Search results for: real estate price
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6329

Search results for: real estate price

5339 AI-Powered Models for Real-Time Fraud Detection in Financial Transactions to Improve Financial Security

Authors: Shanshan Zhu, Mohammad Nasim

Abstract:

Financial fraud continues to be a major threat to financial institutions across the world, causing colossal money losses and undermining public trust. Fraud prevention techniques, based on hard rules, have become ineffective due to evolving patterns of fraud in recent times. Against such a background, the present study probes into distinct methodologies that exploit emergent AI-driven techniques to further strengthen fraud detection. We would like to compare the performance of generative adversarial networks and graph neural networks with other popular techniques, like gradient boosting, random forests, and neural networks. To this end, we would recommend integrating all these state-of-the-art models into one robust, flexible, and smart system for real-time anomaly and fraud detection. To overcome the challenge, we designed synthetic data and then conducted pattern recognition and unsupervised and supervised learning analyses on the transaction data to identify which activities were fishy. With the use of actual financial statistics, we compare the performance of our model in accuracy, speed, and adaptability versus conventional models. The results of this study illustrate a strong signal and need to integrate state-of-the-art, AI-driven fraud detection solutions into frameworks that are highly relevant to the financial domain. It alerts one to the great urgency that banks and related financial institutions must rapidly implement these most advanced technologies to continue to have a high level of security.

Keywords: AI-driven fraud detection, financial security, machine learning, anomaly detection, real-time fraud detection

Procedia PDF Downloads 44
5338 Real Time Activity Recognition Framework for Health Monitoring Support in Home Environments

Authors: Shaikh Farhad Hossain, Liakot Ali

Abstract:

Technology advances accelerate the quality and type of services provided for health care and especially for monitoring health conditions. Sensors have turned out to be more effective to detect diverse physiological signs and can be worn on the human body utilizing remote correspondence modules. An assortment of programming devices have been created to help in preparing a difference rundown of essential signs by examining and envisioning information produced by different sensors. In this proposition, we presented a Health signs and Activity acknowledgment monitoring system. Utilizing off-the-rack sensors, we executed a movement location system for identifying five sorts of action: falling, lying down, sitting, standing, and walking. The framework collects and analyzes sensory data in real-time, and provides different feedback to the users. In addition, it can generate alerts based on the detected events and store the data collected to a medical server.

Keywords: ADL, SVM, TRIL , MEMS

Procedia PDF Downloads 399
5337 Enabling Citizen Participation in Urban Planning through Geospatial Gamification

Authors: Joanne F. Hayek

Abstract:

This study explores the use of gamification to promote citizen e-participation in urban planning. The research departs from a case study: the ‘Shape Your City’ web app designed and programmed by the author and presented as part of the 2021 Dubai Design Week to engage citizens in the co-creation of the future of their city through a gamified experience. The paper documents the design and development methodology of the web app and concludes with the findings of its pilot release. The case study explores the use of mobile interactive mapping, real-time data visualization, augmented reality, and machine learning as tools to enable co-planning. The paper also details the user interface design strategies employed to integrate complex cross-sector e-planning systems and make them accessible to citizens.

Keywords: gamification, co-planning, citizen e-participation, mobile interactive mapping, real-time data visualization

Procedia PDF Downloads 141
5336 Refactoring Object Oriented Software through Community Detection Using Evolutionary Computation

Authors: R. Nagarani

Abstract:

An intrinsic property of software in a real-world environment is its need to evolve, which is usually accompanied by the increase of software complexity and deterioration of software quality, making software maintenance a tough problem. Refactoring is regarded as an effective way to address this problem. Many refactoring approaches at the method and class level have been proposed. But the extent of research on software refactoring at the package level is less. This work presents a novel approach to refactor the package structures of object oriented software using genetic algorithm based community detection. It uses software networks to represent classes and their dependencies. It uses a constrained community detection algorithm to obtain the optimized community structures in software networks, which also correspond to the optimized package structures. It finally provides a list of classes as refactoring candidates by comparing the optimized package structures with the real package structures.

Keywords: community detection, complex network, genetic algorithm, package, refactoring

Procedia PDF Downloads 420
5335 Smart Automated Furrow Irrigation: A Preliminary Evaluation

Authors: Jasim Uddin, Rod Smith, Malcolm Gillies

Abstract:

Surface irrigation is the most popular irrigation method all over the world. However, two issues: low efficiency and huge labour involvement concern irrigators due to scarcity in recent years. To address these issues, a smart automated furrow is conceptualised that can be operated using digital devices like smartphone, iPad or computer and a preliminary evaluation was conducted in this study. The smart automated system is the integration of commercially available software and hardware. It includes real-time surface irrigation optimisation software (SISCO) and Rubicon Water’s surface irrigation automation hardware and software. The automated system consists of automatic water delivery system with 300 mm flexible pipes attached to both sides of a remotely controlled valve to operate the irrigation. A water level sensor to obtain the real-time inflow rate from the measured head in the channel, advance sensors to measure the advance time to particular points of an irrigated field, a solar-powered telemetry system including a base station to communicate all the field sensors with the main server. On the basis of field data, the software (SISCO) is optimised the ongoing irrigation and determine the optimum cut-off for particular irrigation and send this information to the control valve to stop the irrigation in a particular (cut-off) time. The preliminary evaluation shows that the automated surface irrigation worked reasonably well without manual intervention. The evaluation of farmers managed irrigation events show the potentials to save a significant amount of water and labour. A substantial amount of economic and social benefits are expected in rural industries by adopting this system. The future outcome of this work would be a fully tested commercial adaptive real-time furrow irrigation system able to compete with the pressurised alternative of centre pivot or lateral move machines on capital cost, water and labour savings but without the massive energy costs.

