Search results for: tomato yield prediction
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4698

Search results for: tomato yield prediction

3708 Prediction of Sepsis Illness from Patients Vital Signs Using Long Short-Term Memory Network and Dynamic Analysis

Authors: Marcio Freire Cruz, Naoaki Ono, Shigehiko Kanaya, Carlos Arthur Mattos Teixeira Cavalcante

Abstract:

The systems that record patient care information, known as Electronic Medical Record (EMR) and those that monitor vital signs of patients, such as heart rate, body temperature, and blood pressure have been extremely valuable for the effectiveness of the patient’s treatment. Several kinds of research have been using data from EMRs and vital signs of patients to predict illnesses. Among them, we highlight those that intend to predict, classify, or, at least identify patterns, of sepsis illness in patients under vital signs monitoring. Sepsis is an organic dysfunction caused by a dysregulated patient's response to an infection that affects millions of people worldwide. Early detection of sepsis is expected to provide a significant improvement in its treatment. Preceding works usually combined medical, statistical, mathematical and computational models to develop detection methods for early prediction, getting higher accuracies, and using the smallest number of variables. Among other techniques, we could find researches using survival analysis, specialist systems, machine learning and deep learning that reached great results. In our research, patients are modeled as points moving each hour in an n-dimensional space where n is the number of vital signs (variables). These points can reach a sepsis target point after some time. For now, the sepsis target point was calculated using the median of all patients’ variables on the sepsis onset. From these points, we calculate for each hour the position vector, the first derivative (velocity vector) and the second derivative (acceleration vector) of the variables to evaluate their behavior. And we construct a prediction model based on a Long Short-Term Memory (LSTM) Network, including these derivatives as explanatory variables. The accuracy of the prediction 6 hours before the time of sepsis, considering only the vital signs reached 83.24% and by including the vectors position, speed, and acceleration, we obtained 94.96%. The data are being collected from Medical Information Mart for Intensive Care (MIMIC) Database, a public database that contains vital signs, laboratory test results, observations, notes, and so on, from more than 60.000 patients.

Keywords: dynamic analysis, long short-term memory, prediction, sepsis

Procedia PDF Downloads 125
3707 Kinetic and Thermodynamic Study of Nitrates Removal by Sorption on Biochar

Authors: Amira Touil, Achouak Arfaoui, Ibtissem Mannaii

Abstract:

The aim of this work is to monitor the process adsorption of nitrates by the biochar via studying the influence of various parameters on the adsorption of this pollutant by biochar in a synthetic aqueous solution. The results which obtained indicate that the 4g/L biochar dose is the most efficient in terms of nitrates removal in aqueous solution. The biochar exhibited a good affinity for nitrates after 1hour of contact. The yield of removal of nitrate by the biochar decreases with the increase of pH of the solution and increases with increasing temperature (60°C>40°C>20°C). The best removal yield is about 80% of the initial concentration introduced (25mg/L) obtained at pH=2, T=60°C, and dose of biochar=4g/L. The second order model fit the nitrate adsorption kinetics of biochar with a high coefficient of determination (R2≥0.997); and a new equation correlating the rate constant of the reaction with temperature and pH was been built. Freundlich isotherms performed well to fit the nitrate adsorption data by biochar (R2>0.96) compared to Langmuir isotherms. The thermodynamic parameters (ΔH°, ΔG°, ΔS°) have been calculated for predicting the nature of adsorption.

Keywords: pollution, biochar, nitrate, adsorption

Procedia PDF Downloads 95
3706 Surface Roughness Prediction Using Numerical Scheme and Adaptive Control

Authors: Michael K.O. Ayomoh, Khaled A. Abou-El-Hossein., Sameh F.M. Ghobashy

Abstract:

This paper proposes a numerical modelling scheme for surface roughness prediction. The approach is premised on the use of 3D difference analysis method enhanced with the use of feedback control loop where a set of adaptive weights are generated. The surface roughness values utilized in this paper were adapted from [1]. Their experiments were carried out using S55C high carbon steel. A comparison was further carried out between the proposed technique and those utilized in [1]. The experimental design has three cutting parameters namely: depth of cut, feed rate and cutting speed with twenty-seven experimental sample-space. The simulation trials conducted using Matlab software is of two sub-classes namely: prediction of the surface roughness readings for the non-boundary cutting combinations (NBCC) with the aid of the known surface roughness readings of the boundary cutting combinations (BCC). The following simulation involved the use of the predicted outputs from the NBCC to recover the surface roughness readings for the boundary cutting combinations (BCC). The simulation trial for the NBCC attained a state of total stability in the 7th iteration i.e. a point where the actual and desired roughness readings are equal such that error is minimized to zero by using a set of dynamic weights generated in every following simulation trial. A comparative study among the three methods showed that the proposed difference analysis technique with adaptive weight from feedback control, produced a much accurate output as against the abductive and regression analysis techniques presented in this.

Keywords: Difference Analysis, Surface Roughness; Mesh- Analysis, Feedback control, Adaptive weight, Boundary Element

Procedia PDF Downloads 621
3705 The Design of a Vehicle Traffic Flow Prediction Model for a Gauteng Freeway Based on an Ensemble of Multi-Layer Perceptron

Authors: Tebogo Emma Makaba, Barnabas Ndlovu Gatsheni

Abstract:

The cities of Johannesburg and Pretoria both located in the Gauteng province are separated by a distance of 58 km. The traffic queues on the Ben Schoeman freeway which connects these two cities can stretch for almost 1.5 km. Vehicle traffic congestion impacts negatively on the business and the commuter’s quality of life. The goal of this paper is to identify variables that influence the flow of traffic and to design a vehicle traffic prediction model, which will predict the traffic flow pattern in advance. The model will unable motorist to be able to make appropriate travel decisions ahead of time. The data used was collected by Mikro’s Traffic Monitoring (MTM). Multi-Layer perceptron (MLP) was used individually to construct the model and the MLP was also combined with Bagging ensemble method to training the data. The cross—validation method was used for evaluating the models. The results obtained from the techniques were compared using predictive and prediction costs. The cost was computed using combination of the loss matrix and the confusion matrix. The predicted models designed shows that the status of the traffic flow on the freeway can be predicted using the following parameters travel time, average speed, traffic volume and day of month. The implications of this work is that commuters will be able to spend less time travelling on the route and spend time with their families. The logistics industry will save more than twice what they are currently spending.

