Search results for: linear congruential algorithm
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6633

Search results for: linear congruential algorithm

5643 Contribution to the Analytical Study of the Stability of a DC-DC Converter (Boost) Used for MPPT Control

Authors: Mohamed Amarouayache, Badia Amrouche, Gharbi Akila, Boukadoume Mohamed

Abstract:

This work is devoted to the modeling of DC-DC converter (boost) used for MPPT applications to set conditions of stability. For this, we establish a linear mathematical model of the DC-DC converter with an average small signal model. This model has allowed us to apply conventional linear methods of automation. A mathematical relationship between the duty cycle and the voltage of the panel has been set up. With this relationship we specify the conditions of the stability in closed-loop depending on the system parameters (the elements of storage capacity and inductance, PWM control).

Keywords: MPPT, PWM, stability, criterion of Routh, average small signal model

Procedia PDF Downloads 443
5642 An Improved Face Recognition Algorithm Using Histogram-Based Features in Spatial and Frequency Domains

Authors: Qiu Chen, Koji Kotani, Feifei Lee, Tadahiro Ohmi

Abstract:

In this paper, we propose an improved face recognition algorithm using histogram-based features in spatial and frequency domains. For adding spatial information of the face to improve recognition performance, a region-division (RD) method is utilized. The facial area is firstly divided into several regions, then feature vectors of each facial part are generated by Binary Vector Quantization (BVQ) histogram using DCT coefficients in low frequency domains, as well as Local Binary Pattern (LBP) histogram in spatial domain. Recognition results with different regions are first obtained separately and then fused by weighted averaging. Publicly available ORL database is used for the evaluation of our proposed algorithm, which is consisted of 40 subjects with 10 images per subject containing variations in lighting, posing, and expressions. It is demonstrated that face recognition using RD method can achieve much higher recognition rate.

Keywords: binary vector quantization (BVQ), DCT coefficients, face recognition, local binary patterns (LBP)

Procedia PDF Downloads 349
5641 Optimal Placement and Sizing of Distributed Generation in Microgrid for Power Loss Reduction and Voltage Profile Improvement

Authors: Ferinar Moaidi, Mahdi Moaidi

Abstract:

Environmental issues and the ever-increasing in demand of electrical energy make it necessary to have distributed generation (DG) resources in the power system. In this research, in order to realize the goals of reducing losses and improving the voltage profile in a microgrid, the allocation and sizing of DGs have been used. The proposed Genetic Algorithm (GA) is described from the array of artificial intelligence methods for solving the problem. The algorithm is implemented on the IEEE 33 buses network. This study is presented in two scenarios, primarily to illustrate the effect of location and determination of DGs has been done to reduce losses and improve the voltage profile. On the other hand, decisions made with the one-level assumptions of load are not universally accepted for all levels of load. Therefore, in this study, load modelling is performed and the results are presented for multi-levels load state.

Keywords: distributed generation, genetic algorithm, microgrid, load modelling, loss reduction, voltage improvement

Procedia PDF Downloads 143
5640 Design and Test a Robust Bearing-Only Target Motion Analysis Algorithm Based on Modified Gain Extended Kalman Filter

Authors: Mohammad Tarek Al Muallim, Ozhan Duzenli, Ceyhun Ilguy

Abstract:

Passive sonar is a method for detecting acoustic signals in the ocean. It detects the acoustic signals emanating from external sources. With passive sonar, we can determine the bearing of the target only, no information about the range of the target. Target Motion Analysis (TMA) is a process to estimate the position and speed of a target using passive sonar information. Since bearing is the only available information, the TMA technique called Bearing-only TMA. Many TMA techniques have been developed. However, until now, there is not a very effective method that could be used to always track an unknown target and extract its moving trace. In this work, a design of effective Bearing-only TMA Algorithm is done. The measured bearing angles are very noisy. Moreover, for multi-beam sonar, the measurements is quantized due to the sonar beam width. To deal with this, modified gain extended Kalman filter algorithm is used. The algorithm is fine-tuned, and many modules are added to improve the performance. A special validation gate module is used to insure stability of the algorithm. Many indicators of the performance and confidence level measurement are designed and tested. A new method to detect if the target is maneuvering is proposed. Moreover, a reactive optimal observer maneuver based on bearing measurements is proposed, which insure converging to the right solution all of the times. To test the performance of the proposed TMA algorithm a simulation is done with a MATLAB program. The simulator program tries to model a discrete scenario for an observer and a target. The simulator takes into consideration all the practical aspects of the problem such as a smooth transition in the speed, a circular turn of the ship, noisy measurements, and a quantized bearing measurement come for multi-beam sonar. The tests are done for a lot of given test scenarios. For all the tests, full tracking is achieved within 10 minutes with very little error. The range estimation error was less than 5%, speed error less than 5% and heading error less than 2 degree. For the online performance estimator, it is mostly aligned with the real performance. The range estimation confidence level gives a value equal to 90% when the range error less than 10%. The experiments show that the proposed TMA algorithm is very robust and has low estimation error. However, the converging time of the algorithm is needed to be improved.

