Search results for: national models
9889 Aerodynamics of Nature Inspired Turbine Blade Using Computational Simulation
Authors: Seung Ki Lee, Richard Kyung
Abstract:
In the airfoil analysis, as the camber is greater, the minimal angle of attack causing the stall and maximum lift force increases. The shape of the turbine blades is similar to the shape of the wings of planes. After major wars, many remarkable blade shapes are made through researches about optimal blade shape. The blade shapes developed by National Advisory Committee for Aeronautics, NACA, is well known. In this paper, using computational and numerical analysis, the NACA airfoils are analyzed. This research shows that the blades vary with their thickness, which thinner blades are expected to be better. There is no significant difference of coefficient of lift due to the difference in thickness, but the coefficient of drag increases as the thickness increases.Keywords: blades, drag force, national advisory committee for aeronautics airfoils, turbine
Procedia PDF Downloads 2249888 Coastal Adaptation to Climate Change: A Review of EU Tools, Legislation, National Strategies and Projects in the Mediterranean Basin
Authors: Dimitris Kokkinos, Panagiotis Prinos
Abstract:
In the last three decades, climate change has been studied extensively from scientific community, and its consequences are more than clear all around the world. Most countries have carried out a great effort to reduce global warming rates with the ratification and implementation of several international treaties. Moreover, many of them have already adopted national plans in order to adapt to climate change effects and mitigate human and economic losses. Coastal environments, with their inherent physical sensitivity, will face important challenges as a result of projected changes in climate conditions and hundreds of millions of people will be affected. Coastal zones are of high social and economic value and this research focuses on the Mediterranean basin, which is a densely populated and highly urbanized area. With 40% of its land used for human activity and the inevitability of the impacts of the climate change, it is obvious that some form of adaptation measures will be necessary. In this regard, the EU tools, policies and legislation concerning adaptation to climate change are presented. Additionally, the National Adaptation Strategies of State members of the Mediterranean basin are compared and analyzed concerning the coastal areas, along with an overview of projects and programs results focused on coastal issues at different spatial scales. The purpose of this research is to stress the differences between Mediterranean State members at methodologies implemented, to highlight the possible gaps in co-ordination and to emphasize on research initiatives that EU can build upon moving towards an integrated adaptation planning on a region-wide basis.Keywords: coastal adaptation, Mediterranean Basin, climate change, coastal environments
Procedia PDF Downloads 3089887 Model Driven Architecture Methodologies: A Review
Authors: Arslan Murtaza
Abstract:
Model Driven Architecture (MDA) is technique presented by OMG (Object Management Group) for software development in which different models are proposed and converted them into code. The main plan is to identify task by using PIM (Platform Independent Model) and transform it into PSM (Platform Specific Model) and then converted into code. In this review paper describes some challenges and issues that are faced in MDA, type and transformation of models (e.g. CIM, PIM and PSM), and evaluation of MDA-based methodologies.Keywords: OMG, model driven rrchitecture (MDA), computation independent model (CIM), platform independent model (PIM), platform specific model(PSM), MDA-based methodologies
Procedia PDF Downloads 4569886 2-Dimensional Kinematic Analysis on Sprint Start with Sprinting Performance of Novice Athletes
Authors: Satpal Yadav, Biswajit Basumatary, Arvind S. Sajwan, Ranjan Chakravarty
Abstract:
The purpose of the study was to assess the effect of 2D kinematical selected variables on sprint start with sprinting performance of novice athletes. Six (3 National and 3 State level) athletes of sports authority of India, Guwahati has been selected for this study. The mean (M) and standard deviation (SD) of sprinters were age (17.44, 1.55), height (1.74m, .84m), weight (62.25 kg, 4.55), arm length (65.00 cm, 3.72) and leg length (96.35 cm, 2.71). Biokin-2D motion analysis system V4.5 can be used for acquiring two-dimensional kinematical data/variables on sprint start with Sprinting Performance. For the purpose of kinematic analysis a standard motion driven camera which frequency of the camera was 60 frame/ second i.e. handy camera of Sony Company were used. The sequence of photographic was taken under controlled condition. The distance of the camera from the athletes was 12 mts away and was fixed at 1.2-meter height. The result was found that National and State level athletes significant difference in there, trajectory knee, trajectory ankle, displacement knee, displacement ankle, linear velocity knee, linear velocity ankle, and linear acceleration ankle whereas insignificant difference was found between National and State level athletes in their linear acceleration knee joint on sprint start with sprinting performance. For all the Statistical test the level of significance was set at p<0.05.Keywords: 2D kinematic analysis, sprinting performance, novice athletes, sprint start
Procedia PDF Downloads 3229885 Interpretation of Heritage Revitalization
Authors: Jarot Mahendra
Abstract:
The primary objective of this paper is to provide a view in the interpretation of the revitalization of heritage buildings. This objective is achieved by analyzing the concept of interpretation that is oriented in the perspective of law, urban spatial planning, and stakeholder perspective, and then develops the theoretical framework of interpretation in the cultural resources management through issues of identity, heritage as a process, and authenticity in heritage. The revitalization of heritage buildings with the interpretation of these three issues is that interpretation can be used as a communication process to express the meaning and relation of heritage to the community so as to avoid the conflict that will arise and develop as a result of different perspectives of stakeholders. Using case studies in Indonesia, this study focuses on the revitalization of heritage sites in the National Gallery of Indonesia (GNI). GNI is a cultural institution that uses several historical buildings that have been designated as heritage and have not been designated as a heritage according to the regulations applicable in Indonesia, in carrying out its function as the center of Indonesian art development and art museums. The revitalization of heritage buildings is taken as a step to meet space needs in running the current GNI function. In the revitalization master plan, there are physical interventions on the building of heritage and the removal of some historic buildings which will then be built new buildings at that location. The research matrix was used to map out the main elements of the study (the concept of GNI revitalization, heritage as identity, heritage as a process, and authenticity in the heritage). Expert interviews and document studies are the main tools used in collecting data. Qualitative data is then analyzed through content analysis and template analysis. This study identifies the significance of historic buildings (heritage buildings and buildings not defined as heritage) as an important value of history, architecture, education, and culture. The significance becomes the basis for revisiting the revitalization master plan which is then reviewed according to applicable regulations and the spatial layout of Jakarta. The interpretation that is built is (1) GNI is one of the elements of the embodiment of the National Cultural Center in the context of the region, where there are National Monument, National Museum and National Library in the same area, so the heritage not only gives identity to the past culture but the culture of current community; (2) The heritage should be seen as a dynamic cultural process towards the cultural change of community, where heritage must develop along with the urban development, so that the heritage buildings can remain alive and side by side with modern buildings but still observe the principles of preservation of heritage; (3) The authenticity of heritage should be able to balance the cultural heritage conservation approach with urban development, where authenticity can serve as a 'Value Transmitter' so that authenticity can be used to evaluate, preserve and manage heritage buildings by considering tangible and intangible aspects.Keywords: authenticity, culture process, identity, interpretation, revitalization
Procedia PDF Downloads 1469884 Modeling of Anisotropic Hardening Based on Crystal Plasticity Theory and Virtual Experiments
Authors: Bekim Berisha, Sebastian Hirsiger, Pavel Hora
Abstract:
Advanced material models involving several sets of model parameters require a big experimental effort. As models are getting more and more complex like e.g. the so called “Homogeneous Anisotropic Hardening - HAH” model for description of the yielding behavior in the 2D/3D stress space, the number and complexity of the required experiments are also increasing continuously. In the context of sheet metal forming, these requirements are even more pronounced, because of the anisotropic behavior or sheet materials. In addition, some of the experiments are very difficult to perform e.g. the plane stress biaxial compression test. Accordingly, tensile tests in at least three directions, biaxial tests and tension-compression or shear-reverse shear experiments are performed to determine the parameters of the macroscopic models. Therefore, determination of the macroscopic model parameters based on virtual experiments is a very promising strategy to overcome these difficulties. For this purpose, in the framework of multiscale material modeling, a dislocation density based crystal plasticity model in combination with a FFT-based spectral solver is applied to perform virtual experiments. Modeling of the plastic behavior of metals based on crystal plasticity theory is a well-established methodology. However, in general, the computation time is very high and therefore, the computations are restricted to simplified microstructures as well as simple polycrystal models. In this study, a dislocation density based crystal plasticity model – including an implementation of the backstress – is used in a spectral solver framework to generate virtual experiments for three deep drawing materials, DC05-steel, AA6111-T4 and AA4045 aluminum alloys. For this purpose, uniaxial as well as multiaxial loading cases, including various pre-strain histories, has been computed and validated with real experiments. These investigations showed that crystal plasticity modeling in the framework of Representative Volume Elements (RVEs) can be used to replace most of the expensive real experiments. Further, model parameters of advanced macroscopic models like the HAH model can be determined from virtual experiments, even for multiaxial deformation histories. It was also found that crystal plasticity modeling can be used to model anisotropic hardening more accurately by considering the backstress, similar to well-established macroscopic kinematic hardening models. It can be concluded that an efficient coupling of crystal plasticity models and the spectral solver leads to a significant reduction of the amount of real experiments needed to calibrate macroscopic models. This advantage leads also to a significant reduction of computational effort needed for the optimization of metal forming process. Further, due to the time efficient spectral solver used in the computation of the RVE models, detailed modeling of the microstructure are possible.Keywords: anisotropic hardening, crystal plasticity, micro structure, spectral solver