Keywords: bagging ensemble methods, confusion matrix, multi-layer perceptron, vehicle traffic flow

Procedia PDF Downloads 344
3704 Springback Prediction for Sheet Metal Cold Stamping Using Convolutional Neural Networks

Authors: Lei Zhu, Nan Li

Abstract:

Cold stamping has been widely applied in the automotive industry for the mass production of a great range of automotive panels. Predicting the springback to ensure the dimensional accuracy of the cold-stamped components is a critical step. The main approaches for the prediction and compensation of springback in cold stamping include running Finite Element (FE) simulations and conducting experiments, which require forming process expertise and can be time-consuming and expensive for the design of cold stamping tools. Machine learning technologies have been proven and successfully applied in learning complex system behaviours using presentative samples. These technologies exhibit the promising potential to be used as supporting design tools for metal forming technologies. This study, for the first time, presents a novel application of a Convolutional Neural Network (CNN) based surrogate model to predict the springback fields for variable U-shape cold bending geometries. A dataset is created based on the U-shape cold bending geometries and the corresponding FE simulations results. The dataset is then applied to train the CNN surrogate model. The result shows that the surrogate model can achieve near indistinguishable full-field predictions in real-time when compared with the FE simulation results. The application of CNN in efficient springback prediction can be adopted in industrial settings to aid both conceptual and final component designs for designers without having manufacturing knowledge.

Keywords: springback, cold stamping, convolutional neural networks, machine learning

Procedia PDF Downloads 149
3703 Energy Use and Econometric Models of Soybean Production in Mazandaran Province of Iran

Authors: Majid AghaAlikhani, Mostafa Hojati, Saeid Satari-Yuzbashkandi

Abstract:

This paper studies energy use patterns and relationship between energy input and yield for soybean (Glycine max (L.) Merrill) in Mazandaran province of Iran. In this study, data were collected by administering a questionnaire in face-to-face interviews. Results revealed that the highest share of energy consumption belongs to chemical fertilizers (29.29%) followed by diesel (23.42%) and electricity (22.80%). Our investigations showed that a total energy input of 23404.1 MJ.ha-1 was consumed for soybean production. The energy productivity, specific energy, and net energy values were estimated as 0.12 kg MJ-1, 8.03 MJ kg-1, and 49412.71 MJ.ha-1, respectively. The ratio of energy outputs to energy inputs was 3.11. Obtained results indicated that direct, indirect, renewable and non-renewable energies were (56.83%), (43.17%), (15.78%) and (84.22%), respectively. Three econometric models were also developed to estimate the impact of energy inputs on yield. The results of econometric models revealed that impact of chemical, fertilizer, and water on yield were significant at 1% probability level. Also, direct and non-renewable energies were found to be rather high. Cost analysis revealed that total cost of soybean production per ha was around 518.43$. Accordingly, the benefit-cost ratio was estimated as 2.58. The energy use efficiency in soybean production was found as 3.11. This reveals that the inputs used in soybean production are used efficiently. However, due to higher rate of nitrogen fertilizer consumption, sustainable agriculture should be extended and extension staff could be proposed substitution of chemical fertilizer by biological fertilizer or green manure.

Keywords: Cobbe Douglas function, economical analysis, energy efficiency, energy use patterns, soybean

Procedia PDF Downloads 334
3702 Pesticidal Potential of Selected Aqueous Plant Extracts for the Control of Webber Caterpillar (Hymenis Recurvalis Fab.) Infestation on Amaranthus in Kashere,Gombe State, Nigeria

Authors: Degri M. M, Samaila A. E., Simon L., Joly G. A.

Abstract:

The amaranth leaf webber caterpillar (Hymenia recurvalis Fab.) was found to cause serious leaf damage by perforation and reduce amaranth growth and yield. It is a major limiting factor in amaranth production. Field experiments were conducted during 2022 and 2023 with the aim of assessing insecticidal potential of five selected plant leaf extracts, namely Moringa oleifera, Azadiractha indica A. Juss , Balanites aegyptiaca Del., Momordica balsamina and Hyptis suaveolens using Lambda.cyhalothrin 2.5 EC, a synthetic insecticide as a check. The experiment was conducted in a randomized complete block design (RCBD) replicated three times. Results showed that A.indica and H.suaveolous were more effective in reducing H .recurvalis population, leaf perforation, leaf damaged and improved amaranth plant growth and yield. This was closely followed by B. aegyptiaca and M. balsamina while M. oleifera had the lowest effect on the use of pest population and damage. Lambda.cyhalothrin, a synthetic insecticide, was found to be superior to the five plant extracts. The result showed that A. indica and H. suaveolens improved the growth and yield of amaranth during the study period. The study, therefore, recommended the two plant extracts for the control of leaf webber caterpillar (H. recurvalis) to limited resource farmers and as a good alternative to Lambda.cyhalothrin 2.5EC in the study area.