Keywords: furrow irrigation, smart automation, infiltration, SISCO, real-time irrigation, adoptive control

Procedia PDF Downloads 453
5334 Interest Rate Prediction with Taylor Rule

Authors: T. Bouchabchoub, A. Bendahmane, A. Haouriqui, N. Attou

Abstract:

This paper presents simulation results of Forex predicting model equations in order to give approximately a prevision of interest rates. First, Hall-Taylor (HT) equations have been used with Taylor rule (TR) to adapt them to European and American Forex Markets. Indeed, initial Taylor Rule equation is conceived for all Forex transactions in every States: It includes only one equation and six parameters. Here, the model has been used with Hall-Taylor equations, initially including twelve equations which have been reduced to only three equations. Analysis has been developed on the following base macroeconomic variables: Real change rate, investment wages, anticipated inflation, realized inflation, real production, interest rates, gap production and potential production. This model has been used to specifically study the impact of an inflation shock on macroeconomic director interest rates.

Keywords: interest rate, Forex, Taylor rule, production, European Central Bank (ECB), Federal Reserve System (FED).

Procedia PDF Downloads 527
5333 Jordan Curves in the Digital Plane with Respect to the Connectednesses given by Certain Adjacency Graphs

Authors: Josef Slapal

Abstract:

Digital images are approximations of real ones and, therefore, to be able to study them, we need the digital plane Z2 to be equipped with a convenient structure that behaves analogously to the Euclidean topology on the real plane. In particular, it is required that such a structure allows for a digital analogue of the Jordan curve theorem. We introduce certain adjacency graphs on the digital plane and prove digital Jordan curves for them thus showing that the graphs provide convenient structures on Z2 for the study and processing of digital images. Further convenient structures including the wellknown Khalimsky and Marcus-Wyse adjacency graphs may be obtained as quotients of the graphs introduced. Since digital Jordan curves represent borders of objects in digital images, the adjacency graphs discussed may be used as background structures on the digital plane for solving the problems of digital image processing that are closely related to borders like border detection, contour filling, pattern recognition, thinning, etc.

Keywords: digital plane, adjacency graph, Jordan curve, quotient adjacency

Procedia PDF Downloads 380
5332 Attack Redirection and Detection using Honeypots

Authors: Chowduru Ramachandra Sharma, Shatunjay Rawat

Abstract:

A false positive state is when the IDS/IPS identifies an activity as an attack, but the activity is acceptable behavior in the system. False positives in a Network Intrusion Detection System ( NIDS ) is an issue because they desensitize the administrator. It wastes computational power and valuable resources when rules are not tuned properly, which is the main issue with anomaly NIDS. Furthermore, most false positives reduction techniques are not performed during the real-time of attempted intrusions; instead, they have applied afterward on collected traffic data and generate alerts. Of course, false positives detection in ‘offline mode’ is tremendously valuable. Nevertheless, there is room for improvement here; automated techniques still need to reduce False Positives in real-time. This paper uses the Snort signature detection model to redirect the alerted attacks to Honeypots and verify attacks.

Keywords: honeypot, TPOT, snort, NIDS, honeybird, iptables, netfilter, redirection, attack detection, docker, snare, tanner

Procedia PDF Downloads 156
5331 Competitivity in Procurement Multi-Unit Discrete Clock Auctions: An Experimental Investigation

Authors: Despina Yiakoumi, Agathe Rouaix

Abstract:

Laboratory experiments were run to investigate the impact of different design characteristics of the auctions, which have been implemented to procure capacity in the UK’s reformed electricity markets. The experiment studies competition among bidders in procurement multi-unit discrete descending clock auctions under different feedback policies and pricing rules. Theory indicates that feedback policy in combination with the two common pricing rules; last-accepted bid (LAB) and first-rejected bid (FRB), could affect significantly the auction outcome. Two information feedback policies regarding the bidding prices of the participants are considered; with feedback and without feedback. With feedback, after each round participants are informed of the number of items still in the auction and without feedback, after each round participants have no information about the aggregate supply. Under LAB, winning bidders receive the amount of the highest successful bid and under the FRB the winning bidders receive the lowest unsuccessful bid. Based on the theoretical predictions of the alternative auction designs, it was decided to run three treatments. First treatment considers LAB with feedback; second treatment studies LAB without feedback; third treatment investigates FRB without feedback. Theoretical predictions of the game showed that under FRB, the alternative feedback policies are indifferent to the auction outcome. Preliminary results indicate that LAB with feedback and FRB without feedback achieve on average higher clearing prices in comparison to the LAB treatment without feedback. However, the clearing prices under LAB with feedback and FRB without feedback are on average lower compared to the theoretical predictions. Although under LAB without feedback theory predicts the clearing price will drop to the competitive equilibrium, experimental results indicate that participants could still engage in cooperative behavior and drive up the price of the auction. It is showed, both theoretically and experimentally, that the pricing rules and the feedback policy, affect the bidding competitiveness of the auction by providing opportunities to participants to engage in cooperative behavior and exercise market power. LAB without feedback seems to be less vulnerable to market power opportunities compared to the alternative auction designs. This could be an argument for the use of LAB pricing rule in combination with limited feedback in the UK capacity market in an attempt to improve affordability for consumers.