Keywords: target motion analysis, Kalman filter, passive sonar, bearing-only tracking

Procedia PDF Downloads 402
5639 Lego Mindstorms as a Simulation of Robotic Systems

Authors: Miroslav Popelka, Jakub Nožička

Abstract:

In this paper we deal with using Lego Mindstorms in simulation of robotic systems with respect to cost reduction. Lego Mindstorms kit contains broad variety of hardware components which are required to simulate, program and test the robotics systems in practice. Algorithm programming went in development environment supplied together with Lego kit as in programming language C# as well. Algorithm following the line, which we dealt with in this paper, uses theoretical findings from area of controlling circuits. PID controller has been chosen as controlling circuit whose individual components were experimentally adjusted for optimal motion of robot tracking the line. Data which are determined to process by algorithm are collected by sensors which scan the interface between black and white surfaces followed by robot. Based on discovered facts Lego Mindstorms can be considered for low-cost and capable kit to simulate real robotics systems.

Keywords: LEGO Mindstorms, PID controller, low-cost robotics systems, line follower, sensors, programming language C#, EV3 Home Edition Software

Procedia PDF Downloads 374
5638 Model Predictive Control Applied to Thermal Regulation of Thermoforming Process Based on the Armax Linear Model and a Quadratic Criterion Formulation

Authors: Moaine Jebara, Lionel Boillereaux, Sofiane Belhabib, Michel Havet, Alain Sarda, Pierre Mousseau, Rémi Deterre

Abstract:

Energy consumption efficiency is a major concern for the material processing industry such as thermoforming process and molding. Indeed, these systems should deliver the right amount of energy at the right time to the processed material. Recent technical development, as well as the particularities of the heating system dynamics, made the Model Predictive Control (MPC) one of the best candidates for thermal control of several production processes like molding and composite thermoforming to name a few. The main principle of this technique is to use a dynamic model of the process inside the controller in real time in order to anticipate the future behavior of the process which allows the current timeslot to be optimized while taking future timeslots into account. This study presents a procedure based on a predictive control that brings balance between optimality, simplicity, and flexibility of its implementation. The development of this approach is progressive starting from the case of a single zone before its extension to the multizone and/or multisource case, taking thus into account the thermal couplings between the adjacent zones. After a quadratic formulation of the MPC criterion to ensure the thermal control, the linear expression is retained in order to reduce calculation time thanks to the use of the ARMAX linear decomposition methods. The effectiveness of this approach is illustrated by experiment and simulation.

Keywords: energy efficiency, linear decomposition methods, model predictive control, mold heating systems

Procedia PDF Downloads 272
5637 Detection Method of Federated Learning Backdoor Based on Weighted K-Medoids

Authors: Xun Li, Haojie Wang

Abstract:

Federated learning is a kind of distributed training and centralized training mode, which is of great value in the protection of user privacy. In order to solve the problem that the model is vulnerable to backdoor attacks in federated learning, a backdoor attack detection method based on a weighted k-medoids algorithm is proposed. First of all, this paper collates the update parameters of the client to construct a vector group, then uses the principal components analysis (PCA) algorithm to extract the corresponding feature information from the vector group, and finally uses the improved k-medoids clustering algorithm to identify the normal and backdoor update parameters. In this paper, the backdoor is implanted in the federation learning model through the model replacement attack method in the simulation experiment, and the update parameters from the attacker are effectively detected and removed by the defense method proposed in this paper.

Keywords: federated learning, backdoor attack, PCA, k-medoids, backdoor defense

Procedia PDF Downloads 114
5636 Linear Parameter-Varying Control for Selective Catalytic Reduction Systems

Authors: Jihoon Lim, Patrick Kirchen, Ryozo Nagamune

Abstract:

This paper proposes a linear parameter-varying (LPV) controller capable of reducing nitrogen oxide (NOx) emissions with low ammonia (NH3) slip downstream of selective catalytic reduction (SCR) systems. SCR systems are widely adopted in diesel engines due to high NOx conversion efficiency. However, the nonlinearity of the SCR system and sensor uncertainty result in a challenging control problem. In order to overcome the control challenges, an LPV controller is proposed based on gain-scheduling parameters, that is, exhaust gas temperature and exhaust gas flow rate. Based on experimentally obtained data under the non-road transient driving cycle (NRTC), the simulations firstly show that the proposed controller yields high NOx conversion efficiency with a desired low NH3 slip. The performance of the proposed LPV controller is then compared with other controllers, including a gain-scheduling PID controller and a sliding mode controller. Additionally, the robustness is also demonstrated using the uncertainties ranging from 10 to 30%. The results show that the proposed controller is robustly stable under uncertainties.