Keywords: Amaranth, leaf Webber plant extracts, Lambda cyhalothrin, rainfed

Procedia PDF Downloads 19
3701 Assessing Impacts of Climate Variability and Change on Water Productivity and Nutrient Use Efficiency of Maize in the Semi-arid Central Rift Valley of Ethiopia

Authors: Fitih Ademe, Kibebew Kibret, Sheleme Beyene, Mezgebu Getnet, Gashaw Meteke

Abstract:

Changes in precipitation, temperature and atmospheric CO2 concentration are expected to alter agricultural productivity patterns worldwide. The interactive effects of soil moisture and nutrient availability are the two key edaphic factors that determine crop yield and are sensitive to climatic changes. The study assessed the potential impacts of climate change on maize yield and corresponding water productivity and nutrient use efficiency under climate change scenarios for the Central Rift Valley of Ethiopia by mid (2041-2070) and end century (2071-2100). Projected impacts were evaluated using climate scenarios generated from four General Circulation Models (GCMs) dynamically downscaled by the Swedish RCA4 Regional Climate Model (RCM) in combination with two Representative Concentration Pathways (RCP 4.5 and RCP8.5). Decision Support System for Agro-technology Transfer cropping system model (DSSAT-CSM) was used to simulate yield, water and nutrient use for the study periods. Results indicate that rainfed maize yield might decrease on average by 16.5 and 23% by the 2050s and 2080s, respectively, due to climate change. Water productivity is expected to decline on average by 2.2 and 12% in the CRV by mid and end centuries with respect to the baseline. Nutrient uptake and corresponding nutrient use efficiency (NUE) might also be negatively affected by climate change. Phosphorus uptake probably will decrease in the CRV on average by 14.5 to 18% by 2050s, while N uptake may not change significantly at Melkassa. Nitrogen and P use efficiency indicators showed decreases in the range between 8.5 to 10.5% and between 9.3 to 10.5%, respectively, by 2050s relative to the baseline average. The simulation results further indicated that a combination of increased water availability and optimum nutrient application might increase both water productivity and nutrient use efficiency in the changed climate, which can ensure modest production in the future. Potential options that can improve water availability and nutrient uptake should be identified for the study locations using a crop modeling approach.

Keywords: crop model, climate change scenario, nutrient uptake, nutrient use efficiency, water productivity

Procedia PDF Downloads 86
3700 Assessment of Analytical Equations for the Derivation of Young’s Modulus of Bonded Rubber Materials

Authors: Z. N. Haji, S. O. Oyadiji, H. Samami, O. Farrell

Abstract:

The prediction of the vibration response of rubber products by analytical or numerical method depends mainly on the predefined intrinsic material properties such as Young’s modulus, damping factor and Poisson’s ratio. Such intrinsic properties are determined experimentally by subjecting a bonded rubber sample to compression tests. The compression tests on such a sample yield an apparent Young’s modulus which is greater in magnitude than the intrinsic Young’s modulus of the rubber. As a result, many analytical equations have been developed to determine Young’s modulus from an apparent Young’s modulus of bonded rubber materials. In this work, the applicability of some of these analytical equations is assessed via experimental testing. The assessment is based on testing of vulcanized nitrile butadiene rubber (NBR70) samples using tensile test and compression test methods. The analytical equations are used to determine the intrinsic Young’s modulus from the apparent modulus that is derived from the compression test data of the bonded rubber samples. Then, these Young’s moduli are compared with the actual Young’s modulus that is derived from the tensile test data. The results show significant discrepancy between the Young’s modulus derived using the analytical equations and the actual Young’s modulus.

Keywords: bonded rubber, quasi-static test, shape factor, apparent Young’s modulus

Procedia PDF Downloads 173
3699 Investigation of the Density and Control Methods of Weed Species That Are a Problem in Broad Bean (Vicia Faba L.) Cultivation

Authors: Tamer Üstüner, Sena Nur Arı

Abstract:

This study was carried out at Kahramanmaras Sutcu Imam University, trial area Faculty of Agriculture and ÜSKİM laboratory in 2022. Many problems are encountered in broad bean (Vicia faba L.) cultivation. One of these problems is weeds. In this study, weed species, families, and densities of weeds that are a problem in broad beans were determined. A total of 47 weed species belonging to 20 different families were determined in the experimental area. Weed species found very densely in control 1 plots of the broad bean experimental area were Sinapis arvensis 11.50 pieces/m², Lolium temulentum L. 11.20, Ranunculus arvensis L. 10.95, Galium tricornutum Dany. 10.81, Avena sterilis 10.60, Bupleurum lancifolium 10.40, Convolvulus arvensis 10.25 ve Cynodon dactylon 10.14 pieces/m². The weed species Cuscuta campestris Yunck. which is very common in the control plots of the broad bean experimental area, was calculated as 11.94 units/m². It was determined that C. campestris alone caused significant yield and quality loss in broad beans. In this study, it was determined that the most effective method in reducing the weed population was hand hoeing, followed by pre-emergence pendimethalin and post-emergence herbicide with Imazamox active substance. In terms of the effect of these control applications on the pod yield, the hand hoeing application ranked first, the pendimethalin application ranked second, the Imazamox application ranked third, and the control 2 and control 1 plot took the last place.

Keywords: broad bean, weed, struggle, yield

Procedia PDF Downloads 95
3698 Design and Burnback Analysis of Three Dimensional Modified Star Grain

Authors: Almostafa Abdelaziz, Liang Guozhu, Anwer Elsayed

Abstract:

The determination of grain geometry is an important and critical step in the design of solid propellant rocket motor. In this study, the design process involved parametric geometry modeling in CAD, MATLAB coding of performance prediction and 2D star grain ignition experiment. The 2D star grain burnback achieved by creating new surface via each web increment and calculating geometrical properties at each step. The 2D star grain is further modified to burn as a tapered 3D star grain. Zero dimensional method used to calculate the internal ballistic performance. Experimental and theoretical results were compared in order to validate the performance prediction of the solid rocket motor. The results show that the usage of 3D grain geometry will decrease the pressure inside the combustion chamber and enhance the volumetric loading ratio.