Procedia PDF Downloads 3139883 Medical and Surgical Nursing Care
Authors: Nassim Salmi
Abstract:
Postoperative mobilization is an important part of fundamental care. Increased mobilization has a positive effect on recovery, but immobilization is still a challenge in postoperative care. Aims: To report how the establishment of a national nursing database was used to measure postoperative mobilization in patients undergoing surgery for ovarian cancer. Mobilization was defined as at least 3 hours out of bed on postoperative day 1, with the goal set at achieving this in 60% of patients. Clinical nurses on 4400 patients with ovarian cancer performed data entry. Findings: 46.7% of patients met the goal for mobilization on the first postoperative day, but variations in duration and type of mobilization were observed. Of those mobilized, 51.8% had been walking in the hallway. A national nursing database creates opportunities to optimize fundamental care. By comparing nursing data with oncological, surgical, and pathology data, it became possible to study mobilization in relation to cancer stage, comorbidity, treatment, and extent of surgery.Keywords: postoperative care, gynecology, nursing documentation, database
Procedia PDF Downloads 1149882 Economic Policy of Achieving National Competitive Advantage
Authors: Gulnaz Erkomaishvili, Eteri Kharaishvili, Marina Chavleishvili
Abstract:
The paper discusses the economic policy of increasing national competitiveness, the tools, and means which help the country to improve its competitiveness. The sectors of the economy, in which the country can achieve a competitive advantage, are studied. It is noted that the country’s economic policy plays an important role in obtaining and maintaining a competitive advantage - authority should take measures to ensure a high level of education; scientific and research activities should be funded by the state; foreign direct investments should be attracted mainly in science-intensive industries; adaptation with the latest scientific achievements of the modern world and deepening of scientific and technical cooperation. Stable business environment and export-oriented strategy is the basis for the country’s economic growth. The studies have shown that institutional reforms in Georgia are not enough to significantly improve the country's competitiveness.Keywords: competitiveness, economic policy, competitiveness improvement strategy, competitiveness of Georgia
Procedia PDF Downloads 1269881 Prediction of Formation Pressure Using Artificial Intelligence Techniques
Authors: Abdulmalek Ahmed
Abstract:
Formation pressure is the main function that affects drilling operation economically and efficiently. Knowing the pore pressure and the parameters that affect it will help to reduce the cost of drilling process. Many empirical models reported in the literature were used to calculate the formation pressure based on different parameters. Some of these models used only drilling parameters to estimate pore pressure. Other models predicted the formation pressure based on log data. All of these models required different trends such as normal or abnormal to predict the pore pressure. Few researchers applied artificial intelligence (AI) techniques to predict the formation pressure by only one method or a maximum of two methods of AI. The objective of this research is to predict the pore pressure based on both drilling parameters and log data namely; weight on bit, rotary speed, rate of penetration, mud weight, bulk density, porosity and delta sonic time. A real field data is used to predict the formation pressure using five different artificial intelligence (AI) methods such as; artificial neural networks (ANN), radial basis function (RBF), fuzzy logic (FL), support vector machine (SVM) and functional networks (FN). All AI tools were compared with different empirical models. AI methods estimated the formation pressure by a high accuracy (high correlation coefficient and low average absolute percentage error) and outperformed all previous. The advantage of the new technique is its simplicity, which represented from its estimation of pore pressure without the need of different trends as compared to other models which require a two different trend (normal or abnormal pressure). Moreover, by comparing the AI tools with each other, the results indicate that SVM has the advantage of pore pressure prediction by its fast processing speed and high performance (a high correlation coefficient of 0.997 and a low average absolute percentage error of 0.14%). In the end, a new empirical correlation for formation pressure was developed using ANN method that can estimate pore pressure with a high precision (correlation coefficient of 0.998 and average absolute percentage error of 0.17%).Keywords: Artificial Intelligence (AI), Formation pressure, Artificial Neural Networks (ANN), Fuzzy Logic (FL), Support Vector Machine (SVM), Functional Networks (FN), Radial Basis Function (RBF)
Procedia PDF Downloads 1499880 Need for a National Newborn Screening Programme in India: Pilot Study Data
Authors: Sudheer Moorkoth, Leslie Edward Lewis, Pragna Rao
Abstract:
Newborn screening (NBS) is a part of routine newborn care in many countries worldwide to detect early any rare treatable conditions and inborn errors of metabolism (IEM). India has not started this program yet. In an attempt to understand the challenges in implementing a national newborn screening program in India, we initiated a pilot newborn screening project funded by the Government of Canada. Along with initiating the newborn screening at Kasturba Hospital, Manipal in South India, for screening six disorders (Congenital Hypothyroidism(CH), Congenital Adrenal Hyperplasia (CAH), Galactosemia, Biotinidase deficiency, Glucose-6-Phosphate Dehydrogenase deficiency (G-6PD) and Phenylketonurea), we also studied the awareness of various stakeholders on the newborn screening. In a period of nine months from August 2017 to March 2018 we could screen 1915 newborns (999 male and 916 female). The result showed that there were seven babies screened positive. This interim result points to an incidence rate of 1 in 270 children for these rare disorders collectively. This includes three confirmed cases of CH, two cases of G-6PD deficiency, and one case each for Galctosemia and CAH. A questionnaire based study to understand the awareness among various stakeholders revealed that there is little awareness among parents, adolescents and anganwadi workers (public health worker). The interim data points to the need for a national newborn screening programme in India. There is also an immediate need to undertake large-scale awareness programme to create knowledge on NBS among the various stakeholders.Keywords: awareness, inborn errors of metabolism (IEM), newborn screening, rare disease
Procedia PDF Downloads 2489879 Biodiversity of the National Production through Companion Plants Analysis
Authors: Astrid Rivera, Diego Villatoro
Abstract:
The world population increases at an accelerated pace, and it is essential to find solutions to feed the population. Nevertheless, crop diversity has significantly decreased in the last years, and the increase in food production is not the optimal solution. It is essential to consider the origin of the food, the nutriment contributions, among other dimensions. In this regard, biodiversity plays an indispensable role when designing an effective strategy to face the actual food security problems. Consequently, the purpose of this work is to analyze biodiversity in the Mexican national food production and suggest a proper crop selection based on companion plants, for which empirical and experimental knowledge shows a better scenery than current efforts. As a result, we get a set of crop recommendations to increase production in sustainable and nutritive planning. It is essential to explore more feasible options to advance sustainable development goals beyond an economic aspect.Keywords: biodiversity, food security, companion plats, nutrition
Procedia PDF Downloads 1979878 Relation between Physical and Mechanical Properties of Concrete Paving Stones Using Neuro-Fuzzy Approach
Authors: Erion Luga, Aksel Seitllari, Kemal Pervanqe
Abstract:
This study investigates the relation between physical and mechanical properties of concrete paving stones using neuro-fuzzy approach. For this purpose 200 samples of concrete paving stones were selected randomly from different sources. The first phase included the determination of physical properties of the samples such as water absorption capacity, porosity and unit weight. After that the indirect tensile strength test and compressive strength test of the samples were performed. İn the second phase, adaptive neuro-fuzzy approach was employed to simulate nonlinear mapping between the above mentioned physical properties and mechanical properties of paving stones. The neuro-fuzzy models uses Sugeno type fuzzy inference system. The models parameters were adapted using hybrid learning algorithm and input space was fuzzyfied by considering grid partitioning. It is concluded based on the observed data and the estimated data through ANFIS models that neuro-fuzzy system exhibits a satisfactory performance.Keywords: paving stones, physical properties, mechanical properties, ANFIS
Procedia PDF Downloads 3409877 Cloud Computing: Major Issues and Solutions
Authors: S. Adhirai Subramaniyam, Paramjit Singh
Abstract:
This paper presents major issues in cloud computing. The paper describes different cloud computing deployment models and cloud service models available in the field of cloud computing. The paper then concentrates on various issues in the field. The issues such as cloud compatibility, compliance of the cloud, standardizing cloud technology, monitoring while on the cloud and cloud security are described. The paper suggests solutions for these issues and concludes that hybrid cloud infrastructure is a real boon for organizations.Keywords: cloud, cloud computing, mobile cloud computing, private cloud, public cloud, hybrid cloud, SAAS, PAAS, IAAS, cloud security
Procedia PDF Downloads 3429876 Ontological Modeling Approach for Statistical Databases Publication in Linked Open Data
Authors: Bourama Mane, Ibrahima Fall, Mamadou Samba Camara, Alassane Bah
Abstract:
At the level of the National Statistical Institutes, there is a large volume of data which is generally in a format which conditions the method of publication of the information they contain. Each household or business data collection project includes a dissemination platform for its implementation. Thus, these dissemination methods previously used, do not promote rapid access to information and especially does not offer the option of being able to link data for in-depth processing. In this paper, we present an approach to modeling these data to publish them in a format intended for the Semantic Web. Our objective is to be able to publish all this data in a single platform and offer the option to link with other external data sources. An application of the approach will be made on data from major national surveys such as the one on employment, poverty, child labor and the general census of the population of Senegal.Keywords: Semantic Web, linked open data, database, statistic
