Search results for: motion typography
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1319

Search results for: motion typography

329 ACTN3 Genotype Association with Motoric Performance of Roma Children

Authors: J. Bernasovska, I. Boronova, J. Poracova, M. Mydlarova Blascakova, V. Szabadosova, P. Ruzbarsky, E. Petrejcikova, I. Bernasovsky

Abstract:

The paper presents the results of the molecular genetics analysis in sports research, with special emphasis to use genetic information in diagnosing of motoric predispositions in Roma boys from East Slovakia. The ability and move are the basic characteristics of all living organisms. The phenotypes are influenced by a combination of genetic and environmental factors. Genetic tests differ in principle from the traditional motoric tests, because the DNA of an individual does not change during life. The aim of the presented study was to examine motion abilities and to determine the frequency of ACTN3 (R577X) gene in Roma children. Genotype data were obtained from 138 Roma and 155 Slovak boys from 7 to 15 years old. Children were investigated on physical performance level in association with their genotype. Biological material for genetic analyses comprised samples of buccal swabs. Genotypes were determined using Real Time High resolution melting PCR method (Rotor-Gene 6000 Corbett and Light Cycler 480 Roche). The software allows creating reports of any analysis, where information of the specific analysis, normalized and differential graphs and many information of the samples are shown. Roma children of analyzed group legged to non-Romany children at the same age in all the compared tests. The % distribution of R and X alleles in Roma children was different from controls. The frequency of XX genotype was 9.26%, RX 46.33% and RR was 44.41%. The frequency of XX genotype was 9.26% which is comparable to a frequency of an Indian population. Data were analyzed with the ANOVA test.

Keywords: ACTN3 gene, R577X polymorphism, Roma children, sport performance, Slovakia

Procedia PDF Downloads 334
328 Exact Vibration Analysis of a Rectangular Nano-Plate Using Nonlocal Modified Sinusoidal Shear Deformation Theory

Authors: Korosh Khorshidi, Mohammad Khodadadi

Abstract:

In this paper, exact close form solution for out of plate free flexural vibration of moderately thick rectangular nanoplates are presented based on nonlocal modified trigonometric shear deformation theory, with assumptions of the Levy's type boundary conditions, for the first time. The aim of this study is to evaluate the effect of small-scale parameters on the frequency parameters of the moderately thick rectangular nano-plates. To describe the effects of small-scale parameters on vibrations of rectangular nanoplates, the Eringen theory is used. The Levy's type boundary conditions are combination of six different boundary conditions; specifically, two opposite edges are simply supported and any of the other two edges can be simply supported, clamped or free. Governing equations of motion and boundary conditions of the plate are derived by using the Hamilton’s principle. The present analytical solution can be obtained with any required accuracy and can be used as benchmark. Numerical results are presented to illustrate the effectiveness of the proposed method compared to other methods reported in the literature. Finally, the effect of boundary conditions, aspect ratios, small scale parameter and thickness ratios on nondimensional natural frequency parameters and frequency ratios are examined and discussed in detail.

Keywords: exact solution, nonlocal modified sinusoidal shear deformation theory, out of plane vibration, moderately thick rectangular plate

Procedia PDF Downloads 387
327 A Three Elements Vector Valued Structure’s Ultimate Strength-Strong Motion-Intensity Measure

Authors: A. Nicknam, N. Eftekhari, A. Mazarei, M. Ganjvar

Abstract:

This article presents an alternative collapse capacity intensity measure in the three elements form which is influenced by the spectral ordinates at periods longer than that of the first mode period at near and far source sites. A parameter, denoted by β, is defined by which the spectral ordinate effects, up to the effective period (2T_1), on the intensity measure are taken into account. The methodology permits to meet the hazard-levelled target extreme event in the probabilistic and deterministic forms. A MATLAB code is developed involving OpenSees to calculate the collapse capacities of the 8 archetype RC structures having 2 to 20 stories for regression process. The incremental dynamic analysis (IDA) method is used to calculate the structure’s collapse values accounting for the element stiffness and strength deterioration. The general near field set presented by FEMA is used in a series of performing nonlinear analyses. 8 linear relationships are developed for the 8structutres leading to the correlation coefficient up to 0.93. A collapse capacity near field prediction equation is developed taking into account the results of regression processes obtained from the 8 structures. The proposed prediction equation is validated against a set of actual near field records leading to a good agreement. Implementation of the proposed equation to the four archetype RC structures demonstrated different collapse capacities at near field site compared to those of FEMA. The reasons of differences are believed to be due to accounting for the spectral shape effects.

Keywords: collapse capacity, fragility analysis, spectral shape effects, IDA method

Procedia PDF Downloads 239
326 Preparation and Modeling Carbon Nanofibers as an Adsorbent to Protect the Environment

Authors: Maryam Ziaei, Saeedeh Rafiei, Leila Mivehi, Akbar Khodaparast Haghi

Abstract:

Carbon nanofibers possess properties that are rarely present in any other types of carbon adsorbents, including a small cross-sectional area, combined with a multitude of slit shaped nanopores that are suitable for adsorption of certain types of molecules. Because of their unique properties these materials can be used for the selective adsorption of organic molecules. On the other hand, activated carbon fiber (ACF) has been widely applied as an effective adsorbent for micro-pollutants in recent years. ACF effectively adsorbs and removes a full spectrum of harmful substances. Although there are various methods of fabricating carbon nanofibres, electrospinning is perhaps the most versatile procedure. This technique has been given great attention in current decades because of the nearly simple, comfortable and low cost. Spinning process control and achieve optimal conditions is important in order to effect on its physical properties, absorbency and versatility with different industrial purposes. Modeling and simulation are suitable methods to obtain this approach. In this paper, activated carbon nanofibers were produced during electrospinning of polyacrylonitrile solution. Stabilization, carbonization and activation of electrospun nanofibers in optimized conditions were achieved, and mathematical modelling of electrosinning process done by focusing on governing equations of electrified fluid jet motion (using FeniCS software). Experimental and theoretical results will be compared with each other in order to estimate the accuracy of the model. The simulation can provide the possibility of predicting essential parameters, which affect the electrospinning process.