Keywords: burnback analysis, rocket motor, star grain, three dimensional grains

Procedia PDF Downloads 245
3697 Co-Hydrothermal Gasification of Microalgae Biomass and Solid Biofuel for Biogas Production

Authors: Daniel Fozer

Abstract:

Limiting global warming to 1.5°C to the pre-industrial levels urges the application of efficient and sustainable carbon dioxide removal (CDR) technologies. Microalgae based biorefineries offer scalable solutions for the biofixation of CO2, where the produced biomass can be transformed into value added products by applying thermochemical processes. In this paper we report on the utilization of hydrochar as a blending component in hydrothermal gasification (HTG) process. The effects of blending ratio and hydrochar quality were investigated on the biogas yield and and composition. It is found that co-gasifying the hydrochar and the algae biomass can increase significantly the total gas yield and influence the biogas (H2, CH4, CO2, CO, C2H4, C2H6) composition. It is determined that the carbon conversion ratio, hydrogen and methane selectivity can be increased by influencing the fuel ratio of hydrochar via hydrothermal carbonization. In conclusion, it is found that increasing the synergy between hydrothermal technologies result in elevated conversion efficiency.

Keywords: biogas, CDR, Co-HTG, hydrochar, microalgae

Procedia PDF Downloads 149
3696 Green Extraction of Patchoulol from Patchouli Leaves Using Ultrasound-Assisted Ionic Liquids

Authors: G. C. Jadeja, M. A. Desai, D. R. Bhatt, J. K. Parikh

Abstract:

Green extraction techniques are fast paving ways into various industrial sectors due to the stringent governmental regulations leading to the banning of toxic chemicals’ usage and also due to the increasing health/environmental awareness. The present work describes the ionic liquids based sonication method for selectively extracting patchoulol from the leaves of patchouli. 1-Butyl-3-methylimidazolium tetrafluoroborate ([Bmim]BF4) and N,N,N,N’,N’,N’-Hexaethyl-butane-1,4-diammonium dibromide (dicationic ionic liquid - DIL) were selected for extraction. Ultrasound assisted ionic liquid extraction was employed considering concentration of ionic liquid (4–8 %, w/w), ultrasound power (50–150 W for [Bmim]BF4 and 20–80 W for DIL), temperature (30–50 oC) and extraction time (30–50 min) as major parameters influencing the yield of patchoulol. Using the Taguchi method, the parameters were optimized and analysis of variance (ANOVA) was performed to find the most influential factor in the selected extraction method. In case of [Bmim]BF4, the optimum conditions were found to be: 4 % (w/w) ionic liquid concentration, 50 W power, 30 oC temperature and extraction time of 30 min. The yield obtained under the optimum conditions was 3.99 mg/g. In case of DIL, the optimum conditions were obtained as 6 % (w/w) ionic liquid concentration, 80 W power, 30 oC temperature and extraction time of 40 min, for which the yield obtained was 4.03 mg/g. Temperature was found to be the most significant factor in both the cases. Extraction time was the insignificant parameter while extracting the product using [Bmim]BF4 and in case of DIL, power was found to be the least significant factor affecting the process. Thus, a green method of recovering patchoulol is proposed.

Keywords: green extraction, ultrasound, patchoulol, ionic liquids

Procedia PDF Downloads 362
3695 The Utilization of Tea Residues for Activated Carbon Preparation

Authors: Jiazhen Zhou, Youcai Zhao

Abstract:

Waste tea is commonly generated in certain areas of China and its utilization has drawn a lot of concern nowadays. In this paper, highly microporous and mesoporous activated carbons were produced from waste tea by physical activation in the presence of water vapor in a tubular furnace. The effect of activation temperature on yield and pore properties of produced activated carbon are studied. The yield decreased with the increase of activation temperature. According to the Nitrogen adsorption isotherms, the micropore and mesopore are both developed in the activated carbon. The specific surface area and the mesopore volume fractions of the activated carbon increased with the raise of activation temperature. The maximum specific surface area attained 756 m²/g produced at activation temperature 900°C. The results showed that the activation temperature had a significant effect on the micro and mesopore volumes as well as the specific surface area.

Keywords: activated carbon, nitrogen adsorption isotherm, physical activation, waste tea

Procedia PDF Downloads 328
3694 Effects of Global Validity of Predictive Cues upon L2 Discourse Comprehension: Evidence from Self-paced Reading

Authors: Binger Lu

Abstract:

It remains unclear whether second language (L2) speakers could use discourse context cues to predict upcoming information as native speakers do during online comprehension. Some researchers propose that L2 learners may have a reduced ability to generate predictions during discourse processing. At the same time, there is evidence that discourse-level cues are weighed more heavily in L2 processing than in L1. Previous studies showed that L1 prediction is sensitive to the global validity of predictive cues. The current study aims to explore whether and to what extent L2 learners can dynamically and strategically adjust their prediction in accord with the global validity of predictive cues in L2 discourse comprehension as native speakers do. In a self-paced reading experiment, Chinese native speakers (N=128), C-E bilinguals (N=128), and English native speakers (N=128) read high-predictable (e.g., Jimmy felt thirsty after running. He wanted to get some water from the refrigerator.) and low-predictable (e.g., Jimmy felt sick this morning. He wanted to get some water from the refrigerator.) discourses in two-sentence frames. The global validity of predictive cues was manipulated by varying the ratio of predictable (e.g., Bill stood at the door. He opened it with the key.) and unpredictable fillers (e.g., Bill stood at the door. He opened it with the card.), such that across conditions, the predictability of the final word of the fillers ranged from 100% to 0%. The dependent variable was reading time on the critical region (the target word and the following word), analyzed with linear mixed-effects models in R. C-E bilinguals showed reliable prediction across all validity conditions (β = -35.6 ms, SE = 7.74, t = -4.601, p< .001), and Chinese native speakers showed significant effect (β = -93.5 ms, SE = 7.82, t = -11.956, p< .001) in two of the four validity conditions (namely, the High-validity and MedLow conditions, where fillers ended with predictable words in 100% and 25% cases respectively), whereas English native speakers didn’t predict at all (β = -2.78 ms, SE = 7.60, t = -.365, p = .715). There was neither main effect (χ^²(3) = .256, p = .968) nor interaction (Predictability: Background: Validity, χ^²(3) = 1.229, p = .746; Predictability: Validity, χ^²(3) = 2.520, p = .472; Background: Validity, χ^²(3) = 1.281, p = .734) of Validity with speaker groups. The results suggest that prediction occurs in L2 discourse processing but to a much less extent in L1, witha significant effect in some conditions of L1 Chinese and anull effect in L1 English processing, consistent with the view that L2 speakers are more sensitive to discourse cues compared with L1 speakers. Additionally, the pattern of L1 and L2 predictive processing was not affected by the global validity of predictive cues. C-E bilinguals’ predictive processing could be partly transferred from their L1, as prior research showed that discourse information played a more significant role in L1 Chinese processing.

