Search results for: monitoring tool
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7612

Search results for: monitoring tool

6622 Glucose Monitoring System Using Machine Learning Algorithms

Authors: Sangeeta Palekar, Neeraj Rangwani, Akash Poddar, Jayu Kalambe

Abstract:

The bio-medical analysis is an indispensable procedure for identifying health-related diseases like diabetes. Monitoring the glucose level in our body regularly helps us identify hyperglycemia and hypoglycemia, which can cause severe medical problems like nerve damage or kidney diseases. This paper presents a method for predicting the glucose concentration in blood samples using image processing and machine learning algorithms. The glucose solution is prepared by the glucose oxidase (GOD) and peroxidase (POD) method. An experimental database is generated based on the colorimetric technique. The image of the glucose solution is captured by the raspberry pi camera and analyzed using image processing by extracting the RGB, HSV, LUX color space values. Regression algorithms like multiple linear regression, decision tree, RandomForest, and XGBoost were used to predict the unknown glucose concentration. The multiple linear regression algorithm predicts the results with 97% accuracy. The image processing and machine learning-based approach reduce the hardware complexities of existing platforms.

Keywords: artificial intelligence glucose detection, glucose oxidase, peroxidase, image processing, machine learning

Procedia PDF Downloads 181
6621 Comparative Performance of Standing Whole Body Monitor and Shielded Chair Counter for In-vivo Measurements

Authors: M. Manohari, S. Priyadharshini, K. Bajeer Sulthan, R. Santhanam, S. Chandrasekaran, B. Venkatraman

Abstract:

In-vivo monitoring facility at Indira Gandhi Centre for Atomic Research (IGCAR), Kalpakkam, caters to the monitoring of internal exposure of occupational radiation workers from various radioactive facilities of IGCAR. Internal exposure measurement is done using Na(Tl) based Scintillation detectors. Two types of whole-body counters, namely Shielded Chair Counter (SC) and Standing Whole-Body Monitor (SWBM), are being used. The shielded Chair is based on a NaI detector of 20.3 cm diameter and 10.15 cm thick. The chair of the system is shielded using lead shots of 10 cm lead equivalent and the detector with 8 cm lead bricks. Counting geometry is sitting geometry. Calibration is done using 95 percentile BOMAB phantom. The minimum Detectable Activity (MDA) for 137Cs for the 60s is 1150 Bq. Standing Wholebody monitor (SWBM) has two NaI(Tl) detectors of size 10.16 x 10.16 x 40.64 cm3 positioned serially, one over the other. It has a shielding thickness of 5cm lead equivalent. Counting is done in standup geometry. Calibration is done with the help of Ortec Phantom, having a uniform distribution of mixed radionuclides for the thyroid, thorax and pelvis. The efficiency of SWBM is 2.4 to 3.5 times higher than that of the shielded chair in the energy range of 279 to 1332 keV. MDA of 250 Bq for 137Cs can be achieved with a counting time of 60s. MDA for 131I in the thyroid was estimated as 100 Bq from the MDA of whole-body for one-day post intake. Standing whole body monitor is better in terms of efficiency, MDA and ease of positioning. In case of emergency situations, the optimal MDAs for in-vivo monitoring service are 1000 Bq for 137Cs and 100 Bq for 131I. Hence, SWBM is more suitable for the rapid screening of workers as well as the public in the case of an emergency. While a person reports for counting, there is a potential for external contamination. In SWBM, there is a feasibility to discriminate them as the subject can be counted in anterior or posterior geometry which is not possible in SC.

Keywords: minimum detectable activity, shielded chair, shielding thickness, standing whole body monitor

Procedia PDF Downloads 29
6620 Character and Evolution of Electronic Waste: A Technologically Developing Country's Experience

Authors: Karen C. Olufokunbi, Odetunji A. Odejobi

Abstract:

The discourse of this paper is the examination of the generation, accumulation and growth of e-waste in a developing country. Images and other data about computer e-waste were collected using a digital camera, 290 copies of questionnaire and three structured interviews using Obafemi Awolowo University (OAU), Ile-Ife, Nigeria environment as a case study. The numerical data were analysed using R data analysis and process tool. Automata-based techniques and Petri net modeling tool were used to design and simulate a computational model for the recovery of saleable materials from e-waste. The R analysis showed that at a 95 percent confidence level, the computer equipment that will be disposed by 2020 will be 417 units. Compared to the 800 units in circulation in 2014, 50 percent of personal computer components will become e-waste. This indicates that personal computer components were in high demand due to their low costs and will be disposed more rapidly when replaced by new computer equipment Also, 57 percent of the respondents discarded their computer e-waste by throwing it into the garbage bin or by dumping it. The simulated model using Coloured Petri net modelling tool for the process showed that the e-waste dynamics is a forward sequential process in the form of a pipeline meaning that an e-waste recovery of saleable materials process occurs in identifiable discrete stages indicating that e-waste will continue to accumulate and grow in volume with time.

Keywords: Coloured Petri net, computational modelling, electronic waste, electronic waste process dynamics

Procedia PDF Downloads 151
6619 Experimental Parameters’ Effects on the Electrical Discharge Machining Performances

Authors: Asmae Tafraouti, Yasmina Layouni, Pascal Kleimann

Abstract:

The growing market for Microsystems (MST) and Micro-Electromechanical Systems (MEMS) is driving the research for alternative manufacturing techniques to microelectronics-based technologies, which are generally expensive and time-consuming. Hot-embossing and micro-injection modeling of thermoplastics appear to be industrially viable processes. However, both require the use of master models, usually made in hard materials such as steel. These master models cannot be fabricated using standard microelectronics processes. Thus, other micromachining processes are used, such as laser machining or micro-electrical discharge machining (µEDM). In this work, µEDM has been used. The principle of µEDM is based on the use of a thin cylindrical micro-tool that erodes the workpiece surface. The two electrodes are immersed in a dielectric with a distance of a few micrometers (gap). When an electrical voltage is applied between the two electrodes, electrical discharges are generated, which cause material machining. In order to produce master models with high resolution and smooth surfaces, it is necessary to well control the discharge mechanism. However, several problems are encountered, such as a random electrical discharge process, the fluctuation of the discharge energy, the electrodes' polarity inversion, and the wear of the micro-tool. The effect of different parameters, such as the applied voltage, the working capacitor, the micro-tool diameter, and the initial gap, has been studied. This analysis helps to improve the machining performances, such as the workpiece surface condition and the lateral crater's gap.