Keywords: carbon nanofibers, electrospinning, electrospinning modeling, simulation

Procedia PDF Downloads 287
325 The Analysis of Deceptive and Truthful Speech: A Computational Linguistic Based Method

Authors: Seham El Kareh, Miramar Etman

Abstract:

Recently, detecting liars and extracting features which distinguish them from truth-tellers have been the focus of a wide range of disciplines. To the author’s best knowledge, most of the work has been done on facial expressions and body gestures but only few works have been done on the language used by both liars and truth-tellers. This paper sheds light on four axes. The first axis copes with building an audio corpus for deceptive and truthful speech for Egyptian Arabic speakers. The second axis focuses on examining the human perception of lies and proving our need for computational linguistic-based methods to extract features which characterize truthful and deceptive speech. The third axis is concerned with building a linguistic analysis program that could extract from the corpus the inter- and intra-linguistic cues for deceptive and truthful speech. The program built here is based on selected categories from the Linguistic Inquiry and Word Count program. Our results demonstrated that Egyptian Arabic speakers on one hand preferred to use first-person pronouns and present tense compared to the past tense when lying and their lies lacked of second-person pronouns, and on the other hand, when telling the truth, they preferred to use the verbs related to motion and the nouns related to time. The results also showed that there is a need for bigger data to prove the significance of words related to emotions and numbers.

Keywords: Egyptian Arabic corpus, computational analysis, deceptive features, forensic linguistics, human perception, truthful features

Procedia PDF Downloads 206
324 Use Multiphysics Simulations and Resistive Pulse Sensing to Study the Effect of Metal and Non-Metal Nanoparticles in Different Salt Concentration

Authors: Chun-Lin Chiang, Che-Yen Lee, Yu-Shan Yeh, Jiunn-Haur Shaw

Abstract:

Wafer fabrication is a critical part of the semiconductor process, when the finest linewidth with the improvement of technology continues to decline and the structure development from 2D towards to 3D. The nanoparticles contained in the slurry or in the ultrapure water which used for cleaning have a large influence on the manufacturing process. Therefore, semiconductor industry is hoping to find a viable method for on-line detection the nanoparticles size and concentration. The resistive pulse sensing technology is one of the methods that may cover this question. As we know that nanoparticles properties of material differ significantly from their properties at larger length scales. So, we want to clear that the metal and non-metal nanoparticles translocation dynamic when we use the resistive pulse sensing technology. In this study we try to use the finite element method that contains three governing equations to do multiphysics coupling simulations. The Navier-Stokes equation describes the laminar motion, the Nernst-Planck equation describes the ion transport, and the Poisson equation describes the potential distribution in the flow channel. To explore that the metal nanoparticles and the non-metal nanoparticles in different concentration electrolytes, through the nanochannel caused by ion current changes. Then the reliability of the simulation results was verified by resistive pulse sensing test. The existing results show that the lower ion concentration, the greater effect of nanoparticles on the ion concentration in the nanochannel. The conductive spikes are correlated with nanoparticles surface charge. Then we can be concluded that in the resistive pulse sensing technique, the ion concentration in the nanochannel and nanoparticle properties are important for the translocation dynamic, and they have the interactions.

Keywords: multiphysics simulations, resistive pulse sensing, nanoparticles, nanochannel

Procedia PDF Downloads 349
323 Reading the Interior Furnishings of the Houses through Turkish Films in the 1980's

Authors: Dicle Aydın, Tuba Bulbul Bahtiyar, Esra Yaldız

Abstract:

Housing offers a confirmed space for individuals. In the sense of interior decoration design, housing is a kind of typology in which user’s profile and individual preferences are considered as primary determinants. In Turkish society, the transition from traditional residences to apartment buildings brings the change in interior fittings depending upon the location of houses in its wake. The social status of the users in the residence and the differences of their everyday life can be represented more evident in these interior fittings. Hence, space becomes a tool to carry the information of users and the act. From this aspect, space as a concrete tool also enables a multidirectional communication with the cinema which reflects the social, cultural and economic changes of the society. While space takes a virtual or real part of the cinema, architecture discipline has also been influenced by cinematic phenomenas in its own practice. The subject of the movie and its content commune with the space, therefore, the design of the space is formed to support the subject. The purpose of this study is to analyze the space through motion pictures that convey the information of social life with an objective perspective. In addition, this study aims to determine the space, fittings and the use of fittings with respect to the social status of users. Morever, three films in 1980s in which Kemal Sunal, protagonist of the scripts that reflect society in many ways, performed are examined in this study. Movie sets are considered in many ways. For instance, in one of these movies, different houses from an apartment are analyzed vis a vis the perspective of the study.

Keywords: housing, interior, furniture, furnishing, user

Procedia PDF Downloads 202
322 FRATSAN: A New Software for Fractal Analysis of Signals

Authors: Hamidreza Namazi

Abstract:

Fractal analysis is assessing fractal characteristics of data. It consists of several methods to assign fractal characteristics to a dataset which may be a theoretical dataset or a pattern or signal extracted from phenomena including natural geometric objects, sound, market fluctuations, heart rates, digital images, molecular motion, networks, etc. Fractal analysis is now widely used in all areas of science. An important limitation of fractal analysis is that arriving at an empirically determined fractal dimension does not necessarily prove that a pattern is fractal; rather, other essential characteristics have to be considered. For this purpose a Visual C++ based software called FRATSAN (FRActal Time Series ANalyser) was developed which extract information from signals through three measures. These measures are Fractal Dimensions, Jeffrey’s Measure and Hurst Exponent. After computing these measures, the software plots the graphs for each measure. Besides computing three measures the software can classify whether the signal is fractal or no. In fact, the software uses a dynamic method of analysis for all the measures. A sliding window is selected with a value equal to 10% of the total number of data entries. This sliding window is moved one data entry at a time to obtain all the measures. This makes the computation very sensitive to slight changes in data, thereby giving the user an acute analysis of the data. In order to test the performance of this software a set of EEG signals was given as input and the results were computed and plotted. This software is useful not only for fundamental fractal analysis of signals but can be used for other purposes. For instance by analyzing the Hurst exponent plot of a given EEG signal in patients with epilepsy the onset of seizure can be predicted by noticing the sudden changes in the plot.