Keywords: bilingualism, discourse processing, global validity, prediction, self-paced reading

Procedia PDF Downloads 138
3693 Predicting National Football League (NFL) Match with Score-Based System

Authors: Marcho Setiawan Handok, Samuel S. Lemma, Abdoulaye Fofana, Naseef Mansoor

Abstract:

This paper is proposing a method to predict the outcome of the National Football League match with data from 2019 to 2022 and compare it with other popular models. The model uses open-source statistical data of each team, such as passing yards, rushing yards, fumbles lost, and scoring. Each statistical data has offensive and defensive. For instance, a data set of anticipated values for a specific matchup is created by comparing the offensive passing yards obtained by one team to the defensive passing yards given by the opposition. We evaluated the model’s performance by contrasting its result with those of established prediction algorithms. This research is using a neural network to predict the score of a National Football League match and then predict the winner of the game.

Keywords: game prediction, NFL, football, artificial neural network

Procedia PDF Downloads 84
3692 Inheritance, Stability, and Validation of Provitamin a Markers in Striga Hermonthica-Resistant Maize

Authors: Fiston Masudi Tambwe, Lwanga Charles, Arfang Badji, Unzimai Innocent

Abstract:

The development of maize varieties combining Provitamin A (PVA), high yield, and Striga resistance is an effective and affordable strategy to contribute to food security in sub-Saharan Africa, where maize is a staple food crop. There has been limited research on introgressing PVA genes into Striga-resistant maize genotypes. The objectives of this study were to: i) determine the mode of gene action controlling PVA carotenoid accumulation in Striga-resistant maize, ii) identify Striga-resistant maize hybrids with high PVA content and stable yield, and iii) validate the presence of PVA functional markers in offspring. Six elite, Striga-resistant inbred females were crossed with six high-PVA inbred males in a North Carolina Design II and their offspring were evaluated in four environments, following a 5x8 alpha lattice design with four hybrid checks. Results revealed that both additive and non-additive gene action control carotenoid accumulation in the present study, with a predominance of non-additive gene effects for PVA. Hybrids STR1004xCLHP0352 and STR1004xCLHP0046 - identified as Striga-resistant because they supported fewer Striga plants – were the highest-yielding genotypes with a moderate PVA concentration of 5.48 and 5.77 µg/g, respectively. However, those two hybrids were not stable in terms of yield across all environments. Hybrid STR1007xCLHP0046, however, supported fewer Striga plants, had a yield of 4.52 T/ha, a PVA concentration of 4.52 µg/g, and was also stable. Gel-based marker systems of CrtRB1 and LCYE were used to screen the hybrids and favorable alleles of CrtRB1 primers were detected in 20 hybrids, confirming good levels of PVA carotenoids. Hybrids with favorable alleles of LCYE had the highest concentration of non-PVA carotenoids. These findings will contribute to the development of high-yielding PVA-rich maize varieties in Uganda.

Keywords: gene action, stability, striga resistance, provitamin A markers, beta-carotene hydroxylase 1, CrtRB1, beta-carotene, beta-cryptoxanthin, lycopene epsilon cyclase, LCYE

Procedia PDF Downloads 71
3691 A Literature Study on IoT Based Monitoring System for Smart Agriculture

Authors: Sonu Rana, Jyoti Verma, A. K. Gautam

Abstract:

In most developing countries like India, the majority of the population heavily relies on agriculture for their livelihood. The yield of agriculture is heavily dependent on uncertain weather conditions like a monsoon, soil fertility, availability of irrigation facilities and fertilizers as well as support from the government. The agricultural yield is quite less compared to the effort put in due to inefficient agricultural facilities and obsolete farming practices on the one hand and lack of knowledge on the other hand, and ultimately agricultural community does not prosper. It is therefore essential for the farmers to improve their harvest yield by the acquisition of related data such as soil condition, temperature, humidity, availability of irrigation facilities, availability of, manure, etc., and adopt smart farming techniques using modern agricultural equipment. Nowadays, using IOT technology in agriculture is the best solution to improve the yield with fewer efforts and economic costs. The primary focus of this work-related is IoT technology in the agriculture field. By using IoT all the parameters would be monitored by mounting sensors in an agriculture field held at different places, will collect real-time data, and could be transmitted by a transmitting device like an antenna. To improve the system, IoT will interact with other useful systems like Wireless Sensor Networks. IoT is exploring every aspect, so the radio frequency spectrum is getting crowded due to the increasing demand for wireless applications. Therefore, Federal Communications Commission is reallocating the spectrum for various wireless applications. An antenna is also an integral part of the newly designed IoT devices. The main aim is to propose a new antenna structure used for IoT agricultural applications and compatible with this new unlicensed frequency band. The main focus of this paper is to present work related to these technologies in the agriculture field. This also presented their challenges & benefits. It can help in understanding the job of data by using IoT and correspondence advancements in the horticulture division. This will help to motivate and educate the unskilled farmers to comprehend the best bits of knowledge given by the huge information investigation utilizing smart technology.