Keywords: craters, electrical discharges, micro-electrical discharge machining, microsystems

Procedia PDF Downloads 57
6618 3D Finite Element Analysis for Mechanics of Soil-Tool Interaction

Authors: A. Armin, R. Fotouhi, W. Szyszkowski

Abstract:

This paper is part of a study to develop robots for farming. As such power requirement to operate equipment attach to such robots become an important factor. Soil-tool interaction play major role in power consumption, thus predicting accurately the forces which act on the blade during the farming is prime importance for optimal designing of farm equipment. In this paper a finite element investigation for tillage tools and soil interaction is described by using an inelastic constitutive material law for agriculture application. A 3-dimentional (3D) nonlinear finite element analysis (FEA) is developed to examine behavior of a blade with different rake angles moving in a block of soil, and to estimate the blade force. The soil model considered is an elastic-plastic with non-associated Drucker-Prager material model. Special use of contact elements are employed to consider connection between soil-blade and soil-soil surfaces. The FEA results are compared with experiment ones, which show good agreement in accurately predicting draft forces developed on the blade when it moves through the soil. Also, a very good correlation was obtained between FEA results and analytical results from classical soil mechanics theories for straight blades. These comparisons verified the FEA model developed. For analyzing complicated soil-tool interactions and for optimum design of blades, this method will be useful.

Keywords: finite element analysis, soil-blade contact modeling, blade force, mechanical engineering

Procedia PDF Downloads 280
6617 Pure Economic Loss: A Trouble Child

Authors: Isabel Mousinho de Figueiredo

Abstract:

Pure economic loss can be brought into the 21st century and become a useful tool to keep the tort of negligence within reasonable limits, provided the concept is minutely reexamined. The term came about when wealth was physical, and Law wanted to be a modern science. As a tool to draw the line, it leads to satisfactory decisions in most cases, but needlessly creates distressing conundrums in others, and these are the ones parties bother to litigate about. Economic loss is deemed to be pure based on a blind negative criterion of physical harm, that inadvertently smelts vastly disparate problems into an indiscernible mass, with arbitrary outcomes. These shortcomings are usually dismissed as minor byproducts, for the lack of a better formula. Law could instead stick to the sound paradigms of the intended rule, and be more specific in identifying the losses deserving of compensation. This would provide a better service to Bench and Bar, and effectively assist everyone navigating the many challenges of Accident Law.

Keywords: accident law, comparative tort law, negligence, pure economic loss

Procedia PDF Downloads 102
6616 An Experimental Study on the Effect of Operating Parameters during the Micro-Electro-Discharge Machining of Ni Based Alloy

Authors: Asma Perveen, M. P. Jahan

Abstract:

Ni alloys have managed to cover wide range of applications such as automotive industries, oil gas industries, and aerospace industries. However, these alloys impose challenges while using conventional machining technologies. On the other hand, Micro-Electro-Discharge machining (micro-EDM) is a non-conventional machining method that uses controlled sparks energy to remove material irrespective of the materials hardness. There has been always a huge interest from the industries for developing optimum methodology and parameters in order to enhance the productivity of micro-EDM in terms of reducing machining time and tool wear for different alloys. Therefore, the aims of this study are to investigate the effects of the micro-EDM process parameters, in order to find their optimal values. The input process parameters include voltage, capacitance, and electrode rotational speed, whereas the output parameters considered are machining time, entrance diameter of hole, overcut, tool wear, and crater size. The surface morphology and element characterization are also investigated with the use of SEM and EDX analysis. The experimental result indicates the reduction of machining time with the increment of discharge energy. Discharge energy also contributes to the enlargement of entrance diameter as well as overcut. In addition, tool wears show reduction with the increase of discharge energy. Moreover, crater size is found to be increased in size along with the increment of discharge energy.

Keywords: micro holes, micro EDM, Ni Alloy, discharge energy

Procedia PDF Downloads 262
6615 Harmonics and Flicker Levels at Substation

Authors: Ali Borhani Manesh, Sirus Mohammadi

Abstract:

Harmonic distortion is caused by nonlinear devices in the power system. A nonlinear device is one in which the current is not proportional to the applied voltage. Harmonic distortion is present to some degree on all power systems. Proactive monitoring of power quality disturbance levels by electricity utilities is vital to allow cost-effective mitigation when disturbances are perceived to be approaching planning levels and also to protect the security of customer installations. Ensuring that disturbance levels are within limits at the HV and EHV points of supply of the network is essential if satisfactory levels downstream are to be maintained. This paper presents discussion on a power quality monitoring campaign performed at the sub-transmission point of supply of a distribution network with the objective of benchmarking background disturbance levels prior to modifications to the substation and to ensure emissions from HV customers and the downstream MV networks are within acceptable levels. Some discussion on the difficulties involved in such a study is presented. This paper presents a survey of voltage and current harmonic distortion levels at transmission system in Kohgiloye and Boyrahmad. The effects of harmonics on capacitors and power transformers are discussed.