Keywords: EEG signals, fractal analysis, fractal dimension, hurst exponent, Jeffrey’s measure

Procedia PDF Downloads 467
321 Physical Tests on Localized Fluidization in Offshore Suction Bucket Foundations

Authors: Li-Hua Luu, Alexis Doghmane, Abbas Farhat, Mohammad Sanayei, Pierre Philippe, Pablo Cuellar

Abstract:

Suction buckets are promising innovative foundations for offshore wind turbines. They generally feature the shape of an inverted bucket and rely on a suction system as a driving agent for their installation into the seabed. Water is pumped out of the buckets that are initially placed to rest on the seabed, creating a net pressure difference across the lid that generates a seepage flow, lowers the soil resistance below the foundation skirt, and drives them effectively into the seabed. The stability of the suction mechanism as well as the possibility of a piping failure (i.e., localized fluidization within the internal soil plug) during their installation are some of the key questions that remain open. The present work deals with an experimental study of localized fluidization by suction within a fixed bucket partially embedded into a submerged artificial soil made of spherical beads. The transient process, from the onset of granular motion until reaching a stationary regime for the fluidization at the embedded bucket wall, is recorded using the combined optical techniques of planar laser-induced fluorescence and refractive index matching. To conduct a systematic study of the piping threshold for the seepage flow, we vary the beads size, the suction pressure, and the initial depth for the bucket. This experimental modelling, by dealing with erosion-related phenomena from a micromechanical perspective, shall provide qualitative scenarios for the local processes at work which are missing in the offshore practice so far.

Keywords: fluidization, micromechanical approach, offshore foundations, suction bucket

Procedia PDF Downloads 182
320 Vibration Damping Properties of Electrorheological Materials Based on Chitosan/Perlite Composite

Authors: M. Cabuk, M. Yavuz, T. A. Yesil, H. I. Unal

Abstract:

Electrorheological (ER) fluids are a class of smart materials exhibiting reversible changes in their rheological and mechanical properties under an applied electric field (E). ER fluids generally are composed of polarisable solid particles dispersed in non-conducting oil. ER fluids are fluids which exhibit. The resistance to motion of the ER fluid can be controlled by adjusting the applied E, due to their fast and reversible changes in their rheological properties presence of E. In this study, a series of chitosan/expanded perlite (CS/EP) composites with different chitosan mass fractions (10%, 20%, and 50%) was used. Characterizations of the composites were carried out by Fourier Transform Infrared (FTIR), X-ray diffraction (XRD) and Scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDX) techniques. Antisedimentation stability and dielectric properties of the composites were also determined. The effects of volume fraction, electric field strength, shear rate, shear stress, and temperature onto ER properties of the CS/EP composite particles dispersed in silicone oil (SO) were investigated in detail. Vibration damping behavior of the CS/EP composites were determined as a function of frequence, storage (Gʹ) and loss (Gʹ ʹ) moduli. It was observed that ER response of the CS/EP/SO ER fluids increased with increasing electric field strength and exhibited the typical shear thinning non-Newtonian viscoelastic behaviors with increasing shear rate. The maximum yield stress was obtained with 1250 Pa under E = 3 kV/mm. Further, the CS/EP/SO ER fluids were observed to sensitive to vibration control by showing reversible viscosity enhancements (Gʹ > Gʹ ʹ). Acknowledgements: The authors thank the TÜBİTAK (214Z199) for the financial support of this work.

Keywords: chitosan, electrorheology, perlite, vibration control

Procedia PDF Downloads 236
319 Placelessness and the Subversive Tactics of Mobility in Ernest Hemingway and Jabra Ibrahim Jabra

Authors: Ahmad Qabaha

Abstract:

This paper teases out the ways in which the constructs of placelessness and mobility are articulated in modern exilic Palestinian literature and American expatriate writing. The mode of placelessness embodied by the characters of each of my two authors (expatriation in Paris Montparnasse for Hemingway's characters and involuntary exile in Europe for Jabra's) will be elicited from the orientations of their mobility. This paper argues that the proclivity of Hemingway's characters for centrifugal motion (moving away from the centre) is a strategy to increase their sense of freedom that space (expatriation), rather than place, secures. By contrast, the movement of Jabra's characters is centripetal (moving or tending to move towards the centre). It echoes his Palestinian characters' recurrent futile attempts to return to Palestine, and it expresses their resistance to the lures of exile. This paper asserts that the involuntarily exiled character (the Palestinian in this case) is a figure obsessed with and ache for a place, roots and 'a dwelling' from which he was uprooted - a place that defines his authentic existence and frames his understanding of the world in Martin Heidegger's, Simone Weil's and Gaston Bachelard's senses. In parallel, this paper explains that the expatriate character (the American in this case) views place as confining, restrictive and disagreeable, while mobility as a figure of freedom, resistance, wealth, self-fashioning and understanding/inhabiting the world. Place in this sense is associated with past, tradition, ideology, existence and being. Mobility is equivalent with modernity, progression, innovation, self-fashioning and freedom.