Keywords: smart agriculture, IoT, agriculture technology, data analytics, smart technology

Procedia PDF Downloads 116
3690 Role of von Willebrand Factor Antigen as Non-Invasive Biomarker for the Prediction of Portal Hypertensive Gastropathy in Patients with Liver Cirrhosis

Authors: Mohamed El Horri, Amine Mouden, Reda Messaoudi, Mohamed Chekkal, Driss Benlaldj, Malika Baghdadi, Lahcene Benmahdi, Fatima Seghier

Abstract:

Background/aim: Recently, the Von Willebrand factor antigen (vWF-Ag)has been identified as a new marker of portal hypertension (PH) and its complications. Few studies talked about its role in the prediction of esophageal varices. VWF-Ag is considered a non-invasive approach, In order to avoid the endoscopic burden, cost, drawbacks, unpleasant and repeated examinations to the patients. In our study, we aimed to evaluate the ability of this marker in the prediction of another complication of portal hypertension, which is portal hypertensive gastropathy (PHG), the one that is diagnosed also by endoscopic tools. Patients and methods: It is about a prospective study, which include 124 cirrhotic patients with no history of bleeding who underwent screening endoscopy for PH-related complications like esophageal varices (EVs) and PHG. Routine biological tests were performed as well as the VWF-Ag testing by both ELFA and Immunoturbidimetric techniques. The diagnostic performance of our marker was assessed using sensitivity, specificity, positive predictive value, negative predictive value, accuracy, and receiver operating characteristic curves. Results: 124 patients were enrolled in this study, with a mean age of 58 years [CI: 55 – 60 years] and a sex ratio of 1.17. Viral etiologies were found in 50% of patients. Screening endoscopy revealed the presence of PHG in 20.2% of cases, while for EVsthey were found in 83.1% of cases. VWF-Ag levels, were significantly increased in patients with PHG compared to those who have not: 441% [CI: 375 – 506], versus 279% [CI: 253 – 304], respectively (p <0.0001). Using the area under the receiver operating characteristic curve (AUC), vWF-Ag was a good predictor for the presence of PHG. With a value higher than 320% and an AUC of 0.824, VWF-Ag had an 84% sensitivity, 74% specificity, 44.7% positive predictive value, 94.8% negative predictive value, and 75.8% diagnostic accuracy. Conclusion: VWF-Ag is a good non-invasive low coast marker for excluding the presence of PHG in patients with liver cirrhosis. Using this marker as part of a selective screening strategy might reduce the need for endoscopic screening and the coast of the management of these kinds of patients.

Keywords: von willebrand factor, portal hypertensive gastropathy, prediction, liver cirrhosis

Procedia PDF Downloads 205
3689 Stock Price Prediction with 'Earnings' Conference Call Sentiment

Authors: Sungzoon Cho, Hye Jin Lee, Sungwhan Jeon, Dongyoung Min, Sungwon Lyu

Abstract:

Major public corporations worldwide use conference calls to report their quarterly earnings. These 'earnings' conference calls allow for questions from stock analysts. We investigated if it is possible to identify sentiment from the call script and use it to predict stock price movement. We analyzed call scripts from six companies, two each from Korea, China and Indonesia during six years 2011Q1 – 2017Q2. Random forest with Frequency-based sentiment scores using Loughran MacDonald Dictionary did better than control model with only financial indicators. When the stock prices went up 20 days from earnings release, our model predicted correctly 77% of time. When the model predicted 'up,' actual stock prices went up 65% of time. This preliminary result encourages us to investigate advanced sentiment scoring methodologies such as topic modeling, auto-encoder, and word2vec variants.

Keywords: earnings call script, random forest, sentiment analysis, stock price prediction

Procedia PDF Downloads 292
3688 Forecasting Direct Normal Irradiation at Djibouti Using Artificial Neural Network

Authors: Ahmed Kayad Abdourazak, Abderafi Souad, Zejli Driss, Idriss Abdoulkader Ibrahim

Abstract:

In this paper Artificial Neural Network (ANN) is used to predict the solar irradiation in Djibouti for the first Time that is useful to the integration of Concentrating Solar Power (CSP) and sites selections for new or future solar plants as part of solar energy development. An ANN algorithm was developed to establish a forward/reverse correspondence between the latitude, longitude, altitude and monthly solar irradiation. For this purpose the German Aerospace Centre (DLR) data of eight Djibouti sites were used as training and testing in a standard three layers network with the back propagation algorithm of Lavenber-Marquardt. Results have shown a very good agreement for the solar irradiation prediction in Djibouti and proves that the proposed approach can be well used as an efficient tool for prediction of solar irradiation by providing so helpful information concerning sites selection, design and planning of solar plants.

Keywords: artificial neural network, solar irradiation, concentrated solar power, Lavenberg-Marquardt

Procedia PDF Downloads 354
3687 Applying the Regression Technique for ‎Prediction of the Acute Heart Attack ‎

Authors: Paria Soleimani, Arezoo Neshati

Abstract:

Myocardial infarction is one of the leading causes of ‎death in the world. Some of these deaths occur even before the patient ‎reaches the hospital. Myocardial infarction occurs as a result of ‎impaired blood supply. Because the most of these deaths are due to ‎coronary artery disease, hence the awareness of the warning signs of a ‎heart attack is essential. Some heart attacks are sudden and intense, but ‎most of them start slowly, with mild pain or discomfort, then early ‎detection and successful treatment of these symptoms is vital to save ‎them. Therefore, importance and usefulness of a system designing to ‎assist physicians in the early diagnosis of the acute heart attacks is ‎obvious.‎ The purpose of this study is to determine how well a predictive ‎model would perform based on the only patient-reportable clinical ‎history factors, without using diagnostic tests or physical exams. This ‎type of the prediction model might have application outside of the ‎hospital setting to give accurate advice to patients to influence them to ‎seek care in appropriate situations. For this purpose, the data were ‎collected on 711 heart patients in Iran hospitals. 28 attributes of clinical ‎factors can be reported by patients; were studied. Three logistic ‎regression models were made on the basis of the 28 features to predict ‎the risk of heart attacks. The best logistic regression model in terms of ‎performance had a C-index of 0.955 and with an accuracy of 94.9%. ‎The variables, severe chest pain, back pain, cold sweats, shortness of ‎breath, nausea, and vomiting were selected as the main features.‎