Keywords: power quality, harmonics, flicker, measurement, substation

Procedia PDF Downloads 680
6614 A Decision-Support Tool for Humanitarian Distribution Planners in the Face of Congestion at Security Checkpoints: A Real-World Case Study

Authors: Mohanad Rezeq, Tarik Aouam, Frederik Gailly

Abstract:

In times of armed conflicts, various security checkpoints are placed by authorities to control the flow of merchandise into and within areas of conflict. The flow of humanitarian trucks that is added to the regular flow of commercial trucks, together with the complex security procedures, creates congestion and long waiting times at the security checkpoints. This causes distribution costs to increase and shortages of relief aid to the affected people to occur. Our research proposes a decision-support tool to assist planners and policymakers in building efficient plans for the distribution of relief aid, taking into account congestion at security checkpoints. The proposed tool is built around a multi-item humanitarian distribution planning model based on multi-phase design science methodology that has as its objective to minimize distribution and back ordering costs subject to capacity constraints that reflect congestion effects using nonlinear clearing functions. Using the 2014 Gaza War as a case study, we illustrate the application of the proposed tool, model the underlying relief-aid humanitarian supply chain, estimate clearing functions at different security checkpoints, and conduct computational experiments. The decision support tool generated a shipment plan that was compared to two benchmarks in terms of total distribution cost, average lead time and work in progress (WIP) at security checkpoints, and average inventory and backorders at distribution centers. The first benchmark is the shipment plan generated by the fixed capacity model, and the second is the actual shipment plan implemented by the planners during the armed conflict. According to our findings, modeling and optimizing supply chain flows reduce total distribution costs, average truck wait times at security checkpoints, and average backorders when compared to the executed plan and the fixed-capacity model. Finally, scenario analysis concludes that increasing capacity at security checkpoints can lower total operations costs by reducing the average lead time.

Keywords: humanitarian distribution planning, relief-aid distribution, congestion, clearing functions

Procedia PDF Downloads 67
6613 Antenatal Monitoring of Pre-Eclampsia in a Low Resource Setting

Authors: Alina Rahim, Joanne Moffatt, Jessica Taylor, Joseph Hartland, Tamer Abdelrazik

Abstract:

Background: In 2011, 15% of maternal deaths in Uganda were due to hypertensive disorders (pre-eclampsia and eclampsia). The majority of these deaths are avoidable with optimum antenatal care. The aim of the study was to evaluate how antenatal monitoring of pre-eclampsia was carried out in a low resource setting and to identify barriers to best practice as recommended by the World Health Organisation (WHO) as part of a 4th year medical student External Student Selected component field trip. Method: Women admitted to hospital with pre-eclampsia in rural Uganda (Villa Maria and Kitovu Hospitals) over a year-long period were identified using the maternity register and antenatal record book. It was not possible to obtain notes for all cases identified on the maternity register. Therefore a total of thirty sets of notes were reviewed. The management was recorded and compared to Ugandan National Guidelines and WHO recommendations. Additional qualitative information on routine practice was established by interviewing staff members from the obstetric and midwifery teams. Results: From the records available, all patients in this sample were managed according to WHO recommendations during labour. The rate of Caesarean section as a mode of delivery was noted to be high in this group of patients; 56% at Villa Maria and 46% at Kitovu. Antenatally two WHO recommendations were not routinely met: aspirin prophylaxis and calcium supplementation. This was due to lack of resources, and lack of attendance at antenatal clinic leading to poor detection of high-risk patients. Medical management of pre-eclampsia varied between individual patients, overall 93.3% complied with Ugandan national guidelines. Two patients were treated with diuretics, which is against WHO guidance. Discussion: Antenatal monitoring of pre-eclampsia is important in reducing severe morbidity, long-term disability and mortality amongst mothers and their babies 2 . Poor attendance at antenatal clinic is a barrier to healthcare in low-income countries. Increasing awareness of the importance of these visits for women should be encouraged. The majority of cases reviewed in this sample of women were treated according to Ugandan National Guidelines. It is recommended to commence the use of aspirin prophylaxis for women at high-risk of developing pre-eclampsia and the creation of detailed guidelines for Uganda which would allow for standardisation of care county-wide.

Keywords: antenatal monitoring, low resource setting, pre-eclampsia, Uganda

Procedia PDF Downloads 215
6612 The Methodology of System Modeling of Mechatronic Systems

Authors: Lakhoua Najeh

Abstract:

Aims of the work: After a presentation of the functionality of an example of a mechatronic system which is a paint mixer system, we present the concepts of modeling and safe operation. This paper briefly discusses how to model and protect the functioning of a mechatronic system relying mainly on functional analysis and safe operation techniques. Methods: For the study of an example of a mechatronic system, we use methods for external functional analysis that illustrate the relationships between a mechatronic system and its external environment. Thus, we present the Safe-Structured Analysis Design Technique method (Safe-SADT) which allows the representation of a mechatronic system. A model of operating safety and automation is proposed. This model enables us to use a functional analysis technique of the mechatronic system based on the GRAFCET (Graphe Fonctionnel de Commande des Etapes et Transitions: Step Transition Function Chart) method; study of the safe operation of the mechatronic system based on the Safe-SADT method; automation of the mechatronic system based on a software tool. Results: The expected results are to propose a model and safe operation of a mechatronic system. This methodology enables us to analyze the relevance of the different models based on Safe-SADT and GRAFCET in relation to the control and monitoring functions and to study the means allowing exploiting their synergy. Conclusion: In order to propose a general model of a mechatronic system, a model of analysis, safety operation and automation of a mechatronic system has been developed. This is how we propose to validate this methodology through a case study of a paint mixer system.