Keywords: American expatriate literature, exilic Palestinian literature, mobility, place, placelessness

Procedia PDF Downloads 438
318 The Effect of Fibre Orientation on the Mechanical Behaviour of Skeletal Muscle: A Finite Element Study

Authors: Christobel Gondwe, Yongtao Lu, Claudia Mazzà, Xinshan Li

Abstract:

Skeletal muscle plays an important role in the human body system and function by generating voluntary forces and facilitating body motion. However, The mechanical properties and behaviour of skeletal muscle are still not comprehensively known yet. As such, various robust engineering techniques have been applied to better elucidate the mechanical behaviour of skeletal muscle. It is considered that muscle mechanics are highly governed by the architecture of the fibre orientations. Therefore, the aim of this study was to investigate the effect of different fibre orientations on the mechanical behaviour of skeletal muscle.In this study, a continuum mechanics approach–finite element (FE) analysis was applied to the left bicep femoris long head to determine the contractile mechanism of the muscle using Hill’s three-element model. The geometry of the muscle was segmented from the magnetic resonance images. The muscle was modelled as a quasi-incompressible hyperelastic (Mooney-Rivlin) material. Two types of fibre orientations were implemented: one with the idealised fibre arrangement, i.e. parallel single-direction fibres going from the muscle origin to insertion sites, and the other with curved fibre arrangement which is aligned with the muscle shape.The second fibre arrangement was implemented through the finite element method; non-uniform rational B-spline (FEM-NURBs) technique by means of user material (UMAT) subroutines. The stress-strain behaviour of the muscle was investigated under idealised exercise conditions, and will be further analysed under physiological conditions. The results of the two different FE models have been outputted and qualitatively compared.

Keywords: FEM-NURBS, finite element analysis, Mooney-Rivlin hyperelastic, muscle architecture

Procedia PDF Downloads 479
317 Working Between Human and Non-Human Nature: Using Labour as a Tool to Capture the Transformations of Planetary Life

Authors: Ellen Kirkpatrick

Abstract:

Deforestation, toxification, and loss of environmental habitats, accompanied by expanding production and urbanization, are visibly altering planetary life. This is bringing humans and non-human nature into closer contact, resulting in the emergence of infectious diseases such as the Covid-19 virus which, while zoonotic in origin, spread through market relations and networks of local and global production. However, while the pandemic sharply illuminated the role of labour within social transformations, the question remains about the role of labour in transforming ecological relations. Drawing on a historical materialist approach, this paper explores the emergence and transmission of the COVID-19 virus through the Marxist conceptualization of metabolic rift. This allows for a perspective of human and non-human nature, which is in constant motion and dialectical. This negotiates distinctions and binaries between them as humans and non-human nature are taken to mutually constrain, enable and constitute one another. This is particularly significant when considering the ongoing transformations of a climate-changing world and the corresponding effects on social life. To do this, this paper empirically focuses on the Huanan Seafood Wholesale Market in Wuhan, China, where the COVID-19 virus was first detected. It examines how the virus jumped from non-human animals to humans through concrete production operations locally before traveling globally through networks of abstract market relations based on the logic of circulation, trade and exchange. As a mediating relation between human and non-human nature, labour is an analytical tool that can create a dialogue between the concrete and the abstract, as well as the local and global.

Keywords: Marxism, social reproduction, metabolic rift, labour

Procedia PDF Downloads 21
316 Frictional Effects on the Dynamics of a Truncated Double-Cone Gravitational Motor

Authors: Barenten Suciu

Abstract:

In this work, effects of the friction and truncation on the dynamics of a double-cone gravitational motor, self-propelled on a straight V-shaped horizontal rail, are evaluated. Such mechanism has a variable radius of contact, and, on one hand, it is similar to a pulley mechanism that changes the potential energy into the kinetic energy of rotation, but on the other hand, it is similar to a pendulum mechanism that converts the potential energy of the suspended body into the kinetic energy of translation along a circular path. Movies of the self- propelled double-cones, made of S45C carbon steel and wood, along rails made of aluminum alloy, were shot for various opening angles of the rails. Kinematical features of the double-cones were estimated through the slow-motion processing of the recorded movies. Then, a kinematical model is derived under assumption that the distance traveled by the contact points on the rectilinear rails is identical with the distance traveled by the contact points on the truncated conical surface. Additionally, a dynamic model, for this particular contact problem, was proposed and validated against the experimental results. Based on such model, the traction force and the traction torque acting on the double-cone are identified. One proved that the rolling traction force is always smaller than the sliding friction force; i.e., the double-cone is rolling without slipping. Results obtained in this work can be used to achieve the proper design of such gravitational motor.

Keywords: Truncated double-cone, friction, rolling and sliding, dynamic model, gravitational motor

Procedia PDF Downloads 274
315 Vibration Analysis of Magnetostrictive Nano-Plate by Using Modified Couple Stress and Nonlocal Elasticity Theories

Authors: Hamed Khani Arani, Mohammad Shariyat, Armaghan Mohammadian

Abstract:

In the present study, the free vibration of magnetostrictive nano-plate (MsNP) resting on the Pasternak foundation is investigated. Firstly, the modified couple stress (MCS) and nonlocal elasticity theories are compared together and taken into account to consider the small scale effects; in this paper not only two theories are analyzed but also it improves the MCS theory is more accurate than nonlocal elasticity theory in such problems. A feedback control system is utilized to investigate the effects of a magnetic field. First-order shear deformation theory (FSDT), Hamilton’s principle and energy method are utilized in order to drive the equations of motion and these equations are solved by differential quadrature method (DQM) for simply supported boundary conditions. The MsNP undergoes in-plane forces in x and y directions. In this regard, the dimensionless frequency is plotted to study the effects of small scale parameter, magnetic field, aspect ratio, thickness ratio and compression and tension loads. Results indicate that these parameters play a key role on the natural frequency. According to the above results, MsNP can be used in the communications equipment, smart control vibration of nanostructure especially in sensor and actuators such as wireless linear micro motor and smart nano valves in injectors.