Keywords: Coronary heart disease, Acute heart attacks, Prediction, Logistic ‎regression‎

Procedia PDF Downloads 449
3686 Virtualization of Biomass Colonization: Potential of Application in Precision Medicine

Authors: Maria Valeria De Bonis, Gianpaolo Ruocco

Abstract:

Nowadays, computational modeling is paving new design and verification ways in a number of industrial sectors. The technology is ripe to challenge some case in the Bioengineering and Medicine frameworks: for example, looking at the strategical and ethical importance of oncology research, efforts should be made to yield new and powerful resources to tumor knowledge and understanding. With these driving motivations, we approach this gigantic problem by using some standard engineering tools such as the mathematics behind the biomass transfer. We present here some bacterial colonization studies in complex structures. As strong analogies hold with some tumor proliferation, we extend our study to a benchmark case of solid tumor. By means of a commercial software, we model biomass and energy evolution in arbitrary media. The approach will be useful to cast virtualization cases of cancer growth in human organs, while augmented reality tools will be used to yield for a realistic aid to informed decision in treatment and surgery.

Keywords: bacteria, simulation, tumor, precision medicine

Procedia PDF Downloads 335
3685 Improvement of Monacolin K. and Decreasing of Citrinin Content in Korkor 6 (RD 6) Red Yeast Rice

Authors: Emon Chairote, Panatda Jannoey, Griangsak Chairote

Abstract:

A strain of Monascus purpureus CMU001 was used to prepared red yeast rice from Thai glutinous rice Korkor 6 (RD 6). Adding of different amounts of histidine (156, 312, 625, and 1250 mg in 100 g of rice grains)) under aerobic and air limitation (air-lock) condition were used in solid fermentation. Determination of the yield as well as monacolin K content was done. Citrinin content was also determined in order to confirm the safety use of prepared red yeast rice. It was found that under air-lock condition with 1250 mg of histidine addition gave the highest yield of 37.40 g of dried red yeast rice prepared from 100 g of rice. Highest 5.72 mg content of monacolin K was obtained under air-lock condition with 312 mg histidine addition. In the other hand, citrinin content was found to be less than 24462 ng/g of all dried red yeast rice samples under the experimental methods used in this work.

Keywords: red yeast rice, Thai glutinous rice, monacolin K., citrinin

Procedia PDF Downloads 247
3684 A Convolution Neural Network PM-10 Prediction System Based on a Dense Measurement Sensor Network in Poland

Authors: Piotr A. Kowalski, Kasper Sapala, Wiktor Warchalowski

Abstract:

PM10 is a suspended dust that primarily has a negative effect on the respiratory system. PM10 is responsible for attacks of coughing and wheezing, asthma or acute, violent bronchitis. Indirectly, PM10 also negatively affects the rest of the body, including increasing the risk of heart attack and stroke. Unfortunately, Poland is a country that cannot boast of good air quality, in particular, due to large PM concentration levels. Therefore, based on the dense network of Airly sensors, it was decided to deal with the problem of prediction of suspended particulate matter concentration. Due to the very complicated nature of this issue, the Machine Learning approach was used. For this purpose, Convolution Neural Network (CNN) neural networks have been adopted, these currently being the leading information processing methods in the field of computational intelligence. The aim of this research is to show the influence of particular CNN network parameters on the quality of the obtained forecast. The forecast itself is made on the basis of parameters measured by Airly sensors and is carried out for the subsequent day, hour after hour. The evaluation of learning process for the investigated models was mostly based upon the mean square error criterion; however, during the model validation, a number of other methods of quantitative evaluation were taken into account. The presented model of pollution prediction has been verified by way of real weather and air pollution data taken from the Airly sensor network. The dense and distributed network of Airly measurement devices enables access to current and archival data on air pollution, temperature, suspended particulate matter PM1.0, PM2.5, and PM10, CAQI levels, as well as atmospheric pressure and air humidity. In this investigation, PM2.5, and PM10, temperature and wind information, as well as external forecasts of temperature and wind for next 24h served as inputted data. Due to the specificity of the CNN type network, this data is transformed into tensors and then processed. This network consists of an input layer, an output layer, and many hidden layers. In the hidden layers, convolutional and pooling operations are performed. The output of this system is a vector containing 24 elements that contain prediction of PM10 concentration for the upcoming 24 hour period. Over 1000 models based on CNN methodology were tested during the study. During the research, several were selected out that give the best results, and then a comparison was made with the other models based on linear regression. The numerical tests carried out fully confirmed the positive properties of the presented method. These were carried out using real ‘big’ data. Models based on the CNN technique allow prediction of PM10 dust concentration with a much smaller mean square error than currently used methods based on linear regression. What's more, the use of neural networks increased Pearson's correlation coefficient (R²) by about 5 percent compared to the linear model. During the simulation, the R² coefficient was 0.92, 0.76, 0.75, 0.73, and 0.73 for 1st, 6th, 12th, 18th, and 24th hour of prediction respectively.