Keywords: mechatronic systems, system modeling, safe operation, Safe-SADT

Procedia PDF Downloads 219
6611 Sentinel-2 Based Burn Area Severity Assessment Tool in Google Earth Engine

Authors: D. Madhushanka, Y. Liu, H. C. Fernando

Abstract:

Fires are one of the foremost factors of land surface disturbance in diverse ecosystems, causing soil erosion and land-cover changes and atmospheric effects affecting people's lives and properties. Generally, the severity of the fire is calculated as the Normalized Burn Ratio (NBR) index. This is performed manually by comparing two images obtained afterward. Then by using the bitemporal difference of the preprocessed satellite images, the dNBR is calculated. The burnt area is then classified as either unburnt (dNBR<0.1) or burnt (dNBR>= 0.1). Furthermore, Wildfire Severity Assessment (WSA) classifies burnt areas and unburnt areas using classification levels proposed by USGS and comprises seven classes. This procedure generates a burn severity report for the area chosen by the user manually. This study is carried out with the objective of producing an automated tool for the above-mentioned process, namely the World Wildfire Severity Assessment Tool (WWSAT). It is implemented in Google Earth Engine (GEE), which is a free cloud-computing platform for satellite data processing, with several data catalogs at different resolutions (notably Landsat, Sentinel-2, and MODIS) and planetary-scale analysis capabilities. Sentinel-2 MSI is chosen to obtain regular processes related to burnt area severity mapping using a medium spatial resolution sensor (15m). This tool uses machine learning classification techniques to identify burnt areas using NBR and to classify their severity over the user-selected extent and period automatically. Cloud coverage is one of the biggest concerns when fire severity mapping is performed. In WWSAT based on GEE, we present a fully automatic workflow to aggregate cloud-free Sentinel-2 images for both pre-fire and post-fire image compositing. The parallel processing capabilities and preloaded geospatial datasets of GEE facilitated the production of this tool. This tool consists of a Graphical User Interface (GUI) to make it user-friendly. The advantage of this tool is the ability to obtain burn area severity over a large extent and more extended temporal periods. Two case studies were carried out to demonstrate the performance of this tool. The Blue Mountain national park forest affected by the Australian fire season between 2019 and 2020 is used to describe the workflow of the WWSAT. This site detected more than 7809 km2, using Sentinel-2 data, giving an error below 6.5% when compared with the area detected on the field. Furthermore, 86.77% of the detected area was recognized as fully burnt out, of which high severity (17.29%), moderate-high severity (19.63%), moderate-low severity (22.35%), and low severity (27.51%). The Arapaho and Roosevelt National Forest Park, California, the USA, which is affected by the Cameron peak fire in 2020, is chosen for the second case study. It was found that around 983 km2 had burned out, of which high severity (2.73%), moderate-high severity (1.57%), moderate-low severity (1.18%), and low severity (5.45%). These spots also can be detected through the visual inspection made possible by cloud-free images generated by WWSAT. This tool is cost-effective in calculating the burnt area since satellite images are free and the cost of field surveys is avoided.

Keywords: burnt area, burnt severity, fires, google earth engine (GEE), sentinel-2

Procedia PDF Downloads 211
6610 Cultural Adaptation of an Appropriate Intervention Tool for Mental Health among the Mohawk in Quebec

Authors: Liliana Gomez Cardona, Mary McComber, Kristyn Brown, Arlene Laliberté, Outi Linnaranta

Abstract:

The history of colonialism and more contemporary political issues have resulted in the exposure of Kanien'kehá:ka: non (Kanien'kehá:ka of Kahnawake) to challenging and even traumatic experiences. Colonization, religious missions, residential schools as well as economic and political marginalization are the factors that have challenged the wellbeing and mental health of these populations. In psychiatry, screening for mental illness is often done using questionnaires with which the patient is expected to respond to how often he/she has certain symptoms. However, the Indigenous view of mental wellbeing may not fit well with this approach. Moreover, biomedical treatments do not always meet the needs of Indigenous people because they do not understand the culture and traditional healing methods that persist in many communities. Assess whether the questionnaires used to measure symptoms, commonly used in psychiatry are appropriate and culturally safe for the Mohawk in Quebec. Identify the most appropriate tool to assess and promote wellbeing and follow the process necessary to improve its cultural sensitivity and safety for the Mohawk population. Qualitative, collaborative, and participatory action research project which respects First Nations protocols and the principles of ownership, control, access, and possession (OCAP). Data collection based on five focus groups with stakeholders working with these populations and members of Indigenous communities. Thematic analysis of the data collected and emerging through an advisory group that led a revision of the content, use, and cultural and conceptual relevance of the instruments. The questionnaires measuring psychiatric symptoms face significant limitations in the local indigenous context. We present the factors that make these tools not relevant among Mohawks. Although the scale called Growth and Empowerment Measure (GEM) was originally developed among Indigenous in Australia, the Mohawk in Quebec found that this tool comprehends critical aspects of their mental health and wellbeing more respectfully and accurately than questionnaires focused on measuring symptoms. We document the process of cultural adaptation of this tool which was supported by community members to create a culturally safe tool that helps in growth and empowerment. The cultural adaptation of the GEM provides valuable information about the factors affecting wellbeing and contributes to mental health promotion. This process improves mental health services by giving health care providers useful information about the Mohawk population and their clients. We believe that integrating this tool in interventions can help create a bridge to improve communication between the Indigenous cultural perspective of the patient and the biomedical view of health care providers. Further work is needed to confirm the clinical utility of this tool in psychological and psychiatric intervention along with social and community services.

Keywords: cultural adaptation, cultural safety, empowerment, Mohawks, mental health, Quebec

Procedia PDF Downloads 129
6609 Off-Line Detection of "Pannon Wheat" Milling Fractions by Near-Infrared Spectroscopic Methods

Authors: E. Izsó, M. Bartalné-Berceli, Sz. Gergely, A. Salgó

Abstract:

The aims of this investigation is to elaborate near-infrared methods for testing and recognition of chemical components and quality in “Pannon wheat” allied (i.e. true to variety or variety identified) milling fractions as well as to develop spectroscopic methods following the milling processes and evaluate the stability of the milling technology by different types of milling products and according to sampling times, respectively. This wheat categories produced under industrial conditions where samples were collected versus sampling time and maximum or minimum yields. The changes of the main chemical components (such as starch, protein, lipid) and physical properties of fractions (particle size) were analysed by dispersive spectrophotometers using visible (VIS) and near-infrared (NIR) regions of the electromagnetic radiation. Close correlation were obtained between the data of spectroscopic measurement techniques processed by various chemometric methods (e.g. principal component analysis (PCA), cluster analysis (CA) and operation condition of milling technology. Its obvious that NIR methods are able to detect the deviation of the yield parameters and differences of the sampling times by a wide variety of fractions, respectively. NIR technology can be used in the sensitive monitoring of milling technology.