Keywords: feedback control system, magnetostrictive nano-plate, modified couple stress theory, nonlocal elasticity theory, vibration analysis

Procedia PDF Downloads 135
314 Dynamic Corrosion Prevention through Magneto-Responsive Nanostructure with Controllable Hydrophobicity

Authors: Anne McCarthy, Anna Kim, Yin Song, Kyoo Jo, Donald Cropek, Sungmin Hong

Abstract:

Corrosion prevention remains an indispensable concern across a spectrum of industries, demanding inventive and adaptable methodologies to effectively tackle the ever-evolving obstacles presented by corrosive surroundings. This abstract introduces a pioneering approach to corrosion prevention that amalgamates the distinct attributes of magneto-responsive polymers with finely adjustable hydrophobicity inspired by the structure of cicada wings, effectively deterring bacterial proliferation and biofilm formation. The proposed strategy entails the creation of an innovative array of magneto-responsive nanostructures endowed with the capacity to dynamically modulate their hydrophobic characteristics. This dynamic control over hydrophobicity facilitates active repulsion of water and corrosive agents on demand. Additionally, the cyclic motion generated by magnetic activation prevents the biofilms formation and rejection. Thus, the synergistic interplay between magneto-active nanostructures and hydrophobicity manipulation establishes a versatile defensive mechanism against diverse corrosive agents. This study introduces a novel method for corrosion prevention, harnessing the advantages of magneto-active nanostructures and the precision of hydrophobicity adjustment, resulting in water-repellency, effective biofilm removal, and offering a promising solution to handle corrosion-related challenges. We believe that the combined effect will significantly contribute to extending asset lifespan, improving safety, and reducing maintenance costs in the face of corrosion threats.

Keywords: magneto-active material, nanoimprinting, corrosion prevention, hydrophobicity

Procedia PDF Downloads 65
313 The Emergence of a Hexagonal Pattern in Shear-Thickening Suspension under Orbital Shaking

Authors: Li-Xin Shi, Meng-Fei Hu, Song-Chuan Zhao

Abstract:

Dense particle suspensions composed of mixtures of particles and fluid are omnipresent in natural phenomena and in industrial processes. Dense particle suspension under shear may lose its uniform state to large local density and stress fluctuations which challenge the mean-field description of the suspension system. However, it still remains largely debated and far from fully understood of the internal mechanism. Here, a dynamics of a non-Brownian suspension is explored under horizontal swirling excitations, where high-density patches appear when the excitation frequency is increased beyond a threshold. These density patches are self-assembled into a hexagonal pattern across the system with further increases in frequency. This phenomenon is underlined by the spontaneous growth of density waves (instabilities) along the flow direction, and the motion of these density waves preserves the circular path and the frequency of the oscillation. To investigate the origin of the phenomena, the constitutive relationship calibrated by independent rheological measurements is implemented into a simplified two-phase flow model. And the critical instability frequency in theory calculation matches the experimental measurements quantitatively without free parameters. By further analyzing the model, the instability is found to be closely related to the discontinuous shear thickening transition of the suspension. In addition, the long-standing density waves degenerate into random fluctuations when replacing the free surface with rigid confinement. It indicates that the shear-thickened state is intrinsically heterogeneous, and the boundary conditions are crucial for the development of local disturbance.

Keywords: dense suspension, instability, self-organization, density wave

Procedia PDF Downloads 88
312 Quantification of Effects of Structure-Soil-Structure Interactions on Urban Environment under Rayleigh Wave Loading

Authors: Neeraj Kumar, J. P. Narayan

Abstract:

The effects of multiple Structure-Soil-Structure Interactions (SSSI) on the seismic wave-field is generally disregarded by earthquake engineers, particularly the surface waves which cause more damage to buildings. Closely built high rise buildings exchange substantial seismic energy with each other and act as a full-coupled dynamic system. In this paper, SSI effects on the building responses and the free field motion due to a small city consisting 25- homogenous buildings blocks of 10-storey are quantified. The rocking and translational behavior of building under Rayleigh wave loading is studied for different dimensions of the building. The obtained dynamic parameters of buildings revealed a reduction in building roof drift with an increase in number of buildings ahead of the considered building. The strain developed by vertical component of Rayleigh may cause tension in structural components of building. A matching of fundamental frequency of building for the horizontal component of Rayleigh wave with that for vertically incident SV-wave is obtained. Further, the fundamental frequency of building for the vertical vibration is approximately twice to that for horizontal vibration. The city insulation has caused a reduction of amplitude of Rayleigh wave up to 19.3% and 21.6% in the horizontal and vertical components, respectively just outside the city. Further, the insulating effect of city was very large at fundamental frequency of buildings for both the horizontal and vertical components. Therefore, it is recommended to consider the insulating effects of city falling in the path of Rayleigh wave propagation in seismic hazard assessment for an area.

Keywords: structure-soil-structure interactions, Rayleigh wave propagation, finite difference simulation, dynamic response of buildings

Procedia PDF Downloads 215
311 Osteoarthritis (OA): A Total Knee Replacement Surgery

Authors: Loveneet Kaur

Abstract:

Introduction: Osteoarthritis (OA) is one of the leading causes of disability, and the knee is the most commonly affected joint in the body. The last resort for treatment of knee OA is Total Knee Replacement (TKR) surgery. Despite numerous advances in prosthetic design, patients do not reach normal function after surgery. Current surgical decisions are made on 2D radiographs and patient interviews. Aims: The aim of this study was to compare knee kinematics pre and post-TKR surgery using computer-animated images of patient-specific models under everyday conditions. Methods: 7 subjects were recruited for the study. Subjects underwent 3D gait analysis during 4 everyday activities and medical imaging of the knee joint pre- and one-month post-surgery. A 3D model was created from each of the scans, and the kinematic gait analysis data was used to animate the images. Results: Improvements were seen in a range of motion in all 4 activities 1-year post-surgery. The preoperative 3D images provide detailed information on the anatomy of the osteoarthritic knee. The postoperative images demonstrate potential future problems associated with the implant. Although not accurate enough to be of clinical use, the animated data can provide valuable insight into what conditions cause damage to both the osteoarthritic and prosthetic knee joints. As the animated data does not require specialist training to view, the images can be utilized across the fields of health professionals and manufacturing in the assessment and treatment of patients pre and post-knee replacement surgery. Future improvements in the collection and processing of data may yield clinically useful data. Conclusion: Although not yet of clinical use, the potential application of 3D animations of the knee joint pre and post-surgery is widespread.