Procedia PDF Downloads 1749875 Models Comparison for Solar Radiation
Authors: Djelloul Benatiallah
Abstract:
Due to the current high consumption and recent industry growth, the depletion of fossil and natural energy supplies like oil, gas, and uranium is declining. Due to pollution and climate change, there needs to be a swift switch to renewable energy sources. Research on renewable energy is being done to meet energy needs. Solar energy is one of the renewable resources that can currently meet all of the world's energy needs. In most parts of the world, solar energy is a free and unlimited resource that can be used in a variety of ways, including photovoltaic systems for the generation of electricity and thermal systems for the generation of heatfor the residential sector's production of hot water. In this article, we'll conduct a comparison. The first step entails identifying the two empirical models that will enable us to estimate the daily irradiations on a horizontal plane. On the other hand, we compare it using the data obtained from measurements made at the Adrar site over the four distinct seasons. The model 2 provides a better estimate of the global solar components, with an absolute mean error of less than 7% and a correlation coefficient of more than 0.95, as well as a relative coefficient of the bias error that is less than 6% in absolute value and a relative RMSE that is less than 10%, according to a comparison of the results obtained by simulating the two models.Keywords: solar radiation, renewable energy, fossil, photovoltaic systems
Procedia PDF Downloads 779874 The Competitiveness of Small and Medium Sized Enterprises: Digital Transformation of Business Models
Authors: Chante Van Tonder, Bart Bossink, Chris Schachtebeck, Cecile Nieuwenhuizen
Abstract:
Small and Medium-Sized Enterprises (SMEs) play a key role in national economies around the world, being contributors to economic and social well-being. Due to this, the success, growth and competitiveness of SMEs are critical. However, there are many factors that undermine this, such as resource constraints, poor information communication infrastructure (ICT), skills shortages and poor management. The Fourth Industrial Revolution offers new tools and opportunities such as digital transformation and business model innovation (BMI) to the SME sector to enhance its competitiveness. Adopting and leveraging digital technologies such as cloud, mobile technologies, big data and analytics can significantly improve business efficiencies, value proposition and customer experiences. Digital transformation can contribute to the growth and competitiveness of SMEs. However, SMEs are lagging behind in the participation of digital transformation. Extant research lacks conceptual and empirical research on how digital transformation drives BMI and the impact it has on the growth and competitiveness of SMEs. The purpose of the study is, therefore, to close this gap by developing and empirically validating a conceptual model to determine if SMEs are achieving BMI through digital transformation and how this is impacting the growth, competitiveness and overall business performance. An empirical study is being conducted on 300 SMEs, consisting of 150 South-African and 150 Dutch SMEs, to achieve this purpose. Structural equation modeling is used, since it is a multivariate statistical analysis technique that is used to analyse structural relationships and is a suitable research method to test the hypotheses in the model. Empirical research is needed to gather more insight into how and if SMEs are digitally transformed and how BMI can be driven through digital transformation. The findings of this study can be used by SME business owners, managers and employees at all levels. The findings will indicate if digital transformation can indeed impact the growth, competitiveness and overall performance of an SME, reiterating the importance and potential benefits of adopting digital technologies. In addition, the findings will also exhibit how BMI can be achieved in light of digital transformation. This study contributes to the body of knowledge in a highly relevant and important topic in management studies by analysing the impact of digital transformation on BMI on a large number of SMEs that are distinctly different in economic and cultural factorsKeywords: business models, business model innovation, digital transformation, SMEs
Procedia PDF Downloads 2379873 Inventory Larval Ectoparasites of Tomato Leafminer in National High School of Agriculture, Algeria
Authors: Khadidja Mahdi, Salaheddine Doumandji
Abstract:
Among the natural enemies that reduce populations of the tomato leaf miner studied in experimental plots of National High school of agriculture (ENSA, Algeria, 36° 40’ à 36° 43’ N.; 3° 08’ à 3° 12’ E.), larval ectoparasites. Three larval ectoparasites are reported in this study namely Necrinmus Sp. and two species of indeterminate Chalcidae (Chalcidae Sp. 1 and 2). These species have significantly reduced the effectives of Tuta absoluta. The results for the parasitism of eggs, larval instars and pupae of Tuta absoluta on the open field tomato in the experimental plots of ENSA show high levels of parasite eggs with 25%. With 94.7%, the first larval instar (L1) is the most parasites. The second instar (L2) undergoes the action of parasitoids least 60%. Instars L3 and L4 and pupae remain unharmed.Keywords: tuta absoluta, larval ectoparasites, tomato, ensa, Algeria
Procedia PDF Downloads 2749872 Challenges and Solutions to Human Capital Development in Thailand
Authors: Nhabhat Chaimongkol
Abstract:
Human capital is one of the factors that are vital for economic growth. This is especially true as humans will face increasingly more forms of disruptive technology in the near future. Therefore, there is a need to develop human capital in order to overcome the current uncertainty in the global economy and the future of jobs. In recent years, Thailand has increasingly devoted more attention to developing its human capital. The Thai government has raised this issue in its national agenda, which is part of its 20-year national strategy. Currently, there are multiple challenges and solutions regarding this issue. This study aims to find out what are the challenges and solutions to human capital development in Thailand. The research in this study uses mixed methods consisting of quantitative and qualitative research methods. The results show that while Thailand has many plans to develop human capital, it is still lacking the necessary actions and integrations that are required to achieve its goals. Finally, the challenges and solutions will be discussed in detail.Keywords: challenges, human capital, solutions, Thailand
Procedia PDF Downloads 1709871 Unaccompanied Children: An Overview on National and European Law
Authors: Cinzia Valente
Abstract:
Over the last few years, national legislators have been forced to deal with social changes that have had important repercussions in family law and children’s law. This growing focus on minors has provoked important reforms, specifically on issues relating to the welfare and protection of children. My presentation focuses on the issue of migrant children in particular I refer to unaccompanied children, or ‘children on the move’, or separate children or any other term defining migrant minors who cross national borders seeking protection or better opportunities. They arrive often illegally, on the European territory without a responsible adult who take care of them. There is a common assumption that migrants are running away from conflicts, poverty and human rights abuse and they arrive in a foreign country hoping a better life; children without persons who takes care of them encounter some difficulties in their integration in the host country. The migration flows recorded in recent decades towards EU countries, and Italy in particular, have imposed an intense pressure to modernize institutions, services and specific legal frameworks, with the aim of responding adequately to the needs of foreign individuals, as well as ensuring a good level of living standards and facilitating integration, especially for migrant children. The object of my paper is the analysis of the Italian rules, practices and services existing in favor of unaccompanied children (foster care, reunification, acquisition of citizenship and other) in comparison with other European legal systems on the same thematic with a comparative method. Highlighting European standards to find common principles for the best solution to children's problems is the conclusive aim of my presentation.Keywords: Children , Family Law, Migration , Uniform Law
Procedia PDF Downloads 1409870 An Improved Prediction Model of Ozone Concentration Time Series Based on Chaotic Approach
Authors: Nor Zila Abd Hamid, Mohd Salmi M. Noorani
Abstract:
This study is focused on the development of prediction models of the Ozone concentration time series. Prediction model is built based on chaotic approach. Firstly, the chaotic nature of the time series is detected by means of phase space plot and the Cao method. Then, the prediction model is built and the local linear approximation method is used for the forecasting purposes. Traditional prediction of autoregressive linear model is also built. Moreover, an improvement in local linear approximation method is also performed. Prediction models are applied to the hourly ozone time series observed at the benchmark station in Malaysia. Comparison of all models through the calculation of mean absolute error, root mean squared error and correlation coefficient shows that the one with improved prediction method is the best. Thus, chaotic approach is a good approach to be used to develop a prediction model for the Ozone concentration time series.Keywords: chaotic approach, phase space, Cao method, local linear approximation method
Procedia PDF Downloads 3299869 Data Collection with Bounded-Sized Messages in Wireless Sensor Networks
Authors: Min Kyung An
Abstract:
In this paper, we study the data collection problem in Wireless Sensor Networks (WSNs) adopting the two interference models: The graph model and the more realistic physical interference model known as Signal-to-Interference-Noise-Ratio (SINR). The main issue of the problem is to compute schedules with the minimum number of timeslots, that is, to compute the minimum latency schedules, such that data from every node can be collected without any collision or interference to a sink node. While existing works studied the problem with unit-sized and unbounded-sized message models, we investigate the problem with the bounded-sized message model, and introduce a constant factor approximation algorithm. To the best known of our knowledge, our result is the first result of the data collection problem with bounded-sized model in both interference models.Keywords: data collection, collision-free, interference-free, physical interference model, SINR, approximation, bounded-sized message model, wireless sensor networks
Procedia PDF Downloads 2219868 Switched System Diagnosis Based on Intelligent State Filtering with Unknown Models
Authors: Nada Slimane, Foued Theljani, Faouzi Bouani
Abstract:
The paper addresses the problem of fault diagnosis for systems operating in several modes (normal or faulty) based on states assessment. We use, for this purpose, a methodology consisting of three main processes: 1) sequential data clustering, 2) linear model regression and 3) state filtering. Typically, Kalman Filter (KF) is an algorithm that provides estimation of unknown states using a sequence of I/O measurements. Inevitably, although it is an efficient technique for state estimation, it presents two main weaknesses. First, it merely predicts states without being able to isolate/classify them according to their different operating modes, whether normal or faulty modes. To deal with this dilemma, the KF is endowed with an extra clustering step based fully on sequential version of the k-means algorithm. Second, to provide state estimation, KF requires state space models, which can be unknown. A linear regularized regression is used to identify the required models. To prove its effectiveness, the proposed approach is assessed on a simulated benchmark.Keywords: clustering, diagnosis, Kalman Filtering, k-means, regularized regression
Procedia PDF Downloads 1819867 Application Methodology for the Generation of 3D Thermal Models Using UAV Photogrammety and Dual Sensors for Mining/Industrial Facilities Inspection
Authors: Javier Sedano-Cibrián, Julio Manuel de Luis-Ruiz, Rubén Pérez-Álvarez, Raúl Pereda-García, Beatriz Malagón-Picón
Abstract:
Structural inspection activities are necessary to ensure the correct functioning of infrastructures. Unmanned Aerial Vehicle (UAV) techniques have become more popular than traditional techniques. Specifically, UAV Photogrammetry allows time and cost savings. The development of this technology has permitted the use of low-cost thermal sensors in UAVs. The representation of 3D thermal models with this type of equipment is in continuous evolution. The direct processing of thermal images usually leads to errors and inaccurate results. A methodology is proposed for the generation of 3D thermal models using dual sensors, which involves the application of visible Red-Blue-Green (RGB) and thermal images in parallel. Hence, the RGB images are used as the basis for the generation of the model geometry, and the thermal images are the source of the surface temperature information that is projected onto the model. Mining/industrial facilities representations that are obtained can be used for inspection activities.Keywords: aerial thermography, data processing, drone, low-cost, point cloud
Procedia PDF Downloads 1429866 Developing Guidelines for Public Health Nurse Data Management and Use in Public Health Emergencies
Authors: Margaret S. Wright
Abstract:
Background/Significance: During many recent public health emergencies/disasters, public health nursing data has been missing or delayed, potentially impacting the decision-making and response. Data used as evidence for decision-making in response, planning, and mitigation has been erratic and slow, decreasing the ability to respond. Methodology: Applying best practices in data management and data use in public health settings, and guided by the concepts outlined in ‘Disaster Standards of Care’ models leads to the development of recommendations for a model of best practices in data management and use in public health disasters/emergencies by public health nurses. As the ‘patient’ in public health disasters/emergencies is the community (local, regional or national), guidelines for patient documentation are incorporated in the recommendations. Findings: Using model public health nurses could better plan how to prepare for, respond to, and mitigate disasters in their communities, and better participate in decision-making in all three phases bringing public health nursing data to the discussion as part of the evidence base for decision-making.Keywords: data management, decision making, disaster planning documentation, public health nursing
Procedia PDF Downloads 2219865 A Legal Opinion on Mitigation and Adaptation on Air Pollution Strategies for Local Governments in South Africa
Authors: Marjone Van Der Bank, C. M. Van Der Bank
Abstract:
This paper presents an overview of the foundation and evolution of environmental related problems in local governments with specific reference on air pollution in South Africa. Local government has a direct mandate in terms of the Constitution of the Republic of South Africa, 1996 (hereafter, the Constitution). This mandate to protect, fulfil, respect and promote the Bill of Rights by local governments in respect of the powers and functions creates confusion around the role of where a local government fits in, in addressing the problem of climate change in South Africa. A reflection of the evolving legislations, developments, and processes regarding climate change that shaped local government dispensation in South Africa is addressed by the notion of developmental local governments. This paper seeks to examine the advances for mitigation and adaptation regulation of air pollution and application in South Africa. This study involves a qualitative approach that will involve South African national legislation as well as an interpretation of international strategies. A literature review study was conducted to undertake the various aspects of law in order to support the argument undertaken of mitigation and adaptation strategies. The paper presents a detailed discussion of the current legislation and the position as it currently stands, as well as the relevant protections as outlined in the National Environmental Management Act and the National Environmental Management: Air Quality Act. It then proceeds to outline the responsibilities of local governments in South Africa to mitigate and adapt to air pollution strategies.Keywords: adaptation, climate change, disaster, local governments and mitigation
Procedia PDF Downloads 1429864 Classifying and Predicting Efficiencies Using Interval DEA Grid Setting
Authors: Yiannis G. Smirlis
Abstract:
The classification and the prediction of efficiencies in Data Envelopment Analysis (DEA) is an important issue, especially in large scale problems or when new units frequently enter the under-assessment set. In this paper, we contribute to the subject by proposing a grid structure based on interval segmentations of the range of values for the inputs and outputs. Such intervals combined, define hyper-rectangles that partition the space of the problem. This structure, exploited by Interval DEA models and a dominance relation, acts as a DEA pre-processor, enabling the classification and prediction of efficiency scores, without applying any DEA models.Keywords: data envelopment analysis, interval DEA, efficiency classification, efficiency prediction
Procedia PDF Downloads 1639863 Optimizing Machine Learning Through Python Based Image Processing Techniques
Authors: Srinidhi. A, Naveed Ahmed, Twinkle Hareendran, Vriksha Prakash
Abstract:
This work reviews some of the advanced image processing techniques for deep learning applications. Object detection by template matching, image denoising, edge detection, and super-resolution modelling are but a few of the tasks. The paper looks in into great detail, given that such tasks are crucial preprocessing steps that increase the quality and usability of image datasets in subsequent deep learning tasks. We review some of the methods for the assessment of image quality, more specifically sharpness, which is crucial to ensure a robust performance of models. Further, we will discuss the development of deep learning models specific to facial emotion detection, age classification, and gender classification, which essentially includes the preprocessing techniques interrelated with model performance. Conclusions from this study pinpoint the best practices in the preparation of image datasets, targeting the best trade-off between computational efficiency and retaining important image features critical for effective training of deep learning models.Keywords: image processing, machine learning applications, template matching, emotion detection
Procedia PDF Downloads 129862 Time and Cost Prediction Models for Language Classification Over a Large Corpus on Spark
Authors: Jairson Barbosa Rodrigues, Paulo Romero Martins Maciel, Germano Crispim Vasconcelos
Abstract:
This paper presents an investigation of the performance impacts regarding the variation of five factors (input data size, node number, cores, memory, and disks) when applying a distributed implementation of Naïve Bayes for text classification of a large Corpus on the Spark big data processing framework. Problem: The algorithm's performance depends on multiple factors, and knowing before-hand the effects of each factor becomes especially critical as hardware is priced by time slice in cloud environments. Objectives: To explain the functional relationship between factors and performance and to develop linear predictor models for time and cost. Methods: the solid statistical principles of Design of Experiments (DoE), particularly the randomized two-level fractional factorial design with replications. This research involved 48 real clusters with different hardware arrangements. The metrics were analyzed using linear models for screening, ranking, and measurement of each factor's impact. Results: Our findings include prediction models and show some non-intuitive results about the small influence of cores and the neutrality of memory and disks on total execution time, and the non-significant impact of data input scale on costs, although notably impacts the execution time.Keywords: big data, design of experiments, distributed machine learning, natural language processing, spark
Procedia PDF Downloads 1189861 Attenuation Scale Calibration of an Optical Time Domain Reflectometer
Authors: Osama Terra, Hatem Hussein
Abstract:
Calibration of Optical Time Domain Reflectometer (OTDR) is crucial for the accurate determination of loss budget for long optical fiber links. In this paper, the calibration of the attenuation scale of an OTDR using two different techniques is discussed and implemented. The first technique is the external modulation method (EM). A setup is proposed to calibrate an OTDR over a dynamic range of around 15 dB based on the EM method. Afterwards, the OTDR is calibrated using two standard reference fibers (SRF). Both SRF are calibrated using cut-back technique; one of them is calibrated at our home institute (the National Institute of Standards – NIS) while the other at the National Physical Laboratory (NPL) of the United Kingdom to confirm our results. In addition, the parameters contributing the calibration uncertainty are thoroughly investigated. Although the EM method has several advantages over the SRF method, the uncertainties in the SRF method is found to surpass that of the EM method.Keywords: optical time domain reflectometer, fiber attenuation measurement, OTDR calibration, external source method
Procedia PDF Downloads 4639860 Phraseologisms With The Spices And Food Additives Component In Polish And Russian. Lexical And Semantic Aspects
Authors: Oliwia Bator
Abstract:
The subject of this description is phraseologisms with the component “spices and food additives component" in Polish and Russian. The purpose of the study is to analyze the phraseologisms from the point of view of lexis and semantics. The material for analysis was extracted from Phraseological Dictionaries of Polish and Russian. The phraseologisms were considered from the lexical point of view, taking into account the name of the " spices and food additives" component, which forms them. From the semantic point of view, 12 semantic groups of phraseologisms were separated in Polish, while 9 semantic groups were separated in Russian. In addition is shown their functioning in the contexts of contemporary Polish and Russian. The contexts were taken from the National Corpus of the Polish Language and the National Corpus of the Russian Language.Keywords: phraseology, language, slavic studies, linguistics
Procedia PDF Downloads 36