Keywords: near infrared spectroscopy, wheat categories, milling process, monitoring

Procedia PDF Downloads 394
6608 A Text Classification Approach Based on Natural Language Processing and Machine Learning Techniques

Authors: Rim Messaoudi, Nogaye-Gueye Gning, François Azelart

Abstract:

Automatic text classification applies mostly natural language processing (NLP) and other AI-guided techniques to automatically classify text in a faster and more accurate manner. This paper discusses the subject of using predictive maintenance to manage incident tickets inside the sociality. It focuses on proposing a tool that treats and analyses comments and notes written by administrators after resolving an incident ticket. The goal here is to increase the quality of these comments. Additionally, this tool is based on NLP and machine learning techniques to realize the textual analytics of the extracted data. This approach was tested using real data taken from the French National Railways (SNCF) company and was given a high-quality result.

Keywords: machine learning, text classification, NLP techniques, semantic representation

Procedia PDF Downloads 78
6607 Experimental Field for the Study of Soil-Atmosphere Interaction in Soft Soils

Authors: Andres Mejia-Ortiz, Catalina Lozada, German R. Santos, Rafael Angulo-Jaramillo, Bernardo Caicedo

Abstract:

The interaction between atmospheric variables and soil properties is a determining factor when evaluating the flow of water through the soil. This interaction situation directly determines the behavior of the soil and greatly influences the changes that occur in it. The atmospheric variations such as changes in the relative humidity, air temperature, wind velocity and precipitation, are the external variables that reflect a greater incidence in the changes that are generated in the subsoil, as a consequence of the water flow in descending and ascending conditions. These environmental variations have a major importance in the study of the soil because the conditions of humidity and temperature in the soil surface depend on them. In addition, these variations control the thickness of the unsaturated zone and the position of the water table with respect to the surface. However, understanding the relationship between the atmosphere and the soil is a somewhat complex aspect. This is mainly due to the difficulty involved in estimating the changes that occur in the soil from climate changes; since this is a coupled process where act processes of mass transfer and heat. In this research, an experimental field was implemented to study in-situ the interaction between the atmosphere and the soft soils of the city of Bogota, Colombia. The soil under study consists of a 60 cm layer composed of two silts of similar characteristics at the surface and a deep soft clay deposit located under the silky material. It should be noted that the vegetal layer and organic matter were removed to avoid the evapotranspiration phenomenon. Instrumentation was carried on in situ through a field disposal of many measuring devices such as soil moisture sensors, thermocouples, relative humidity sensors, wind velocity sensor, among others; which allow registering the variations of both the atmospheric variables and the properties of the soil. With the information collected through field monitoring, the water balances were made using the Hydrus-1D software to determine the flow conditions that developed in the soil during the study. Also, the moisture profile for different periods and time intervals was determined by the balance supplied by Hydrus 1D; this profile was validated by experimental measurements. As a boundary condition, the actual evaporation rate was included using the semi-empirical equations proposed by different authors. In this study, it was obtained for the rainy periods a descending flow that was governed by the infiltration capacity of the soil. On the other hand, during dry periods. An increase in the actual evaporation of the soil induces an upward flow of water, increasing suction due to the decrease in moisture content. Also, cracks were developed accelerating the evaporation process. This work concerns to the study of soil-atmosphere interaction through the experimental field and it is a very useful tool since it allows considering all the factors and parameters of the soil in its natural state and real values of the different environmental conditions.

Keywords: field monitoring, soil-atmosphere, soft soils, soil-water balance

Procedia PDF Downloads 123
6606 Dry High Speed Orthogonal Turning of Ti-6Al-4V Titanium Alloy

Authors: M. Benghersallah, G. List, G. Sutter

Abstract:

The present work is an experimental study on the dry high speed turning of Ti-6Al-4V titanium alloy. The objective of this study is to see for high cutting speeds, how wear occurs on the face of insert and how to evolve cutting forces and chip formation. Cutting speeds tested is 600, 800, 1000, and 1200 m/min in orthogonal turning with a carbide insert tool H13A uncoated on a cylindrical titanium alloy part. Investigation on the wear inserts with 3D scanning microscope revered the crater formation is instantaneous and a chip adhesion (welded chip) causes detachment of carbide particles. Cutting forces increase and stabilize before removing the tool. The chip reaches a very high temperature.

Keywords: titanium alloy, dry hjgh speed turning, wear insert, MQL technique

Procedia PDF Downloads 545
6605 Automated, Objective Assessment of Pilot Performance in Simulated Environment

Authors: Maciej Zasuwa, Grzegorz Ptasinski, Antoni Kopyt

Abstract:

Nowadays flight simulators offer tremendous possibilities for safe and cost-effective pilot training, by utilization of powerful, computational tools. Due to technology outpacing methodology, vast majority of training related work is done by human instructors. It makes assessment not efficient, and vulnerable to instructors’ subjectivity. The research presents an Objective Assessment Tool (gOAT) developed at the Warsaw University of Technology, and tested on SW-4 helicopter flight simulator. The tool uses database of the predefined manoeuvres, defined and integrated to the virtual environment. These were implemented, basing on Aeronautical Design Standard Performance Specification Handling Qualities Requirements for Military Rotorcraft (ADS-33), with predefined Mission-Task-Elements (MTEs). The core element of the gOAT enhanced algorithm that provides instructor a new set of information. In details, a set of objective flight parameters fused with report about psychophysical state of the pilot. While the pilot performs the task, the gOAT system automatically calculates performance using the embedded algorithms, data registered by the simulator software (position, orientation, velocity, etc.), as well as measurements of physiological changes of pilot’s psychophysiological state (temperature, sweating, heart rate). Complete set of measurements is presented on-line to instructor’s station and shown in dedicated graphical interface. The presented tool is based on open source solutions, and flexible for editing. Additional manoeuvres can be easily added using guide developed by authors, and MTEs can be changed by instructor even during an exercise. Algorithm and measurements used allow not only to implement basic stress level measurements, but also to reduce instructor’s workload significantly. Tool developed can be used for training purpose, as well as periodical checks of the aircrew. Flexibility and ease of modifications allow the further development to be wide ranged, and the tool to be customized. Depending on simulation purpose, gOAT can be adjusted to support simulator of aircraft, helicopter, or unmanned aerial vehicle (UAV).