Keywords: Orthoporosis, Ortharthritis, knee replacement, TKR

Procedia PDF Downloads 47
310 The Effect of the Archeological and Architectural Nature of the Cities on the Design of Public Transportation Vehicles

Authors: Mohamed Moheyeldin Mahmoud

Abstract:

Various Islamic, Coptic and Jewish archeological places are located in many Egyptian neighborhoods such as Alsayeda zainab, Aldarb Alahmar, Algammaleya and many other in which they are daily exposed to a great traffic intensity causing vibrations. Vibrations could be stated as one of the most important challenges that face the archeological buildings and threaten their survival. The impact of vibrations varies according to the nature of the soil, nature and building conditions, how far the source of vibration is and the period of exposure. Traffic vibrations could be also stated as one of the most common types of vibrations having the greatest impact on buildings and archaeological installations. These vibrations result from the way that the vehicles act with different types of roads which vary according to the shape, nature, and type of obstacles. Other elements concerning the vehicle itself such as speed, weight, and load have a direct impact on the vibrations resulting from the vehicle movement that couldn't be neglected. The research aims to determine some of the requirements that must be observed when designing the public means of transport operating in the archaeological areas, in order to preserve the archaeological nature of the place. The research concludes that light weight slow motion vehicles should be used (25-50 km/h at maximum) having a multi-leaf steel spring suspension system instead of having an air-bag one should be used in order to reduce generated vibrations that could destroy the archeological buildings. Isolation layers could be used in the engine chamber in order to reduce the resulting noise causing vibrations. Electrically operated engines that use solar photovoltaic cells as a source of electricity could be used instead of gas ones in order to reduce the resulting engine noise.

Keywords: archeological, design, isolation layers, suspension, vibrations

Procedia PDF Downloads 191
309 A Study from Language and Culture Perspective of Human Needs in Chinese and Vietnamese Euphemism Languages

Authors: Quoc Hung Le Pham

Abstract:

Human beings are motivated to satisfy the physiological needs and psychological needs. In the fundamental needs, bodily excretion is the most basic one, while physiological excretion refers to the final products produced in the process of discharging the body. This physiological process is a common human phenomenon. For instance, bodily secretion is totally natural, but people of various nationalities through the times avoid saying it directly. Terms like ‘shit’ are often negatively regarded as dirty, smelly and vulgar; it will lead people to negative thinking. In fact, it is in the psychology of human beings to avoid such unsightly terms. Especially in social situations where you have to take care of your image, and you have to release. The best way to solve this is to approach the use of euphemism. People prefer to say it as ‘answering nature's call’ or ‘to pass a motion’ instead. Chinese and Vietnamese nations are referring to use euphemisms to replace bodily secretions, so this research will take this phenomenon as the object aims to explore the similarities and dissimilarities between two languages euphemism. The basic of the niche of this paper is human physiological phenomenon excretion. As the preliminary results show, in expressing bodily secretions the deeply impacting factor is language and cultural factors. On language factor terms, two languages are using assonance to replace human nature discharge, whilst the dissimilarities are metonymy, loan word and personification. On culture factor terms, the convergences are metonymy and application of the semantically-contrary-word-euphemism, whilst the difference is Chinese euphemism using allusion but Vietnamese euphemism does not.

Keywords: cultural factors, euphemism, human needs, language factors

Procedia PDF Downloads 300
308 Time-Domain Analysis Approaches of Soil-Structure Interaction: A Comparative Study

Authors: Abdelrahman Taha, Niloofar Malekghaini, Hamed Ebrahimian, Ramin Motamed

Abstract:

This paper compares the substructure and direct methods for soil-structure interaction (SSI) analysis in the time domain. In the substructure SSI method, the soil domain is replaced by a set of springs and dashpots, also referred to as the impedance function, derived through the study of the behavior of a massless rigid foundation. The impedance function is inherently frequency dependent, i.e., it varies as a function of the frequency content of the structural response. To use the frequency-dependent impedance function for time-domain SSI analysis, the impedance function is approximated at the fundamental frequency of the structure-soil system. To explore the potential limitations of the substructure modeling process, a two-dimensional reinforced concrete frame structure is modeled using substructure and direct methods in this study. The results show discrepancies between the simulated responses of the substructure and the direct approaches. To isolate the effects of higher modal responses, the same study is repeated using a harmonic input motion, in which a similar discrepancy is still observed between the substructure and direct approaches. It is concluded that the main source of discrepancy between the substructure and direct SSI approaches is likely attributed to the way the impedance functions are calculated, i.e., assuming a massless rigid foundation without considering the presence of the superstructure. Hence, a refined impedance function, considering the presence of the superstructure, shall be developed. This refined impedance function is expected to significantly improve the simulation accuracy of the substructure approach for structural systems whose behavior is dominated by the fundamental mode response.

Keywords: direct approach, impedance function, soil-structure interaction, substructure approach

Procedia PDF Downloads 116
307 Analysis of Seismic Waves Generated by Blasting Operations and their Response on Buildings

Authors: S. Ziaran, M. Musil, M. Cekan, O. Chlebo

Abstract:

The paper analyzes the response of buildings and industrially structures on seismic waves (low frequency mechanical vibration) generated by blasting operations. The principles of seismic analysis can be applied for different kinds of excitation such as: earthquakes, wind, explosions, random excitation from local transportation, periodic excitation from large rotating and/or machines with reciprocating motion, metal forming processes such as forging, shearing and stamping, chemical reactions, construction and earth moving work, and other strong deterministic and random energy sources caused by human activities. The article deals with the response of seismic, low frequency, mechanical vibrations generated by nearby blasting operations on a residential home. The goal was to determine the fundamental natural frequencies of the measured structure; therefore it is important to determine the resonant frequencies to design a suitable modal damping. The article also analyzes the package of seismic waves generated by blasting (Primary waves – P-waves and Secondary waves S-waves) and investigated the transfer regions. For the detection of seismic waves resulting from an explosion, the Fast Fourier Transform (FFT) and modal analysis, in the frequency domain, is used and the signal was acquired and analyzed also in the time domain. In the conclusions the measured results of seismic waves caused by blasting in a nearby quarry and its effect on a nearby structure (house) is analyzed. The response on the house, including the fundamental natural frequency and possible fatigue damage is also assessed.