Keywords: diesel engine, gain-scheduling control, linear parameter-varying, selective catalytic reduction

Procedia PDF Downloads 146
5635 Predicting Seoul Bus Ridership Using Artificial Neural Network Algorithm with Smartcard Data

Authors: Hosuk Shin, Young-Hyun Seo, Eunhak Lee, Seung-Young Kho

Abstract:

Currently, in Seoul, users have the privilege to avoid riding crowded buses with the installation of Bus Information System (BIS). BIS has three levels of on-board bus ridership level information (spacious, normal, and crowded). However, there are flaws in the system due to it being real time which could provide incomplete information to the user. For example, a bus comes to the station, and on the BIS it shows that the bus is crowded, but on the stop that the user is waiting many people get off, which would mean that this station the information should show as normal or spacious. To fix this problem, this study predicts the bus ridership level using smart card data to provide more accurate information about the passenger ridership level on the bus. An Artificial Neural Network (ANN) is an interconnected group of nodes, that was created based on the human brain. Forecasting has been one of the major applications of ANN due to the data-driven self-adaptive methods of the algorithm itself. According to the results, the ANN algorithm was stable and robust with somewhat small error ratio, so the results were rational and reasonable.

Keywords: smartcard data, ANN, bus, ridership

Procedia PDF Downloads 167
5634 Non-Linear Numerical Modeling of the Interaction of Twin Tunnels-Structure

Authors: A. Bayoumi, M. Abdallah, F. Hage Chehade

Abstract:

Structures on the ground surface bear impact from the tunneling-induced settlement, especially when twin tunnels are constructed. The tunneling influence on the structure is considered as a critical issue based on the construction procedure and relative position of tunnels. Lebanon is suffering from a traffic phenomenon caused by the lack of transportation systems. After several traffic counts and geotechnical investigations in Beirut city, efforts aim for the construction of tunneling systems. In this paper, we present a non-linear numerical modeling of the effect of the twin tunnels constructions on the structures located at soil surface for a particular site in Beirut. A parametric study, which concerns the geometric configuration of tunnels, the distance between their centers, the construction order, and the position of the structure, is performed. The tunnel-soil-structure interaction is analyzed by using the non-linear finite element modeling software PLAXIS 2D. The results of the surface settlement and the bending moment of the structure reveal significant influence when the structure is moved away, especially in vertical aligned tunnels.

Keywords: bending moment, elastic modulus, horizontal twin tunnels, soil, structure location, surface settlement, vertical twin tunnels

Procedia PDF Downloads 297
5633 Hybrid Approach for Face Recognition Combining Gabor Wavelet and Linear Discriminant Analysis

Authors: A: Annis Fathima, V. Vaidehi, S. Ajitha

Abstract:

Face recognition system finds many applications in surveillance and human computer interaction systems. As the applications using face recognition systems are of much importance and demand more accuracy, more robustness in the face recognition system is expected with less computation time. In this paper, a hybrid approach for face recognition combining Gabor Wavelet and Linear Discriminant Analysis (HGWLDA) is proposed. The normalized input grayscale image is approximated and reduced in dimension to lower the processing overhead for Gabor filters. This image is convolved with bank of Gabor filters with varying scales and orientations. LDA, a subspace analysis techniques are used to reduce the intra-class space and maximize the inter-class space. The techniques used are 2-dimensional Linear Discriminant Analysis (2D-LDA), 2-dimensional bidirectional LDA ((2D)2LDA), Weighted 2-dimensional bidirectional Linear Discriminant Analysis (Wt (2D)2 LDA). LDA reduces the feature dimension by extracting the features with greater variance. k-Nearest Neighbour (k-NN) classifier is used to classify and recognize the test image by comparing its feature with each of the training set features. The HGWLDA approach is robust against illumination conditions as the Gabor features are illumination invariant. This approach also aims at a better recognition rate using less number of features for varying expressions. The performance of the proposed HGWLDA approaches is evaluated using AT&T database, MIT-India face database and faces94 database. It is found that the proposed HGWLDA approach provides better results than the existing Gabor approach.