Keywords: automated assessment, flight simulator, human factors, pilot training

Procedia PDF Downloads 134
6604 Friction Stir Welding of Al-Mg-Mn Aluminum Alloy Plates: A Review

Authors: K. Subbaiah, C. V. Jayakumar

Abstract:

Friction stir welding is a solid state welding process. Friction stir welding process eliminates the defects found in fusion welding processes. It is environmentally friend process. 5000 and 6000 series aluminum alloys are widely used in the transportation industries. The Al-Mg-Mn (5000) and Al-Mg-Si (6000) alloys are preferably offer best combination of use in Marine construction. The medium strength and high corrosion resistant 5000 series alloys are the aluminum alloys, which are found maximum utility in the world. In this review, the tool pin profile, process parameters such as hardness, yield strength and tensile strength, and microstructural evolution of friction stir welding of Al-Mg-Mn alloys (5000 Series) have been discussed.

Keywords: Al-Mg-Mn alloys, friction stir welding, tool pin profile, microstructure and mechanical properties

Procedia PDF Downloads 422
6603 Julia-Based Computational Tool for Composite System Reliability Assessment

Authors: Josif Figueroa, Kush Bubbar, Greg Young-Morris

Abstract:

The reliability evaluation of composite generation and bulk transmission systems is crucial for ensuring a reliable supply of electrical energy to significant system load points. However, evaluating adequacy indices using probabilistic methods like sequential Monte Carlo Simulation can be computationally expensive. Despite this, it is necessary when time-varying and interdependent resources, such as renewables and energy storage systems, are involved. Recent advances in solving power network optimization problems and parallel computing have improved runtime performance while maintaining solution accuracy. This work introduces CompositeSystems, an open-source Composite System Reliability Evaluation tool developed in Julia™, to address the current deficiencies of commercial and non-commercial tools. This work introduces its design, validation, and effectiveness, which includes analyzing two different formulations of the Optimal Power Flow problem. The simulations demonstrate excellent agreement with existing published studies while improving replicability and reproducibility. Overall, the proposed tool can provide valuable insights into the performance of transmission systems, making it an important addition to the existing toolbox for power system planning.

Keywords: open-source software, composite system reliability, optimization methods, Monte Carlo methods, optimal power flow

Procedia PDF Downloads 52
6602 Mobile Application Tool for Individual Maintenance Users on High-Rise Residential Buildings in South Korea

Authors: H. Cha, J. Kim, D. Kim, J. Shin, K. Lee

Abstract:

Since 1980's, the rapid economic growth resulted in so many aged apartment buildings in South Korea. Nevertheless, there is insufficient maintenance practice of buildings. In this study, to facilitate the building maintenance the authors classified the building defects into three levels according to their level of performance and developed a mobile application tool based on each level's appropriate feedback. The feedback structure consisted of 'Maintenance manual phase', 'Online feedback phase', 'Repair work phase of the specialty contractors'. In order to implement each phase the authors devised the necessary database for each phase and created a prototype system that can develop on its own. The authors expect that the building users can easily maintain their buildings by using this application.

Keywords: building defect, maintenance practice, mobile application, system algorithm

Procedia PDF Downloads 179
6601 Monitoring the Effect of Doxorubicin Liposomal in VX2 Tumor Using Magnetic Resonance Imaging

Authors: Ren-Jy Ben, Jo-Chi Jao, Chiu-Ya Liao, Ya-Ru Tsai, Lain-Chyr Hwang, Po-Chou Chen

Abstract:

Cancer is still one of the serious diseases threatening the lives of human beings. How to have an early diagnosis and effective treatment for tumors is a very important issue. The animal carcinoma model can provide a simulation tool for the study of pathogenesis, biological characteristics and therapeutic effects. Recently, drug delivery systems have been rapidly developed to effectively improve the therapeutic effects. Liposome plays an increasingly important role in clinical diagnosis and therapy for delivering a pharmaceutic or contrast agent to the targeted sites. Liposome can be absorbed and excreted by the human body, and is well known that no harm to the human body. This study aimed to compare the therapeutic effects between encapsulated (doxorubicin liposomal, LipoDox) and un-encapsulated (doxorubicin, Dox) anti-tumor drugs using Magnetic Resonance Imaging (MRI). Twenty-four New Zealand rabbits implanted with VX2 carcinoma at left thigh were classified into three groups: control group (untreated), Dox-treated group and LipoDox-treated group, 8 rabbits for each group. MRI scans were performed three days after tumor implantation. A 1.5T GE Signa HDxt whole body MRI scanner with a high resolution knee coil was used in this study. After a 3-plane localizer scan was performed, Three-Dimensional (3D) Fast Spin Echo (FSE) T2-Weighted Images (T2WI) was used for tumor volumetric quantification. And Two-Dimensional (2D) spoiled gradient recalled echo (SPGR) dynamic Contrast-enhanced (DCE) MRI was used for tumor perfusion evaluation. DCE-MRI was designed to acquire four baseline images, followed by contrast agent Gd-DOTA injection through the ear vein of rabbits. Afterwards, a series of 32 images were acquired to observe the signals change over time in the tumor and muscle. The MRI scanning was scheduled on a weekly basis for a period of four weeks to observe the tumor progression longitudinally. The Dox and LipoDox treatments were prescribed 3 times in the first week immediately after VX2 tumor implantation. ImageJ was used to quantitate tumor volume and time course signal enhancement on DCE images. The changes of tumor size showed that the growth of VX2 tumors was effectively inhibited for both LipoDox-treated and Dox-treated groups. Furthermore, the tumor volume of LipoDox-treated group was significantly lower than that of Dox-treated group, which implies that LipoDox has better therapeutic effect than Dox. The signal intensity of LipoDox-treated group is significantly lower than that of the other two groups, which implies that targeted therapeutic drug remained in the tumor tissue. This study provides a radiation-free and non-invasive MRI method for therapeutic monitoring of targeted liposome on an animal tumor model.