Keywords: building structure, seismic waves, spectral analysis, structural response

Procedia PDF Downloads 400
306 Theoretical Analysis of the Existing Sheet Thickness in the Calendering of Pseudoplastic Material

Authors: Muhammad Zahid

Abstract:

The mechanical process of smoothing and compressing a molten material by passing it through a number of pairs of heated rolls in order to produce a sheet of desired thickness is called calendering. The rolls that are in combination are called calenders, a term derived from kylindros the Greek word for the cylinder. It infects the finishing process used on cloth, paper, textiles, leather cloth, or plastic film and so on. It is a mechanism which is used to strengthen surface properties, minimize sheet thickness, and yield special effects such as a glaze or polish. It has a wide variety of applications in industries in the manufacturing of textile fabrics, coated fabrics, and plastic sheeting to provide the desired surface finish and texture. An analysis has been presented for the calendering of Pseudoplastic material. The lubrication approximation theory (LAT) has been used to simplify the equations of motion. For the investigation of the nature of the steady solutions that exist, we make use of the combination of exact solution and numerical methods. The expressions for the velocity profile, rate of volumetric flow and pressure gradient are found in the form of exact solutions. Furthermore, the quantities of interest by engineering point of view, such as pressure distribution, roll-separating force, and power transmitted to the fluid by the rolls are also computed. Some results are shown graphically while others are given in the tabulated form. It is found that the non-Newtonian parameter and Reynolds number serve as the controlling parameters for the calendering process.

Keywords: calendering, exact solutions, lubrication approximation theory, numerical solutions, pseudoplastic material

Procedia PDF Downloads 148
305 Design and Evaluation of Corrective Orthosis Knee for Hyperextension

Authors: Valentina Narvaez Gaitan, Paula K. Rodriguez Ramirez, Derian D. Espinosa

Abstract:

Corrective orthosis has great importance in orthopedic treatments providing assistance in improving mobility and stability in order to improve the quality of life for a different patient. The corrective orthosis studied in this article can correct deformities, reduce pain, and improve the ability to perform daily activities. This work describes the design and evaluation of a corrective orthosis for knee hyperextension. This orthosis is capable of generating a progressive and variable alignment of the joint, limiting the range of motion according to medical criteria. The main objective was to design a corrective knee orthosis capable of correcting knee hyperextension progressively to return to its natural angle with greater economic affordability and adjustable size. The limiting mechanism is based on a goniometer to determine the desired angles. The orthosis was made of acrylic to reduce costs and maintenance; neoprene is also used to make comfortable contact; additionally, Velcro was used in order to adjust the orthosis for various sizes. Simulations of static and fatigue analysis of the mechanism were performed to verify its resistance and durability under normal conditions. A biomechanical gait study of gait was carried out on 10 healthy subjects without the orthosis and limiting their knee extension capacity in a normal gait cycle with the orthosis to observe the efficiency of the proposed system. In the results obtained, the knee angle curves show that the maximum extension angle was the established angle by the orthosis. Showing the efficiency of the proposed design for different leg sizes.

Keywords: biomechanical study, corrective orthosis, efficiency, goniometer, knee hyperextension.

Procedia PDF Downloads 80
304 Design and Implementation of Control System in Underwater Glider of Ganeshblue

Authors: Imam Taufiqurrahman, Anugrah Adiwilaga, Egi Hidayat, Bambang Riyanto Trilaksono

Abstract:

Autonomous Underwater Vehicle glider is one of the renewal of underwater vehicles. This vehicle is one of the autonomous underwater vehicles that are being developed in Indonesia. Glide ability is obtained by controlling the buoyancy and attitude of the vehicle using the movers within the vehicle. The glider motion mechanism is expected to provide energy resistance from autonomous underwater vehicles so as to increase the cruising range of rides while performing missions. The control system on the vehicle consists of three parts: controlling the attitude of the pitch, the buoyancy engine controller and the yaw controller. The buoyancy and pitch controls on the vehicle are sequentially referring to the finite state machine with pitch angle and depth of diving inputs to obtain a gliding cycle. While the yaw control is done through the rudder for the needs of the guide system. This research is focused on design and implementation of control system of Autonomous Underwater Vehicle glider based on PID anti-windup. The control system is implemented on an ARM TS-7250-V2 device along with a mathematical model of the vehicle in MATLAB using the hardware-in-the-loop simulation (HILS) method. The TS-7250-V2 is chosen because it complies industry standards, has high computing capability, minimal power consumption. The results show that the control system in HILS process can form glide cycle with depth and angle of operation as desired. In the implementation using half control and full control mode, from the experiment can be concluded in full control mode more precision when tracking the reference. While half control mode is considered more efficient in carrying out the mission.

Keywords: control system, PID, underwater glider, marine robotics

Procedia PDF Downloads 374
303 Design and Analysis of a Piezoelectric Linear Motor Based on Rigid Clamping

Authors: Chao Yi, Cunyue Lu, Lingwei Quan

Abstract:

Piezoelectric linear motors have the characteristics of great electromagnetic compatibility, high positioning accuracy, compact structure and no deceleration mechanism, which make it promising to applicate in micro-miniature precision drive systems. However, most piezoelectric motors are employed by flexible clamping, which has insufficient rigidity and is difficult to use in rapid positioning. Another problem is that this clamping method seriously affects the vibration efficiency of the vibrating unit. In order to solve these problems, this paper proposes a piezoelectric stack linear motor based on double-end rigid clamping. First, a piezoelectric linear motor with a length of only 35.5 mm is designed. This motor is mainly composed of a motor stator, a driving foot, a ceramic friction strip, a linear guide, a pre-tightening mechanism and a base. This structure is much simpler and smaller than most similar motors, and it is easy to assemble as well as to realize precise control. In addition, the properties of piezoelectric stack are reviewed and in order to obtain the elliptic motion trajectory of the driving head, a driving scheme of the longitudinal-shear composite stack is innovatively proposed. Finally, impedance analysis and speed performance testing were performed on the piezoelectric linear motor prototype. The motor can measure speed up to 25.5 mm/s under the excitation of signal voltage of 120 V and frequency of 390 Hz. The result shows that the proposed piezoelectric stacked linear motor obtains great performance. It can run smoothly in a large speed range, which is suitable for various precision control in medical images, aerospace, precision machinery and many other fields.