Keywords: air pollution prediction (forecasting), machine learning, regression task, convolution neural networks

Procedia PDF Downloads 149
3683 A Machine Learning Model for Dynamic Prediction of Chronic Kidney Disease Risk Using Laboratory Data, Non-Laboratory Data, and Metabolic Indices

Authors: Amadou Wurry Jallow, Adama N. S. Bah, Karamo Bah, Shih-Ye Wang, Kuo-Chung Chu, Chien-Yeh Hsu

Abstract:

Chronic kidney disease (CKD) is a major public health challenge with high prevalence, rising incidence, and serious adverse consequences. Developing effective risk prediction models is a cost-effective approach to predicting and preventing complications of chronic kidney disease (CKD). This study aimed to develop an accurate machine learning model that can dynamically identify individuals at risk of CKD using various kinds of diagnostic data, with or without laboratory data, at different follow-up points. Creatinine is a key component used to predict CKD. These models will enable affordable and effective screening for CKD even with incomplete patient data, such as the absence of creatinine testing. This retrospective cohort study included data on 19,429 adults provided by a private research institute and screening laboratory in Taiwan, gathered between 2001 and 2015. Univariate Cox proportional hazard regression analyses were performed to determine the variables with high prognostic values for predicting CKD. We then identified interacting variables and grouped them according to diagnostic data categories. Our models used three types of data gathered at three points in time: non-laboratory, laboratory, and metabolic indices data. Next, we used subgroups of variables within each category to train two machine learning models (Random Forest and XGBoost). Our machine learning models can dynamically discriminate individuals at risk for developing CKD. All the models performed well using all three kinds of data, with or without laboratory data. Using only non-laboratory-based data (such as age, sex, body mass index (BMI), and waist circumference), both models predict chronic kidney disease as accurately as models using laboratory and metabolic indices data. Our machine learning models have demonstrated the use of different categories of diagnostic data for CKD prediction, with or without laboratory data. The machine learning models are simple to use and flexible because they work even with incomplete data and can be applied in any clinical setting, including settings where laboratory data is difficult to obtain.

Keywords: chronic kidney disease, glomerular filtration rate, creatinine, novel metabolic indices, machine learning, risk prediction

Procedia PDF Downloads 105
3682 Prediction of Dubai Financial Market Stocks Movement Using K-Nearest Neighbor and Support Vector Regression

Authors: Abdulla D. Alblooshi

Abstract:

The stock market is a representation of human behavior and psychology, such as fear, greed, and discipline. Those are manifested in the form of price movements during the trading sessions. Therefore, predicting the stock movement and prices is a challenging effort. However, those trading sessions produce a large amount of data that can be utilized to train an AI agent for the purpose of predicting the stock movement. Predicting the stock market price action will be advantageous. In this paper, the stock movement data of three DFM listed stocks are studied using historical price movements and technical indicators value and used to train an agent using KNN and SVM methods to predict the future price movement. MATLAB Toolbox and a simple script is written to process and classify the information and output the prediction. It will also compare the different learning methods and parameters s using metrics like RMSE, MAE, and R².

Keywords: KNN, ANN, style, SVM, stocks, technical indicators, RSI, MACD, moving averages, RMSE, MAE

Procedia PDF Downloads 171
3681 Effect of Three Sand Types on Potato Vegetative Growth and Yield

Authors: Shatha A. Yousif, Qasim M. Zamil, Hasan Y. Al Muhi, Jamal A. Al Shammari

Abstract:

Potato (Solanum tuberosum L.) is one of the major vegetable crops that are grown world wide because of its economic importance. This experiment investigated the effect of local sands (River Base, Al-Ekader and Karbala) on number and total weight of mini tubers. Statistical analysis revealed that there were no significant differences among sand cultures in number of stem/plant, chlorophyll index and tubers dry weight. River Base sand had the highest plant height (74.9 cm), leaf number/plant number (39.3), leaf area (84.4 dcm2⁄plant), dry weight/plant (26.31), tubers number/plant (8.5), tubers weight/plant (635.53 gm) and potato tuber yields/trove (28.60 kg), whereas the Karbala sand had lower performance. All the characters had positive and significant correlation with yields except the traits number of stem and tuber dry weight.

Keywords: correlation, potato, sand culture, yield

Procedia PDF Downloads 476
3680 Different Tillage Possibilities for Second Crop in Green Bean Farming

Authors: Yilmaz Bayhan, Emin Güzel, Ömer Barış Özlüoymak, Ahmet İnce, Abdullah Sessiz

Abstract:

In this study, determining of reduced tillage techniques in green bean farming as a second crop after harvesting wheat was targeted. To this aim, four different soil tillage methods namely, heavy-duty disc harrow (HD), rotary tiller (ROT), heavy-duty disc harrow plus rotary tiller (HD+ROT) and no-tillage (NT) (seeding by direct drill) were examined. Experiments were arranged in a randomized block design with three replications. The highest green beans yields were obtained in HD+ROT and NT as 5,862.1 and 5,829.3 Mg/ha, respectively. The lowest green bean yield was found in HD as 3,076.7 Mg/ha. The highest fuel consumption was measured 30.60 L ha-1 for HD+ROT whereas the lowest value was found 7.50 L ha-1 for NT. No tillage method gave the best results for fuel consumption and effective power requirement. It is concluded that no-tillage method can be used in second crop green bean in the Thrace Region due to economic and erosion conditions.

Keywords: green bean, soil tillage, yield, vegetative

Procedia PDF Downloads 373
3679 Extraction of Natural Colorant from the Flowers of Flame of Forest Using Ultrasound

Authors: Sunny Arora, Meghal A. Desai

Abstract:

An impetus towards green consumerism and implementation of sustainable techniques, consumption of natural products and utilization of environment friendly techniques have gained accelerated acceptance. Butein, a natural colorant, has many medicinal properties apart from its use in dyeing industries. Extraction of butein from the flowers of flame of forest was carried out using ultrasonication bath. Solid loading (2-6 g), extraction time (30-50 min), volume of solvent (30-50 mL) and types of solvent (methanol, ethanol and water) have been studied to maximize the yield of butein using the Taguchi method. The highest yield of butein 4.67% (w/w) was obtained using 4 g of plant material, 40 min of extraction time and 30 mL volume of methanol as a solvent. The present method provided a greater reduction in extraction time compared to the conventional method of extraction. Hence, the outcome of the present investigation could further be utilized to develop the method at a higher scale.

Keywords: butein, flowers of Flame of the Forest, Taguchi method, ultrasonic bath

Procedia PDF Downloads 475