Keywords: doxorubicin, dynamic contrast-enhanced MRI, lipodox, magnetic resonance imaging, VX2 tumor model

Procedia PDF Downloads 445
6600 Experimental Parameters’ Effects on the Electrical Discharge Machining Performances (µEDM)

Authors: Asmae Tafraouti, Yasmina Layouni, Pascal Kleimann

Abstract:

The growing market for Microsystems (MST) and Micro-Electromechanical Systems (MEMS) is driving the research for alternative manufacturing techniques to microelectronics-based technologies, which are generally expensive and time-consuming. Hot-embossing and micro-injection modeling of thermoplastics appear to be industrially viable processes. However, both require the use of master models, usually made in hard materials such as steel. These master models cannot be fabricated using standard microelectronics processes. Thus, other micromachining processes are used, as laser machining or micro-electrical discharge machining (µEDM). In this work, µEDM has been used. The principle of µEDM is based on the use of a thin cylindrical micro-tool that erodes the workpiece surface. The two electrodes are immersed in a dielectric with a distance of a few micrometers (gap). When an electrical voltage is applied between the two electrodes, electrical discharges are generated, which cause material machining. In order to produce master models with high resolution and smooth surfaces, it is necessary to well control the discharge mechanism. However, several problems are encountered, such as a random electrical discharge process, the fluctuation of the discharge energy, the electrodes' polarity inversion, and the wear of the micro-tool. The effect of different parameters, such as the applied voltage, the working capacitor, the micro-tool diameter, the initial gap, has been studied. This analysis helps to improve the machining performances, such: the workpiece surface condition and the lateral crater's gap.

Keywords: craters, electrical discharges, micro-electrical discharge machining (µEDM), microsystems

Procedia PDF Downloads 81
6599 A Real Time Ultra-Wideband Location System for Smart Healthcare

Authors: Mingyang Sun, Guozheng Yan, Dasheng Liu, Lei Yang

Abstract:

Driven by the demand of intelligent monitoring in rehabilitation centers or hospitals, a high accuracy real-time location system based on UWB (ultra-wideband) technology was proposed. The system measures precise location of a specific person, traces his movement and visualizes his trajectory on the screen for doctors or administrators. Therefore, doctors could view the position of the patient at any time and find them immediately and exactly when something emergent happens. In our design process, different algorithms were discussed, and their errors were analyzed. In addition, we discussed about a , simple but effective way of correcting the antenna delay error, which turned out to be effective. By choosing the best algorithm and correcting errors with corresponding methods, the system attained a good accuracy. Experiments indicated that the ranging error of the system is lower than 7 cm, the locating error is lower than 20 cm, and the refresh rate exceeds 5 times per second. In future works, by embedding the system in wearable IoT (Internet of Things) devices, it could provide not only physical parameters, but also the activity status of the patient, which would help doctors a lot in performing healthcare.

Keywords: intelligent monitoring, ultra-wideband technology, real-time location, IoT devices, smart healthcare

Procedia PDF Downloads 125
6598 Reliability and Construct Validity of the Early Dementia Questionnaire (EDQ)

Authors: A. Zurraini, Syed Alwi Sar, H. Helmy, H. Nazeefah

Abstract:

Early Dementia Questionnaire (EDQ) was developed as a screening tool to detect patients with early dementia in primary care. It was developed based on 20 symptoms of dementia. From a preliminary study, EDQ had been shown to be a promising alternative for screening of early dementia. This study was done to further test on EDQ’s reliability and validity. Using a systematic random sampling, 200 elderly patients attending primary health care centers in Kuching, Sarawak had consented to participate in the study and were administered the EDQ. Geriatric Depression Scale (GDS) was used to exclude patients with depression. Those who scored >21 MMSE, were retested using the EDQ. Reliability was determined by Cronbach’s alpha for internal consistency and construct validity was assessed using confirmatory factor analysis (principle component with varimax rotation). The result showed that the overall Cronbach’s alpha coefficient was good which was 0.874. Confirmatory factor analysis on 4 factors indicated that the Cronbach’s alpha for each domain were acceptable with memory (0.741), concentration (0.764), emotional and physical symptoms (0.754) and lastly sleep and environment (0.720). Pearson correlation coefficient between the first EDQ score and the retest EDQ score among those with MMSE of >21 showed a very strong, positive correlation between the two variables, r = 0.992, N=160, P <0.001. The results of the validation study showed that Early Dementia Questionnaire (EDQ) is a valid and reliable tool to be used as a screening tool to detect early dementia in primary care.

Keywords: Early Dementia Questionnaire (EDQ), screening, primary care, construct validity

Procedia PDF Downloads 418
6597 Investigation of Various Variabilities of Attitudes toward Teaching as a Profession Levels of Physical Education and Sports School Students

Authors: Turan Cetinkaya, Abdurrahman Kırtepe

Abstract:

The aim of this study is to determine the relation of the level attitudes toward teaching as a profession to various variables of the students in physical education and sports departments. 277 students who are studying at the departments of physical education and sports teaching, sports management and coaching in Ahi Evran University, College of Physical Education and Sports participated to the research. Personal information tool and teaching profession scale consisting 34 items were used as data collection tool in the research. Distribution, frequency, t test and anova test were used in comparison of the related data. As a result of statistical analysis, attitudes toward teaching as a profession levels do not differ according to gender, but significant differences were detected in the exercise regularly and department.