Keywords: face recognition, Gabor wavelet, LDA, k-NN classifier

Procedia PDF Downloads 467
5632 Efficient Implementation of Finite Volume Multi-Resolution Weno Scheme on Adaptive Cartesian Grids

Authors: Yuchen Yang, Zhenming Wang, Jun Zhu, Ning Zhao

Abstract:

An easy-to-implement and robust finite volume multi-resolution Weighted Essentially Non-Oscillatory (WENO) scheme is proposed on adaptive cartesian grids in this paper. Such a multi-resolution WENO scheme is combined with the ghost cell immersed boundary method (IBM) and wall-function technique to solve Navier-Stokes equations. Unlike the k-exact finite volume WENO schemes which involve large amounts of extra storage, repeatedly solving the matrix generated in a least-square method or the process of calculating optimal linear weights on adaptive cartesian grids, the present methodology only adds very small overhead and can be easily implemented in existing edge-based computational fluid dynamics (CFD) codes with minor modifications. Also, the linear weights of this adaptive finite volume multi-resolution WENO scheme can be any positive numbers on condition that their sum is one. It is a way of bypassing the calculation of the optimal linear weights and such a multi-resolution WENO scheme avoids dealing with the negative linear weights on adaptive cartesian grids. Some benchmark viscous problems are numerical solved to show the efficiency and good performance of this adaptive multi-resolution WENO scheme. Compared with a second-order edge-based method, the presented method can be implemented into an adaptive cartesian grid with slight modification for big Reynolds number problems.

Keywords: adaptive mesh refinement method, finite volume multi-resolution WENO scheme, immersed boundary method, wall-function technique.

Procedia PDF Downloads 148
5631 A Weighted Sum Particle Swarm Approach (WPSO) Combined with a Novel Feasibility-Based Ranking Strategy for Constrained Multi-Objective Optimization of Compact Heat Exchangers

Authors: Milad Yousefi, Moslem Yousefi, Ricarpo Poley, Amer Nordin Darus

Abstract:

Design optimization of heat exchangers is a very complicated task that has been traditionally carried out based on a trial-and-error procedure. To overcome the difficulties of the conventional design approaches especially when a large number of variables, constraints and objectives are involved, a new method based on a well-stablished evolutionary algorithm, particle swarm optimization (PSO), weighted sum approach and a novel constraint handling strategy is presented in this study. Since, the conventional constraint handling strategies are not effective and easy-to-implement in multi-objective algorithms, a novel feasibility-based ranking strategy is introduced which is both extremely user-friendly and effective. A case study from industry has been investigated to illustrate the performance of the presented approach. The results show that the proposed algorithm can find the near pareto-optimal with higher accuracy when it is compared to conventional non-dominated sorting genetic algorithm II (NSGA-II). Moreover, the difficulties of a trial-and-error process for setting the penalty parameters is solved in this algorithm.

Keywords: Heat exchanger, Multi-objective optimization, Particle swarm optimization, NSGA-II Constraints handling.

Procedia PDF Downloads 555
5630 Ultra-Reliable Low Latency V2X Communication for Express Way Using Multiuser Scheduling Algorithm

Authors: Vaishali D. Khairnar

Abstract:

The main aim is to provide lower-latency and highly reliable communication facilities for vehicles in the automobile industry; vehicle-to-everything (V2X) communication basically intends to increase expressway road security and its effectiveness. The Ultra-Reliable Low-Latency Communications (URLLC) algorithm and cellular networks are applied in combination with Mobile Broadband (MBB). This is particularly used in express way safety-based driving applications. Expressway vehicle drivers (humans) will communicate in V2X systems using the sixth-generation (6G) communication systems which have very high-speed mobility features. As a result, we need to determine how to ensure reliable and consistent wireless communication links and improve the quality to increase channel gain, which is becoming a challenge that needs to be addressed. To overcome this challenge, we proposed a unique multi-user scheduling algorithm for ultra-massive multiple-input multiple-output (MIMO) systems using 6G. In wideband wireless network access in case of high traffic and also in medium traffic conditions, moreover offering quality-of-service (QoS) to distinct service groups with synchronized contemporaneous traffic on the highway like the Mumbai-Pune expressway becomes a critical problem. Opportunist MAC (OMAC) is a way of proposing communication across a wireless communication link that can change in space and time and might overcome the above-mentioned challenge. Therefore, a multi-user scheduling algorithm is proposed for MIMO systems using a cross-layered MAC protocol to achieve URLLC and high reliability in V2X communication.

Keywords: ultra-reliable low latency communications, vehicle-to-everything communication, multiple-input multiple-output systems, multi-user scheduling algorithm

Procedia PDF Downloads 88
5629 Quantitative Analysis of Multiprocessor Architectures for Radar Signal Processing

Authors: Deepak Kumar, Debasish Deb, Reena Mamgain

Abstract:

Radar signal processing requires high number crunching capability. Most often this is achieved using multiprocessor platform. Though multiprocessor platform provides the capability of meeting the real time computational challenges, the architecture of the same along with mapping of the algorithm on the architecture plays a vital role in efficiently using the platform. Towards this, along with standard performance metrics, few additional metrics are defined which helps in evaluating the multiprocessor platform along with the algorithm mapping. A generic multiprocessor architecture can not suit all the processing requirements. Depending on the system requirement and type of algorithms used, the most suitable architecture for the given problem is decided. In the paper, we study different architectures and quantify the different performance metrics which enables comparison of different architectures for their merit. We also carried out case study of different architectures and their efficiency depending on parallelism exploited on algorithm or data or both.

