end, we propose a multi-algorithm fusion learning track initiation algorithm, which transforms the track initiation problem into a true-false track discrimination problem, and designs an algorithm based on 1DCNN(One-Dimensional CNN)combined with Bi-LSTM (Bi-Directional Long Short-Term Memory )for fusion classification. The experimental dataset consists of real trajectories obtained from a certain type of three-coordinate radar measurements, and the experiments are compared with traditional trajectory initiation methods such as rule-based method, logical-based method and Hough-transform-based method. The simulation results show that the overall performance of the multi-algorithm fusion learning track initiation algorithm is significantly better than that of the traditional method, and the real track initiation rate can be effectively improved under high clutter density with the average initiation time similar to the logical method.

Keywords: track initiation, multi-algorithm fusion, 1DCNN, Bi-LSTM

Procedia PDF Downloads 95