Keywords: descending clock auctions, experiments, feedback policy, market design, multi-unit auctions, pricing rules, procurement auctions

Procedia PDF Downloads 299
5330 Consumer Preferences Concerning Food from Carob: A Survey in Crete, Greece

Authors: Georgios A. Fragkiadakis, Antonia Psaroudaki, Theodora Mouratidou, Eirini Sfakianaki

Abstract:

Research: The nutritional benefits of eating carob are many and important for the human organism, as it is a food rich in carbohydrates and low in fat and contains multiple nutrients, making it a "superfood". Within the framework of the project "Actions for the optimal utilization of the potential of carob in the Region of Crete" which is financed-supervised by the Region of Crete, a second-grade local self-government authority, with the collaboration of the University of Crete and of the Hellenic Mediterranean University, an online survey was carried out with the aim of evaluating dietary habits and views related to the consumption of carob and its products in a sample of local residents. Results and Conclusions: Of the 351 participants, 259 (73.8%) stated that they consume carob products, and 26.2% stated that they do not. Difficult access and limited availability of carob-food products (33.7%), high price (20.7%), and difficulties of use and preparation (15.2%) were cited as the main reasons for non-consumption. Other reasons, to a lesser extent, concern the taste, especially the sweet aftertaste of some products. Concerning the behavior and eating habits related to the consumption of carob products (n=259), 57.9% of the sample report that they buy carob products "sometimes"; 21.2% report "often"; 19.7% report "rarely", and a very small percentage of 1.2% report "constantly". With reference to the reasons for choosing carob products, the participants mention the main reason for their high nutritional value (51.7%), followed by 32.4% of nutritional claims and health claims, and the organoleptic characteristics (10.8%). Other positive factors are the final price of the product, the ease of use, and the respect for the local environment and producers. Some bakery products show the highest percentage of consumption among carob-food consumers, mainly in the form of rusks (86.1%) and breadsticks (70.3%). They are followed, in descending order, by bread (63.3%), toast (52.1%), and flour (50.6%). More specifically: 40.5% consume carob rusks less than once a month; 22% consume less than once a week; up to twice a week 12.4%; 6.6%, consume rusks 3 to 4 times a week, and daily 3.9%. It is worth mentioning that a high percentage of consumers of carob products recommend the consumption to their family and friends. Only a small percentage, in the range of 5%, does not recommend the consumption of carob products in their close family/social circle. The main motivating factors for the consumption of carob products are the expected effects they may have on health (74.1%) and the organoleptic characteristics with a percentage of 21.6%.

Keywords: food, consumer, preferences, carob, Crete, Greece

Procedia PDF Downloads 67
5329 Prevalence of Cytomegalovirus DNA in the Patients’ Serum with HIV using Real-Time PCR

Authors: Mohammadreza Aghasadeghi, Mojtaba Hamidi-Fard, Seyed Amir Sadeghi, Ashkan Noorbakhsh

Abstract:

Introduction: HIV is known as one of the most important pathogens and mortality in all human societies, but unfortunately, no definitive cure has been found for it. Due to its weakened immune system, this virus causes a variety of primary and secondary opportunistic infections. Cytomegalovirus (CMV) is one of the most relevant opportunistic viruses seen in HIV-positive people that cause various infections in HIV-positive people. This virus causes various infections in HIV-positive people, such as retinal infection (CMVR), gastrointestinal infections, diarrhea, severe weight loss, and cerebrospinal fluid problems. These various infections make it important to evaluate the prevalence of CMV in HIV-positive people to diagnose it quickly and in a timely manner. This infection in HIV-positive people reduces life expectancy and causes serious harm to patients. However, a simple test in HIV-positive people can prevent the virus from progressing. Material and Methods: In this study, we collected 200 blood samples (including 147 men and 53 women) from HIV-positive individuals and examined the frequency of CMV-DNA in these cases by real-time PCR method. In the next step, the data was analyzed by SPSS software, and then we obtained the relationship between age, sex, and the frequency of CMV in HIV-positive individuals. Results: The total frequency of CMV DNA was about 59%, which is a relatively high prevalence due to the age range of the subjects. The frequency in men was 61.2% and 52.8% in women. This frequency was also higher in males than females. We also observed more frequency in two age groups of 16 to 30 years and 31 to 45 years. Discussion: Due to the high prevalence of CMV in HIV-positive individuals and causing serious problems in this group of people, this study was shown that both the patients and the community should pay more attention to this issue. Ministry of Health, as a stakeholder organization, can make CMV DNA testing mandatory as soon as a person is HIV positive.

Keywords: CMV, HIV, AIDS, real-time PCR, SPSS

Procedia PDF Downloads 214
5328 Comparison of Nucleic Acid Extraction Platforms On Tissue Samples

Authors: Siti Rafeah Md Rafei, Karen Wang Yanping, Park Mi Kyoung

Abstract:

Tissue samples are precious supply for molecular studies or disease identification diagnosed using molecular assays, namely real-time PCR (qPCR). It is critical to establish the most favorable nucleic acid extraction that gives the PCR-amplifiable genomic DNA. Furthermore, automated nucleic acid extraction is an appealing alternative to labor-intensive manual methods. Operational complexity, defined as the number of steps required to obtain an extracted sample, is one of the criteria in the comparison. Here we are comparing the One BioMed’s automated X8 platform with the commercially available manual-operated kits from QIAGEN Mini Kit and Roche. We extracted DNA from rat fresh-frozen tissue (from different type of organs) in the matrices. After tissue pre-treatment, it is added to the One BioMed’s X8 pre-filled cartridge, and the QIAGEN QIAmp column respectively. We found that the results after subjecting the eluates to the Real Time PCR using BIORAD CFX are comparable.