Keywords: radar signal processing, multiprocessor architecture, efficiency, load imbalance, buffer requirement, pipeline, parallel, hybrid, cluster of processors (COPs)

Procedia PDF Downloads 412
5628 Multiple Linear Regression for Rapid Estimation of Subsurface Resistivity from Apparent Resistivity Measurements

Authors: Sabiu Bala Muhammad, Rosli Saad

Abstract:

Multiple linear regression (MLR) models for fast estimation of true subsurface resistivity from apparent resistivity field measurements are developed and assessed in this study. The parameters investigated were apparent resistivity (ρₐ), horizontal location (X) and depth (Z) of measurement as the independent variables; and true resistivity (ρₜ) as the dependent variable. To achieve linearity in both resistivity variables, datasets were first transformed into logarithmic domain following diagnostic checks of normality of the dependent variable and heteroscedasticity to ensure accurate models. Four MLR models were developed based on hierarchical combination of the independent variables. The generated MLR coefficients were applied to another data set to estimate ρₜ values for validation. Contours of the estimated ρₜ values were plotted and compared to the observed data plots at the colour scale and blanking for visual assessment. The accuracy of the models was assessed using coefficient of determination (R²), standard error (SE) and weighted mean absolute percentage error (wMAPE). It is concluded that the MLR models can estimate ρₜ for with high level of accuracy.

Keywords: apparent resistivity, depth, horizontal location, multiple linear regression, true resistivity

Procedia PDF Downloads 276
5627 Multiobjective Economic Dispatch Using Optimal Weighting Method

Authors: Mandeep Kaur, Fatehgarh Sahib

Abstract:

The purpose of economic load dispatch is to allocate the required load demand between the available generation units such that the cost of operation is minimized. It is an optimization problem to find the most economical schedule of the generating units while satisfying load demand and operational constraints. The multiobjective optimization problem in which the engineer’s goal is to maximize or minimize not a single objective function but several objective functions simultaneously. The purpose of multiobjective problems in the mathematical programming framework is to optimize the different objective functions. Many approaches and methods have been proposed in recent years to solve multiobjective optimization problems. Weighting method has been applied to convert multiobjective optimization problems into scalar optimization. MATLAB 7.10 has been used to write the code for the complete algorithm with the help of genetic algorithm (GA). The validity of the proposed method has been demonstrated on a three-unit power system.

Keywords: economic load dispatch, genetic algorithm, generating units, multiobjective optimization, weighting method

Procedia PDF Downloads 150
5626 Speech Intelligibility Improvement Using Variable Level Decomposition DWT

Authors: Samba Raju, Chiluveru, Manoj Tripathy

Abstract:

Intelligibility is an essential characteristic of a speech signal, which is used to help in the understanding of information in speech signal. Background noise in the environment can deteriorate the intelligibility of a recorded speech. In this paper, we presented a simple variance subtracted - variable level discrete wavelet transform, which improve the intelligibility of speech. The proposed algorithm does not require an explicit estimation of noise, i.e., prior knowledge of the noise; hence, it is easy to implement, and it reduces the computational burden. The proposed algorithm decides a separate decomposition level for each frame based on signal dominant and dominant noise criteria. The performance of the proposed algorithm is evaluated with speech intelligibility measure (STOI), and results obtained are compared with Universal Discrete Wavelet Transform (DWT) thresholding and Minimum Mean Square Error (MMSE) methods. The experimental results revealed that the proposed scheme outperformed competing methods

Keywords: discrete wavelet transform, speech intelligibility, STOI, standard deviation

Procedia PDF Downloads 148
5625 Using Support Vector Machines for Measuring Democracy

Authors: Tommy Krieger, Klaus Gruendler

Abstract:

We present a novel approach for measuring democracy, which enables a very detailed and sensitive index. This method is based on Support Vector Machines, a mathematical algorithm for pattern recognition. Our implementation evaluates 188 countries in the period between 1981 and 2011. The Support Vector Machines Democracy Index (SVMDI) is continuously on the 0-1-Interval and robust to variations in the numerical process parameters. The algorithm introduced here can be used for every concept of democracy without additional adjustments, and due to its flexibility it is also a valuable tool for comparison studies.