Keywords: piezoelectric stack, linear motor, rigid clamping, elliptical trajectory

Procedia PDF Downloads 153
302 Effectiveness of Myofascial Release Technique in Treatment of Sacroiliac Joint Hypo-Mobility in Postnatal Women

Authors: Ahmed A. Abd El Rahim, Mohamed M. M. Essa, Magdy M. A. Shabana, Said A. Mohamed, Mohamed Ibrahim Mabrouk

Abstract:

Background: Sacroiliac joint (SIJ) dysfunction is considered the main cause of pregnancy-related back pain, which may continue to persist postnatally. Myofascial release technique (MFR) is an application of low-intensity, prolonged stretch to myofascial structures to improve function by increasing the sliding properties of restricted myofascial tissues. Purpose: This study was designed to investigate the effect of MFR on postnatal SIJ hypo-mobility. Materials and Methods: Fifty postnatal women complaining of SIJ hypo-mobility participated in this study. Their ages ranged from 26 to 35 yrs., and their body mass index (BMI) didn`t exceed 30 kg/m2. They were randomly assigned to two equal groups, group A (Gr. A) and group B (Gr. B). Both groups received three sessions per week for eight successive weeks. Gr. A received a traditional physical therapy program, while Gr. B received a traditional physical therapy program in addition to MFR. Doppler imaging of vibration was utilized to measure SIJ mobility pre- and post-intervention, and an electronic digital goniometer was used to measure back flexion and extension Range of motion. Results: Findings revealed a statistical improvement in post-intervention values of SIJ mobility in addition to trunk flexion and extension ROM in Gr. B compared to Gr. A (P<0.001). Conclusion: Adding MFR to traditional physical therapy programs is highly recommended in the treatment of SIJ hypo-mobility in postnatal women.

Keywords: sacroiliac hypo-mobility, sacroiliac dysfunction, myofascial release technique, traditional physical therapy, postnatal

Procedia PDF Downloads 101
301 A Review of Kinematics and Joint Load Forces in Total Knee Replacements Influencing Surgical Outcomes

Authors: Samira K. Al-Nasser, Siamak Noroozi, Roya Haratian, Adrian Harvey

Abstract:

A total knee replacement (TKR) is a surgical procedure necessary when there is severe pain and/or loss of function in the knee. Surgeons balance the load in the knee and the surrounding soft tissue by feeling the tension at different ranges of motion. This method can be unreliable and lead to early failure of the joint. The ideal kinematics and load distribution have been debated significantly based on previous biomechanical studies surrounding both TKRs and normal knees. Intraoperative sensors like VERASENSE and eLibra have provided a method for the quantification of the load indicating a balanced knee. A review of the literature written about intraoperative sensors and tension/stability of the knee was done. Studies currently debate the quantification of the load in medial and lateral compartments specifically. However, most research reported that following a TKR the medial compartment was loaded more heavily than the lateral compartment. In several cases, these results were shown to increase the success of the surgery because they mimic the normal kinematics of the knee. In conclusion, most research agrees that an intercompartmental load differential of between 10 and 20 pounds, where the medial load was higher than the lateral, and an absolute load of less than 70 pounds was ideal. However, further intraoperative sensor development could help improve the accuracy and understanding of the load distribution on the surgical outcomes in a TKR. A reduction in early revision surgeries for TKRs would provide an improved quality of life for patients and reduce the economic burden placed on both the National Health Service (NHS) and the patient.

Keywords: intraoperative sensors, joint load forces, kinematics, load balancing, and total knee replacement

Procedia PDF Downloads 136
300 Finite Element Analysis of the Lumbar Spine after Unilateral and Bilateral Laminotomies and Laminectomy

Authors: Chih-Hsien Chen, Yi-Hung Ho, Chih-Wei Wang, Chih-Wei Chang, Yen-Nien Chen, Chih-Han Chang, Chun-Ting Li

Abstract:

Laminotomy is a spinal decompression surgery compatible with a minimally invasive approach. However, the unilateral laminotomy for bilateral side decompression leads to more perioperative complications than the bilateral laminotomy. Although the unilateral laminotomy removes the least bone tissue among the spinal decompression surgeries, the difference of spinal stability between unilateral and bilateral laminotomy and laminectomy is rarely investigated. This study aims to compare the biomechanical effects of unilateral and bilateral laminotomy and laminectomy on the lumbar spine by finite element (FE) simulation. A three-dimensional FE model of the lumbar spine (L1–L5) was constructed with the vertebral body, discs, and ligaments, as well as the sacrum was constructed. Three different surgical methods, namely unilateral laminotomy, bilateral laminotomy and laminectomy, at L3–L4 and L4–L5 were considered. Partial pedicle and entire ligamentum flavum were removed to simulate bilateral decompression in laminotomy. The entire lamina and spinal processes from the lower L3 to upper L5 were detached in the laminectomy model. Then, four kinds of loadings, namely flexion, extension, lateral bending and rotation, were applied on the lumbar with various decompression conditions. The results indicated that the bilateral and unilateral laminotomy both increased the range of motion (ROM) compared with intact lumbar, while the laminectomy increased more ROM than both laminotomy did. The difference of ROM between the bilateral and unilateral laminotomy was very minor. Furthermore, bilateral laminotomy demonstrated similar poster element stress with unilateral laminotomy. Unilateral and bilateral laminotomy are equally suggested to bilateral decompression of lumbar spine with minimally invasive technique because limited effect was aroused due to more bone remove in the bilateral laminotomy on the lumbar stability. Furthermore, laminectomy is the last option for lumbar decompression.

Keywords: minimally invasive technique, lumbar decompression, laminotomy, laminectomy, finite element method

Procedia PDF Downloads 185