Keywords: DNA extraction, frozen tissue, PCR, qPCR, rat

Procedia PDF Downloads 162
5327 Identification Algorithm of Critical Interface, Modelling Perils on Critical Infrastructure Subjects

Authors: Jiří. J. Urbánek, Hana Malachová, Josef Krahulec, Jitka Johanidisová

Abstract:

The paper deals with crisis situations investigation and modelling within the organizations of critical infrastructure. Every crisis situation has an origin in the emergency event occurrence in the organizations of energetic critical infrastructure especially. Here, the emergency events can be both the expected events, then crisis scenarios can be pre-prepared by pertinent organizational crisis management authorities towards their coping or the unexpected event (Black Swan effect) – without pre-prepared scenario, but it needs operational coping of crisis situations as well. The forms, characteristics, behaviour and utilization of crisis scenarios have various qualities, depending on real critical infrastructure organization prevention and training processes. An aim is always better organizational security and continuity obtainment. This paper objective is to find and investigate critical/ crisis zones and functions in critical situations models of critical infrastructure organization. The DYVELOP (Dynamic Vector Logistics of Processes) method is able to identify problematic critical zones and functions, displaying critical interfaces among actors of crisis situations on the DYVELOP maps named Blazons. Firstly, for realization of this ability is necessary to derive and create identification algorithm of critical interfaces. The locations of critical interfaces are the flags of crisis situation in real organization of critical infrastructure. Conclusive, the model of critical interface will be displayed at real organization of Czech energetic crisis infrastructure subject in Black Out peril environment. The Blazons need live power Point presentation for better comprehension of this paper mission.

Keywords: algorithm, crisis, DYVELOP, infrastructure

Procedia PDF Downloads 410
5326 Real-Time Episodic Memory Construction for Optimal Action Selection in Cognitive Robotics

Authors: Deon de Jager, Yahya Zweiri, Dimitrios Makris

Abstract:

The three most important components in the cognitive architecture for cognitive robotics is memory representation, memory recall, and action-selection performed by the executive. In this paper, action selection, performed by the executive, is defined as a memory quantification and optimization process. The methodology describes the real-time construction of episodic memory through semantic memory optimization. The optimization is performed by set-based particle swarm optimization, using an adaptive entropy memory quantification approach for fitness evaluation. The performance of the approach is experimentally evaluated by simulation, where a UAV is tasked with the collection and delivery of a medical package. The experiments show that the UAV dynamically uses the episodic memory to autonomously control its velocity, while successfully completing its mission.

Keywords: cognitive robotics, semantic memory, episodic memory, maximum entropy principle, particle swarm optimization

Procedia PDF Downloads 158
5325 A Novel Approach of Power Transformer Diagnostic Using 3D FEM Parametrical Model

Authors: M. Brandt, A. Peniak, J. Makarovič, P. Rafajdus

Abstract:

This paper deals with a novel approach of power transformers diagnostics. This approach identifies the exact location and the range of a fault in the transformer and helps to reduce operation costs related to handling of the faulty transformer, its disassembly and repair. The advantage of the approach is a possibility to simulate healthy transformer and also all faults, which can occur in transformer during its operation without its disassembling, which is very expensive in practice. The approach is based on creating frequency dependent impedance of the transformer by sweep frequency response analysis measurements and by 3D FE parametrical modeling of the fault in the transformer. The parameters of the 3D FE model are the position and the range of the axial short circuit. Then, by comparing the frequency dependent impedances of the parametrical models with the measured ones, the location and the range of the fault is identified. The approach was tested on a real transformer and showed high coincidence between the real fault and the simulated one.

Keywords: transformer, parametrical model of transformer, fault, sweep frequency response analysis, finite element method

Procedia PDF Downloads 483
5324 Net Neutrality and Asymmetric Platform Competition

Authors: Romain Lestage, Marc Bourreau

Abstract:

In this paper we analyze the interplay between access to the last-mile network and net neutrality in the market for Internet access. We consider two Internet Service Providers (ISPs), which act as platforms between Internet users and Content Providers (CPs). One of the ISPs is vertically integrated and provides access to its last-mile network to the other (non-integrated) ISP. We show that a lower access price increases the integrated ISP's incentives to charge CPs positive termination fees (i.e., to deviate from net neutrality), and decreases the non-integrated ISP's incentives to charge positive termination fees.

Keywords: net neutrality, access regulation, internet access, two-sided markets

Procedia PDF Downloads 377
5323 RFID Based Student Attendance System

Authors: Aniket Tiwari, Ameya London

Abstract:

Web-based student attendance management system is required to assist the faculty and the lecturer for the time-consuming process. For this purpose, GSM/GPRS (Global System for Mobile Communication/General Packet Radio Service) based student’s attendance management system using RFID (Radio Frequency Identification) is a much convenient method to take the attendance. Student is provided with the RFID tags. When student comes near to the reader, it will sense the respective student and update attendance. The whole process is controlled using the microcontroller. The main advantage of this system is that it reduced the complexity comparison to student attendance system using RF technology. This system requires only one microcontroller for the operation, it is real time process. This paper reviews some of these monitoring systems and proposes a GPRS based student attendance system. The system can be easily accessed by the lecturers via the web and most importantly, the reports can be generated in real-time processing, thus, provides valuable information about the students’ commitments in attending the classes.