Keywords: democracy, democracy index, machine learning, support vector machines

Procedia PDF Downloads 378
5624 Optimizing Load Shedding Schedule Problem Based on Harmony Search

Authors: Almahd Alshereef, Ahmed Alkilany, Hammad Said, Azuraliza Abu Bakar

Abstract:

From time to time, electrical power grid is directed by the National Electricity Operator to conduct load shedding, which involves hours' power outages on the area of this study, Southern Electrical Grid of Libya (SEGL). Load shedding is conducted in order to alleviate pressure on the National Electricity Grid at times of peak demand. This approach has chosen a set of categories to study load-shedding problem considering the effect of the demand priorities on the operation of the power system during emergencies. Classification of category region for load shedding problem is solved by a new algorithm (the harmony algorithm) based on the "random generation list of category region", which is a possible solution with a proximity degree to the optimum. The obtained results prove additional enhancements compared to other heuristic approaches. The case studies are carried out on SEGL.

Keywords: optimization, harmony algorithm, load shedding, classification

Procedia PDF Downloads 396
5623 An Algorithm Based on Control Indexes to Increase the Quality of Service on Cellular Networks

Authors: Rahman Mofidi, Sina Rahimi, Farnoosh Darban

Abstract:

Communication plays a key role in today’s world, and to support it, the quality of service has the highest priority. It is very important to differentiate between traffic based on priority level. Some traffic classes should be a higher priority than other classes. It is also necessary to give high priority to customers who have more payment for better service, however, without influence on other customers. So to realize that, we will require effective quality of service methods. To ensure the optimal performance of the network in accordance with the quality of service is an important goal for all operators in the mobile network. In this work, we propose an algorithm based on control parameters which it’s based on user feedback that aims at minimizing the access to system transmit power and thus improving the network key performance indicators and increasing the quality of service. This feedback that is known as channel quality indicator (CQI) indicates the received signal level of the user. We aim at proposing an algorithm in control parameter criterion to study improving the quality of service and throughput in a cellular network at the simulated environment. In this work we tried to parameter values have close to their actual level. Simulation results show that the proposed algorithm improves the system throughput and thus satisfies users' throughput and improves service to set up a successful call.

Keywords: quality of service, key performance indicators, control parameter, channel quality indicator

Procedia PDF Downloads 203
5622 Bi-Directional Impulse Turbine for Thermo-Acoustic Generator

Authors: A. I. Dovgjallo, A. B. Tsapkova, A. A. Shimanov

Abstract:

The paper is devoted to one of engine types with external heating – a thermoacoustic engine. In thermoacoustic engine heat energy is converted to an acoustic energy. Further, acoustic energy of oscillating gas flow must be converted to mechanical energy and this energy in turn must be converted to electric energy. The most widely used way of transforming acoustic energy to electric one is application of linear generator or usual generator with crank mechanism. In both cases, the piston is used. Main disadvantages of piston use are friction losses, lubrication problems and working fluid pollution which cause decrease of engine power and ecological efficiency. Using of a bidirectional impulse turbine as an energy converter is suggested. The distinctive feature of this kind of turbine is that the shock wave of oscillating gas flow passing through the turbine is reflected and passes through the turbine again in the opposite direction. The direction of turbine rotation does not change in the process. Different types of bidirectional impulse turbines for thermoacoustic engines are analyzed. The Wells turbine is the simplest and least efficient of them. A radial impulse turbine has more complicated design and is more efficient than the Wells turbine. The most appropriate type of impulse turbine was chosen. This type is an axial impulse turbine, which has a simpler design than that of a radial turbine and similar efficiency. The peculiarities of the method of an impulse turbine calculating are discussed. They include changes in gas pressure and velocity as functions of time during the generation of gas oscillating flow shock waves in a thermoacoustic system. In thermoacoustic system pressure constantly changes by a certain law due to acoustic waves generation. Peak values of pressure are amplitude which determines acoustic power. Gas, flowing in thermoacoustic system, periodically changes its direction and its mean velocity is equal to zero but its peak values can be used for bi-directional turbine rotation. In contrast with feed turbine, described turbine operates on un-steady oscillating flows with direction changes which significantly influence the algorithm of its calculation. Calculated power output is 150 W with frequency 12000 r/min and pressure amplitude 1,7 kPa. Then, 3-d modeling and numerical research of impulse turbine was carried out. As a result of numerical modeling, main parameters of the working fluid in turbine were received. On the base of theoretical and numerical data model of impulse turbine was made on 3D printer. Experimental unit was designed for numerical modeling results verification. Acoustic speaker was used as acoustic wave generator. Analysis if the acquired data shows that use of the bi-directional impulse turbine is advisable. By its characteristics as a converter, it is comparable with linear electric generators. But its lifetime cycle will be higher and engine itself will be smaller due to turbine rotation motion.