Keywords: teaching profession, attitude, physical education and sports students, university students

Procedia PDF Downloads 272
6596 Mapping of Siltations of AlKhod Dam, Muscat, Sultanate of Oman Using Low-Cost Multispectral Satellite Data

Authors: Sankaran Rajendran

Abstract:

Remote sensing plays a vital role in mapping of resources and monitoring of environments of the earth. In the present research study, mapping and monitoring of clay siltations occurred in the Alkhod Dam of Muscat, Sultanate of Oman are carried out using low-cost multispectral Landsat and ASTER data. The dam is constructed across the Wadi Samail catchment for ground water recharge. The occurrence and spatial distribution of siltations in the dam are studied with five years of interval from the year 1987 of construction to 2014. The deposits are mainly due to the clay, sand, and silt occurrences derived from the weathering rocks of ophiolite sequences occurred in the Wadi Samail catchment. The occurrences of clays are confirmed by minerals identification using ASTER VNIR-SWIR spectral bands and Spectral Angle Mapper supervised image processing method. The presence of clays and their spatial distribution are verified in the field. The study recommends the technique and the low-cost satellite data to similar region of the world.

Keywords: Alkhod Dam, ASTER siltation, Landsat, remote sensing, Oman

Procedia PDF Downloads 420
6595 Technology in the Calculation of People Health Level: Design of a Computational Tool

Authors: Sara Herrero Jaén, José María Santamaría García, María Lourdes Jiménez Rodríguez, Jorge Luis Gómez González, Adriana Cercas Duque, Alexandra González Aguna

Abstract:

Background: Health concept has evolved throughout history. The health level is determined by the own individual perception. It is a dynamic process over time so that you can see variations from one moment to the next. In this way, knowing the health of the patients you care for, will facilitate decision making in the treatment of care. Objective: To design a technological tool that calculates the people health level in a sequential way over time. Material and Methods: Deductive methodology through text analysis, extraction and logical knowledge formalization and education with expert group. Studying time: September 2015- actually. Results: A computational tool for the use of health personnel has been designed. It has 11 variables. Each variable can be given a value from 1 to 5, with 1 being the minimum value and 5 being the maximum value. By adding the result of the 11 variables we obtain a magnitude in a certain time, the health level of the person. The health calculator allows to represent people health level at a time, establishing temporal cuts being useful to determine the evolution of the individual over time. Conclusion: The Information and Communication Technologies (ICT) allow training and help in various disciplinary areas. It is important to highlight their relevance in the field of health. Based on the health formalization, care acts can be directed towards some of the propositional elements of the concept above. The care acts will modify the people health level. The health calculator allows the prioritization and prediction of different strategies of health care in hospital units.

Keywords: calculator, care, eHealth, health

Procedia PDF Downloads 246
6594 Retraction Free Motion Approach and Its Application in Automated Robotic Edge Finishing and Inspection Processes

Authors: M. Nemer, E. I. Konukseven

Abstract:

In this paper, a motion generation algorithm for a six Degrees of Freedom (DoF) robotic hand in a static environment is presented. The purpose of developing this method is to be used in the path generation of the end-effector for edge finishing and inspection processes by utilizing the CAD model of the considered workpiece. Nonetheless, the proposed algorithm may be extended to be applicable for other similar manufacturing processes. A software package programmed in the application programming interface (API) of SolidWorks generates tool path data for the robot. The proposed method significantly simplifies the given problem, resulting in a reduction in the CPU time needed to generate the path, and offers an efficient overall solution. The ABB IRB2000 robot is chosen for executing the generated tool path.

Keywords: CAD-based tools, edge deburring, edge scanning, offline programming, path generation

Procedia PDF Downloads 275
6593 Dose Profiler: A Tracking Device for Online Range Monitoring in Particle Therapy

Authors: G. Battistoni, F. Collamati, E. De Lucia, R. Faccini, C. Mancini-Terracciano, M. Marafini, I. Mattei, S. Muraro, V. Patera, A. Sarti, A. Sciubba, E. Solfaroli Camillocci, M. Toppi, G. Traini, S. M. Valle, C. Voena

Abstract:

Accelerated charged particles, mainly protons and carbon ions, are presently used in Particle Therapy (PT) to treat solid tumors. The precision of PT exploiting the charged particle high localized dose deposition in tissues and biological effectiveness in killing cancer cells demands for an online dose monitoring technique, crucial to improve the quality assurance of treatments: possible patient mis-positionings and biological changes with respect to the CT scan could negatively affect the therapy outcome. In PT the beam range confined in the irradiated target can be monitored thanks to the secondary radiation produced by the interaction of the projectiles with the patient tissue. The Dose Profiler (DP) is a novel device designed to track charged secondary particles and reconstruct their longitudinal emission distribution, correlated to the Bragg peak position. The feasibility of this approach has been demonstrated by dedicated experimental measurements. The DP has been developed in the framework of the INSIDE project, MIUR, INFN and Centro Fermi, Museo Storico della Fisica e Centro Studi e Ricerche 'E. Fermi', Roma, Italy and will be tested at the Proton Therapy center of Trento (Italy) within the end of 2017. The DP combines a tracker, made of six layers of two-view scintillating fibers with square cross section (0.5 x 0.5 mm2) with two layers of two-view scintillating bars (section 12.0 x 0.6 mm2). The electronic readout is performed by silicon photomultipliers. The sensitive area of the tracking planes is 20 x 20 cm2. To optimize the detector layout, a Monte Carlo (MC) simulation based on the FLUKA code has been developed. The complete DP geometry and the track reconstruction code have been fully implemented in the MC. In this contribution, the DP hardware will be described. The expected detector performance computed using a dedicated simulation of a 220 MeV/u carbon ion beam impinging on a PMMA target will be presented, and the result will be discussed in the standard clinical application framework. A possible procedure for real-time beam range monitoring is proposed, following the expectations in actual clinical operation.

Keywords: online range monitoring, particle therapy, quality assurance, tracking detector

Procedia PDF Downloads 229