Keywords: RFID reader, RFID tags, student, attendance

Procedia PDF Downloads 512
5322 On the Framework of Contemporary Intelligent Mathematics Underpinning Intelligent Science, Autonomous AI, and Cognitive Computers

Authors: Yingxu Wang, Jianhua Lu, Jun Peng, Jiawei Zhang

Abstract:

The fundamental demand in contemporary intelligent science towards Autonomous AI (AI*) is the creation of unprecedented formal means of Intelligent Mathematics (IM). It is discovered that natural intelligence is inductively created rather than exhaustively trained. Therefore, IM is a family of algebraic and denotational mathematics encompassing Inference Algebra, Real-Time Process Algebra, Concept Algebra, Semantic Algebra, Visual Frame Algebra, etc., developed in our labs. IM plays indispensable roles in training-free AI* theories and systems beyond traditional empirical data-driven technologies. A set of applications of IM-driven AI* systems will be demonstrated in contemporary intelligence science, AI*, and cognitive computers.

Keywords: intelligence mathematics, foundations of intelligent science, autonomous AI, cognitive computers, inference algebra, real-time process algebra, concept algebra, semantic algebra, applications

Procedia PDF Downloads 61
5321 The Second Smallest Eigenvalue of Complete Tripartite Hypergraph

Authors: Alfi Y. Zakiyyah, Hanni Garminia, M. Salman, A. N. Irawati

Abstract:

In the terminology of the hypergraph, there is a relation with the terminology graph. In the theory of graph, the edges connected two vertices. In otherwise, in hypergraph, the edges can connect more than two vertices. There is representation matrix of a graph such as adjacency matrix, Laplacian matrix, and incidence matrix. The adjacency matrix is symmetry matrix so that all eigenvalues is real. This matrix is a nonnegative matrix. The all diagonal entry from adjacency matrix is zero so that the trace is zero. Another representation matrix of the graph is the Laplacian matrix. Laplacian matrix is symmetry matrix and semidefinite positive so that all eigenvalues are real and non-negative. According to the spectral study in the graph, some that result is generalized to hypergraph. A hypergraph can be represented by a matrix such as adjacency, incidence, and Laplacian matrix. Throughout for this term, we use Laplacian matrix to represent a complete tripartite hypergraph. The aim from this research is to determine second smallest eigenvalues from this matrix and find a relation this eigenvalue with the connectivity of that hypergraph.

Keywords: connectivity, graph, hypergraph, Laplacian matrix

Procedia PDF Downloads 491
5320 A Patient-Centered Approach to Clinical Trial Development: Real-World Evidence from a Canadian Medical Cannabis Clinic

Authors: Lucile Rapin, Cynthia El Hage, Rihab Gamaoun, Maria-Fernanda Arboleda, Erin Prosk

Abstract:

Introduction: Sante Cannabis (SC), a Canadian group of clinics dedicated to medical cannabis, based in Montreal and in the province of Quebec, has served more than 8000 patients seeking cannabis-based treatment over the past five years. As randomized clinical trials with natural medical cannabis are scarce, real-world evidence offers the opportunity to fill research gaps between scientific evidence and clinical practice. Data on the use of medical cannabis products from SC patients were prospectively collected, leading to a large real-world database on the use of medical cannabis. The aim of this study was to report information on the profiles of both patients and prescribed medical cannabis products at SC clinics, and to assess the safety of medical cannabis among Canadian patients. Methods: This is an observational retrospective study of 1342 adult patients who were authorized with medical cannabis products between October 2017 and September 2019. Information regarding demographic characteristics, therapeutic indications for medical cannabis use, patterns in dosing and dosage form of medical cannabis and adverse effects over one-year follow-up (initial and 4 follow-up (FUP) visits) were collected. Results: 59% of SC patients were female, with a mean age of 56.7 (SD= 15.6, range= (19-97)). Cannabis products were authorized mainly for patients with a diagnosis of chronic pain (68.8% of patients), cancer (6.7%), neurological disorders (5.6%), and mood disorders (5.4 %). At initial visit, a large majority (70%) of patients were authorized exclusively medical cannabis products, 27% were authorized a combination of pharmaceutical cannabinoids and medical cannabis and 3% were prescribed only pharmaceutical cannabinoids. This pattern was recurrent over the one-year follow-up. Overall, oil was the preferred formulation (average over visits 72.5%) followed by a combination of oil and dry (average 19%), other routes of administration accounted for less than 4%. Patients were predominantly prescribed products with a balanced THC:CBD ratio (59%-75% across visits). 28% of patients reported at least one adverse effect (AE) at the 3-month follow-up visit and 12% at the six-month FUP visit. 84.8% of total AEs were mild and transient. No serious AE was reported. Overall, the most common side effects reported were dizziness (11.95% of total AEs), drowsiness (11.4%), dry mouth (5.5%), nausea (4.8%), headaches (4.6%), cough (4.4%), anxiety (4.1%) and euphoria (3.5%). Other adverse effects accounted for less than 3% of total AE. Conclusion: Our results confirm that the primary area of clinical use for medical cannabis is in pain management. Patients in this cohort are largely utilizing plant-based cannabis oil products with a balanced ratio of THC:CBD. Reported adverse effects were mild and included dizziness and drowsiness. This real-world data confirms the tolerable safety profile of medical cannabis and suggests medical indications not yet validated in controlled clinical trials. Such data offers an important opportunity for the investigation of the long-term effects of cannabinoid exposure in real-life conditions. Real-world evidence can be used to direct clinical trial research efforts on specific indications and dosing patterns for product development.