Keywords: acoustic power, bi-directional pulse turbine, linear alternator, thermoacoustic generator

Procedia PDF Downloads 378
5621 Research on Sensing Performance of Polyimide-Based Composite Materials

Authors: Rui Zhao, Dongxu Zhang, Min Wan

Abstract:

Composite materials are widely used in the fields of aviation, aerospace, and transportation due to their lightweight and high strength. Functionalization of composite structures is a hot topic in the future development of composite materials. This article proposed a polyimide-resin based composite material with a sensing function. This material can serve as a sensor to achieve deformation monitoring of metal sheets in room temperature environments. In the deformation process of metal sheets, the slope of the linear fitting line for the corresponding material resistance change rate is different in the elastic stage and the plastic strengthening stage. Therefore, the slope of the material resistance change rate can be used to characterize the deformation stage of the metal sheet. In addition, the resistance change rate of the material exhibited a good negative linear relationship with temperature in a high-temperature environment, and the determination coefficient of the linear fitting line for the change rate of material resistance in the range of 520-650℃ was 0.99. These results indicate that the material has the potential to be applied in the monitoring of mechanical properties of structural materials and temperature monitoring of high-temperature environments.

Keywords: polyimide, composite, sensing, resistance change rate

Procedia PDF Downloads 82
5620 A Genetic Algorithm Based Sleep-Wake up Protocol for Area Coverage in WSNs

Authors: Seyed Mahdi Jameii, Arash Nikdel, Seyed Mohsen Jameii

Abstract:

Energy efficiency is an important issue in the field of Wireless Sensor Networks (WSNs). So, minimizing the energy consumption in this kind of networks should be an essential consideration. Sleep/wake scheduling mechanism is an efficient approach to handling this issue. In this paper, we propose a Genetic Algorithm-based Sleep-Wake up Area Coverage protocol called GA-SWAC. The proposed protocol puts the minimum of nodes in active mode and adjusts the sensing radius of each active node to decrease the energy consumption while maintaining the network’s coverage. The proposed protocol is simulated. The results demonstrate the efficiency of the proposed protocol in terms of coverage ratio, number of active nodes and energy consumption.

Keywords: wireless sensor networks, genetic algorithm, coverage, connectivity

Procedia PDF Downloads 521
5619 Hand Symbol Recognition Using Canny Edge Algorithm and Convolutional Neural Network

Authors: Harshit Mittal, Neeraj Garg

Abstract:

Hand symbol recognition is a pivotal component in the domain of computer vision, with far-reaching applications spanning sign language interpretation, human-computer interaction, and accessibility. This research paper discusses the approach with the integration of the Canny Edge algorithm and convolutional neural network. The significance of this study lies in its potential to enhance communication and accessibility for individuals with hearing impairments or those engaged in gesture-based interactions with technology. In the experiment mentioned, the data is manually collected by the authors from the webcam using Python codes, to increase the dataset augmentation, is applied to original images, which makes the model more compatible and advanced. Further, the dataset of about 6000 coloured images distributed equally in 5 classes (i.e., 1, 2, 3, 4, 5) are pre-processed first to gray images and then by the Canny Edge algorithm with threshold 1 and 2 as 150 each. After successful data building, this data is trained on the Convolutional Neural Network model, giving accuracy: 0.97834, precision: 0.97841, recall: 0.9783, and F1 score: 0.97832. For user purposes, a block of codes is built in Python to enable a window for hand symbol recognition. This research, at its core, seeks to advance the field of computer vision by providing an advanced perspective on hand sign recognition. By leveraging the capabilities of the Canny Edge algorithm and convolutional neural network, this study contributes to the ongoing efforts to create more accurate, efficient, and accessible solutions for individuals with diverse communication needs.

Keywords: hand symbol recognition, computer vision, Canny edge algorithm, convolutional neural network

Procedia PDF Downloads 64
5618 A 3D Eight Nodes Brick Finite Element Based on the Strain Approach

Authors: L. Belounar, K. Gerraiche, C. Rebiai, S. Benmebarek

Abstract:

This paper presents the development of a new three dimensional brick finite element by the use of the strain based approach for the linear analysis of plate bending behavior. The developed element has the three essential external degrees of freedom (U, V and W) at each of the eight corner nodes. The displacements field of the developed element is based on assumed functions for the various strains satisfying the compatibility and the equilibrium equations. The performance of this element is evaluated on several problems related to thick and thin plate bending in linear analysis. The obtained results show the good performances and accuracy of the present element.

Keywords: brick element, strain approach, plate bending, civil engineering

Procedia PDF Downloads 494
5617 Computer-Aided Detection of Liver and Spleen from CT Scans using Watershed Algorithm

Authors: Belgherbi Aicha, Bessaid Abdelhafid

Abstract:

In the recent years a great deal of research work has been devoted to the development of semi-automatic and automatic techniques for the analysis of abdominal CT images. The first and fundamental step in all these studies is the semi-automatic liver and spleen segmentation that is still an open problem. In this paper, a semi-automatic liver and spleen segmentation method by the mathematical morphology based on watershed algorithm has been proposed. Our algorithm is currency in two parts. In the first, we seek to determine the region of interest by applying the morphological to extract the liver and spleen. The second step consists to improve the quality of the image gradient. In this step, we propose a method for improving the image gradient to reduce the over-segmentation problem by applying the spatial filters followed by the morphological filters. Thereafter we proceed to the segmentation of the liver, spleen. The aim of this work is to develop a method for semi-automatic segmentation liver and spleen based on watershed algorithm, improve the accuracy and the robustness of the liver and spleen segmentation and evaluate a new semi-automatic approach with the manual for liver segmentation. To validate the segmentation technique proposed, we have tested it on several images. Our segmentation approach is evaluated by comparing our results with the manual segmentation performed by an expert. The experimental results are described in the last part of this work. The system has been evaluated by computing the sensitivity and specificity between the semi-automatically segmented (liver and spleen) contour and the manually contour traced by radiological experts. Liver segmentation has achieved the sensitivity and specificity; sens Liver=96% and specif Liver=99% respectively. Spleen segmentation achieves similar, promising results sens Spleen=95% and specif Spleen=99%.

Keywords: CT images, liver and spleen segmentation, anisotropic diffusion filter, morphological filters, watershed algorithm

Procedia PDF Downloads 325
5616 Fast Fourier Transform-Based Steganalysis of Covert Communications over Streaming Media

Authors: Jinghui Peng, Shanyu Tang, Jia Li

Abstract:

Steganalysis seeks to detect the presence of secret data embedded in cover objects, and there is an imminent demand to detect hidden messages in streaming media. This paper shows how a steganalysis algorithm based on Fast Fourier Transform (FFT) can be used to detect the existence of secret data embedded in streaming media. The proposed algorithm uses machine parameter characteristics and a network sniffer to determine whether the Internet traffic contains streaming channels. The detected streaming data is then transferred from the time domain to the frequency domain through FFT. The distributions of power spectra in the frequency domain between original VoIP streams and stego VoIP streams are compared in turn using t-test, achieving the p-value of 7.5686E-176 which is below the threshold. The results indicate that the proposed FFT-based steganalysis algorithm is effective in detecting the secret data embedded in VoIP streaming media.

Keywords: steganalysis, security, Fast Fourier Transform, streaming media

Procedia PDF Downloads 147
5615 A Memetic Algorithm Approach to Clustering in Mobile Wireless Sensor Networks

Authors: Masood Ahmad, Ataul Aziz Ikram, Ishtiaq Wahid

Abstract:

Wireless sensor network (WSN) is the interconnection of mobile wireless nodes with limited energy and memory. These networks can be deployed formany critical applications like military operations, rescue management, fire detection and so on. In flat routing structure, every node plays an equal role of sensor and router. The topology may change very frequently due to the mobile nature of nodes in WSNs. The topology maintenance may produce more overhead messages. To avoid topology maintenance overhead messages, an optimized cluster based mobile wireless sensor network using memetic algorithm is proposed in this paper. The nodes in this network are first divided into clusters. The cluster leaders then transmit data to that base station. The network is validated through extensive simulation study. The results show that the proposed technique has superior results compared to existing techniques.

Keywords: WSN, routing, cluster based, meme, memetic algorithm

Procedia PDF Downloads 481
5614 A Retrievable Genetic Algorithm for Efficient Solving of Sudoku Puzzles

Authors: Seyed Mehran Kazemi, Bahare Fatemi

Abstract:

Sudoku is a logic-based combinatorial puzzle game which is popular among people of different ages. Due to this popularity, computer softwares are being developed to generate and solve Sudoku puzzles with different levels of difficulty. Several methods and algorithms have been proposed and used in different softwares to efficiently solve Sudoku puzzles. Various search methods such as stochastic local search have been applied to this problem. Genetic Algorithm (GA) is one of the algorithms which have been applied to this problem in different forms and in several works in the literature. In these works, chromosomes with little or no information were considered and obtained results were not promising. In this paper, we propose a new way of applying GA to this problem which uses more-informed chromosomes than other works in the literature. We optimize the parameters of our GA using puzzles with different levels of difficulty. Then we use the optimized values of the parameters to solve various puzzles and compare our results to another GA-based method for solving Sudoku puzzles.

Keywords: genetic algorithm, optimization, solving Sudoku puzzles, stochastic local search

Procedia PDF Downloads 423