Keywords: medical cannabis, safety, real-world data, Canada

Procedia PDF Downloads 134
5319 Digital Twin for a Floating Solar Energy System with Experimental Data Mining and AI Modelling

Authors: Danlei Yang, Luofeng Huang

Abstract:

The integration of digital twin technology with renewable energy systems offers an innovative approach to predicting and optimising performance throughout the entire lifecycle. A digital twin is a continuously updated virtual replica of a real-world entity, synchronised with data from its physical counterpart and environment. Many digital twin companies today claim to have mature digital twin products, but their focus is primarily on equipment visualisation. However, the core of a digital twin should be its model, which can mirror, shadow, and thread with the real-world entity, which is still underdeveloped. For a floating solar energy system, a digital twin model can be defined in three aspects: (a) the physical floating solar energy system along with environmental factors such as solar irradiance and wave dynamics, (b) a digital model powered by artificial intelligence (AI) algorithms, and (c) the integration of real system data with the AI-driven model and a user interface. The experimental setup for the floating solar energy system, is designed to replicate real-ocean conditions of floating solar installations within a controlled laboratory environment. The system consists of a water tank that simulates an aquatic surface, where a floating catamaran structure supports a solar panel. The solar simulator is set up in three positions: one directly above and two inclined at a 45° angle in front and behind the solar panel. This arrangement allows the simulation of different sun angles, such as sunrise, midday, and sunset. The solar simulator is positioned 400 mm away from the solar panel to maintain consistent solar irradiance on its surface. Stability for the floating structure is achieved through ropes attached to anchors at the bottom of the tank, which simulates the mooring systems used in real-world floating solar applications. The floating solar energy system's sensor setup includes various devices to monitor environmental and operational parameters. An irradiance sensor measures solar irradiance on the photovoltaic (PV) panel. Temperature sensors monitor ambient air and water temperatures, as well as the PV panel temperature. Wave gauges measure wave height, while load cells capture mooring force. Inclinometers and ultrasonic sensors record heave and pitch amplitudes of the floating system’s motions. An electric load measures the voltage and current output from the solar panel. All sensors collect data simultaneously. Artificial neural network (ANN) algorithms are central to developing the digital model, which processes historical and real-time data, identifies patterns, and predicts the system’s performance in real time. The data collected from various sensors are partly used to train the digital model, with the remaining data reserved for validation and testing. The digital twin model combines the experimental setup with the ANN model, enabling monitoring, analysis, and prediction of the floating solar energy system's operation. The digital model mirrors the functionality of the physical setup, running in sync with the experiment to provide real-time insights and predictions. It provides useful industrial benefits, such as informing maintenance plans as well as design and control strategies for optimal energy efficiency. In long term, this digital twin will help improve overall solar energy yield whilst minimising the operational costs and risks.

Keywords: digital twin, floating solar energy system, experiment setup, artificial intelligence

Procedia PDF Downloads 14
5318 Research the Counseling of Taichung Taiwan's 10 Creative Zones

Authors: Feng Shih-Jen, Chiang Yi-Hua, Yang Min-Chih

Abstract:

After going through mass production and contract manufacturing phases, under the global consumption trend, Taiwan’s traditional industry has turned to creative design, research and development to gain recognition in the consumer market, build competitiveness in the global market and further promote the products from Taiwan’s traditional industry. Taichung City is rich in cultural creative resources, outperforming other counties/cities in originality, creative talents, cultural taste, art/culture participation and global marketing. As the result this has created a diversified and vibrant cultural market in Taichung, giving Taichung the highest potential as a cultural creative city. This research, through the project by Taichung Cultural Creative Industry Promotion Office, has built an exchange platform for the cultural creative industry in central Taiwan. The platform will promote exchanges of creative ideas in the cultural creative industry in Taiwan as well as industrial transformation and brings more value for the industry. This study also proposes the idea of “Taichung Cultural Creative Exhibition” Therefore, this study was conducted in Taiwan, Taichung 10 Creative Zone Exhibition, which is divided into four stages counseling. Respectively, of the first order: the cultural creative Zone specialty shops offer; The second stage is the industrial settlement discussions and counseling workshops in the ground; The third stage of consultation for the recruitment of the cultural creative businesses separate estate; The fourth stage is the story of the build cultural and creative industry. Hope through periodic counseling, handling Taichung 10 Creative Zone Exhibition.

Keywords: cultural creative industry, counseling, Taichung, Taiwan's creative zones

Procedia PDF Downloads 500
5317 Authoring of Augmented Reality Manuals for Not Physically Available Products

Authors: Vito M. Manghisi, Michele Gattullo, Alessandro Evangelista, Enricoandrea Laviola

Abstract:

In this work, we compared two solutions for displaying a demo version of an Augmented Reality (AR) manual when the real product is not available, opting to replace it with its computer-aided design (CAD) model. AR has been proved to be effective in maintenance and assembly operations by many studies in the literature. However, most of them present solutions for existing products, usually converting old, printed manuals into AR manuals. In this case, authoring consists of defining how to convey existing instructions through AR. It is not a simple choice, and demo versions are created to test the design goodness. However, this becomes impossible when the product is not physically available, as for new products. A solution could be creating an entirely virtual environment with the product and the instructions. However, in this way, user interaction is completely different from that in the real application, then it would be hard testing the usability of the AR manual. This work aims to propose and compare two different solutions for the displaying of a demo version of an AR manual to support authoring in case of a product that is not physically available. We used as a case study that of an innovative semi-hermetic compressor that has not yet been produced. The applications were developed for a handheld device, using Unity 3D. The main issue was how to show the compressor and attach instructions on it. In one approach, we used Vuforia natural feature tracking to attach a CAD model of the compressor to a 2D image that is a drawing in scale 1:1 of the top-view of the CAD model. In this way, during the AR manual demonstration, the 3D model of the compressor is displayed on the user's device in place of the real compressor, and all the virtual instructions are attached to it. In the other approach, we first created a support application that shows the CAD model of the compressor on a marker. Then, we registered a video of this application, moving around the marker, obtaining a video that shows the CAD model from every point of view. For the AR manual, we used the Vuforia model target (360° option) to track the CAD model of the compressor, as it was the real compressor. Then, during the demonstration, the video is shown on a fixed large screen, and instructions are displayed attached to it in the AR manual. The first solution presents the main drawback to keeping the printed image with everyone working on the authoring of the AR manual, but allows to show the product in a real scale and interaction during the demonstration is very simple. The second one does not need a printed marker during the demonstration but a screen. Still, the compressor model is resized, and interaction is awkward since the user has to play the video on the screen to rotate the compressor. The two solutions were evaluated together with the company, and the preferred was the first one due to a more natural interaction.

Keywords: augmented reality, human computer interaction, operating instructions, maintenance, assembly

Procedia PDF Downloads 129
5316 Human Development Outcomes and Macroeconomic Indicators Nexus in Nigeria: An Empirical Investigation

Authors: Risikat Oladoyin S. Dauda, Onyebuchi Iwegbu

Abstract:

This study investigates the response of human development outcomes to selected macroeconomic indicators in Nigeria. Human development outcomes is measured by human development index while the selected macroeconomic variables are inflation rate, real interest rate, government capital expenditure, real exchange rate, current account balance, and savings. Structural Vector Autoregression (SVAR) technique is employed in examining the response of human development index to the macroeconomic shocks. The result from the forecast error variance decomposition and Impulse-Response analysis reveals that fiscal policy (government capital expenditure) shock is the greatest determinant of human development outcomes. This result reiterates the role which the government plays in improving the welfare of the citizenry. The fiscal policy tool is pivotal in human development which comes in the form of investment in education, health, housing, and infrastructure. Further conclusion drawn from this study is that human development outcome positively and significantly responds to shocks from real interest rate, a monetary policy transmission variable and is felt greatly in the short run period. The policy implication of this study is that if capital budget implementation falls below expectations, human development will be engendered. Hence, efforts should be made to ensure that full implementation and appraisal of government capital expenditure is taken sacrosanct as any shock from such plan, engenders human development outcome.

Keywords: human development outcome, macroeconomic outcomes, structural vector autoregression, SVAR

Procedia PDF Downloads 157
5315 Portable Cardiac Monitoring System Based on Real-Time Microcontroller and Multiple Communication Interfaces

Authors: Ionel Zagan, Vasile Gheorghita Gaitan, Adrian Brezulianu

Abstract:

This paper presents the contributions in designing a mobile system named Tele-ECG implemented for remote monitoring of cardiac patients. For a better flexibility of this application, the authors chose to implement a local memory and multiple communication interfaces. The project described in this presentation is based on the ARM Cortex M0+ microcontroller and the ADAS1000 dedicated chip necessary for the collection and transmission of Electrocardiogram signals (ECG) from the patient to the microcontroller, without altering the performances and the stability of the system. The novelty brought by this paper is the implementation of a remote monitoring system for cardiac patients, having a real-time behavior and multiple interfaces. The microcontroller is responsible for processing digital signals corresponding to ECG and also for the implementation of communication interface with the main server, using GSM/Bluetooth SIMCOM SIM800C module. This paper translates all the characteristics of the Tele-ECG project representing a feasible implementation in the biomedical field. Acknowledgment: This paper was supported by the project 'Development and integration of a mobile tele-electrocardiograph in the GreenCARDIO© system for patients monitoring and diagnosis - m-GreenCARDIO', Contract no. BG58/30.09.2016, PNCDI III, Bridge Grant 2016, using the infrastructure from the project 'Integrated Center for research, development and innovation in Advanced Materials, Nanotechnologies, and Distributed Systems for fabrication and control', Contract No. 671/09.04.2015, Sectoral Operational Program for Increase of the Economic Competitiveness co-funded from the European Regional Development Fund.

Keywords: Tele-ECG, real-time cardiac monitoring, electrocardiogram, microcontroller

Procedia PDF Downloads 272
5314 Artificial Intelligence-Aided Extended Kalman Filter for Magnetometer-Based Orbit Determination

Authors: Gilberto Goracci, Fabio Curti

Abstract:

This work presents a robust, light, and inexpensive algorithm to perform autonomous orbit determination using onboard magnetometer data in real-time. Magnetometers are low-cost and reliable sensors typically available on a spacecraft for attitude determination purposes, thus representing an interesting choice to perform real-time orbit determination without the need to add additional sensors to the spacecraft itself. Magnetic field measurements can be exploited by Extended/Unscented Kalman Filters (EKF/UKF) for orbit determination purposes to make up for GPS outages, yielding errors of a few kilometers and tens of meters per second in the position and velocity of a spacecraft, respectively. While this level of accuracy shows that Kalman filtering represents a solid baseline for autonomous orbit determination, it is not enough to provide a reliable state estimation in the absence of GPS signals. This work combines the solidity and reliability of the EKF with the versatility of a Recurrent Neural Network (RNN) architecture to further increase the precision of the state estimation. Deep learning models, in fact, can grasp nonlinear relations between the inputs, in this case, the magnetometer data and the EKF state estimations, and the targets, namely the true position, and velocity of the spacecraft. The model has been pre-trained on Sun-Synchronous orbits (SSO) up to 2126 kilometers of altitude with different initial conditions and levels of noise to cover a wide range of possible real-case scenarios. The orbits have been propagated considering J2-level dynamics, and the geomagnetic field has been modeled using the International Geomagnetic Reference Field (IGRF) coefficients up to the 13th order. The training of the module can be completed offline using the expected orbit of the spacecraft to heavily reduce the onboard computational burden. Once the spacecraft is launched, the model can use the GPS signal, if available, to fine-tune the parameters on the actual orbit onboard in real-time and work autonomously during GPS outages. In this way, the provided module shows versatility, as it can be applied to any mission operating in SSO, but at the same time, the training is completed and eventually fine-tuned, on the specific orbit, increasing performances and reliability. The results provided by this study show an increase of one order of magnitude in the precision of state estimate with respect to the use of the EKF alone. Tests on simulated and real data will be shown.

Keywords: artificial intelligence, extended Kalman filter, orbit determination, magnetic field

Procedia PDF Downloads 105
5313 Overview of Risk Management in Electricity Markets Using Financial Derivatives

Authors: Aparna Viswanath

Abstract:

Electricity spot prices are highly volatile under optimal generation capacity scenarios due to factors such as non-storability of electricity, peak demand at certain periods, generator outages, fuel uncertainty for renewable energy generators, huge investments and time needed for generation capacity expansion etc. As a result market participants are exposed to price and volume risk, which has led to the development of risk management practices. This paper provides an overview of risk management practices by market participants in electricity markets using financial derivatives.

Keywords: financial derivatives, forward, futures, options, risk management

Procedia PDF Downloads 480
5312 Discussion on Big Data and One of Its Early Training Application

Authors: Fulya Gokalp Yavuz, Mark Daniel Ward

Abstract:

This study focuses on a contemporary and inevitable topic of Data Science and its exemplary application for early career building: Big Data and Leaving Learning Community (LLC). ‘Academia’ and ‘Industry’ have a common sense on the importance of Big Data. However, both of them are in a threat of missing the training on this interdisciplinary area. Some traditional teaching doctrines are far away being effective on Data Science. Practitioners needs some intuition and real-life examples how to apply new methods to data in size of terabytes. We simply explain the scope of Data Science training and exemplified its early stage application with LLC, which is a National Science Foundation (NSF) founded project under the supervision of Prof. Ward since 2014. Essentially, we aim to give some intuition for professors, researchers and practitioners to combine data science tools for comprehensive real-life examples with the guides of mentees’ feedback. As a result of discussing mentoring methods and computational challenges of Big Data, we intend to underline its potential with some more realization.

Keywords: Big Data, computation, mentoring, training

Procedia PDF Downloads 363
5311 Energy Consumption, Population and Economic Development Dynamics in Nigeria: An Empirical Evidence

Authors: Evelyn Nwamaka Ogbeide-Osaretin, Bright Orhewere

Abstract:

This study examined the role of the population in the linkage between energy consumption and economic development in Nigeria. Time series data on energy consumption, population, and economic development were used for the period 1995 to 2020. The Autoregressive Distributed Lag -Error Correction Model (ARDL-ECM) was engaged. Economic development had a negative substantial impact on energy consumption in the long run. Population growth had a positive significant effect on energy consumption. Government expenditure was also found to impact the level of energy consumption, while energy consumption is not a function of oil price in Nigeria.

Keywords: dynamic analysis, energy consumption, population, economic development, Nigeria

Procedia PDF Downloads 183
5310 Government Size and Economic Growth: Testing the Non-Linear Hypothesis for Nigeria

Authors: R. Santos Alimi

Abstract:

Using time-series techniques, this study empirically tested the validity of existing theory which stipulates there is a nonlinear relationship between government size and economic growth; such that government spending is growth-enhancing at low levels but growth-retarding at high levels, with the optimal size occurring somewhere in between. This study employed three estimation equations. First, for the size of government, two measures are considered as follows: (i) share of total expenditures to gross domestic product, (ii) share of recurrent expenditures to gross domestic product. Second, the study adopted real GDP (without government expenditure component), as a variant measure of economic growth other than the real total GDP, in estimating the optimal level of government expenditure. The study is based on annual Nigeria country-level data for the period 1970 to 2012. Estimation results show that the inverted U-shaped curve exists for the two measures of government size and the estimated optimum shares are 19.81% and 10.98%, respectively. Finally, with the adoption of real GDP (without government expenditure component), the optimum government size was found to be 12.58% of GDP. Our analysis shows that the actual share of government spending on average (2000 - 2012) is about 13.4%.This study adds to the literature confirming that the optimal government size exists not only for developed economies but also for developing economy like Nigeria. Thus, a public intervention threshold level that fosters economic growth is a reality; beyond this point economic growth should be left in the hands of the private sector. This finding has a significant implication for the appraisal of government spending and budgetary policy design.

Keywords: public expenditure, economic growth, optimum level, fully modified OLS

Procedia PDF Downloads 422