Search results for: home network
5150 Examining the Effects of Increasing Lexical Retrieval Attempts in Tablet-Based Naming Therapy for Aphasia
Authors: Jeanne Gallee, Sofia Vallila-Rohter
Abstract:
Technology-based applications are increasingly being utilized in aphasia rehabilitation as a means of increasing intensity of treatment and improving accessibility to treatment. These interactive therapies, often available on tablets, lead individuals to complete language and cognitive rehabilitation tasks that draw upon skills such as the ability to name items, recognize semantic features, count syllables, rhyme, and categorize objects. Tasks involve visual and auditory stimulus cues and provide feedback about the accuracy of a person’s response. Research has begun to examine the efficacy of tablet-based therapies for aphasia, yet much remains unknown about how individuals interact with these therapy applications. Thus, the current study aims to examine the efficacy of a tablet-based therapy program for anomia, further examining how strategy training might influence the way that individuals with aphasia engage with and benefit from therapy. Individuals with aphasia are enrolled in one of two treatment paradigms: traditional therapy or strategy therapy. For ten weeks, all participants receive 2 hours of weekly in-house therapy using Constant Therapy, a tablet-based therapy application. Participants are provided with iPads and are additionally encouraged to work on therapy tasks for one hour a day at home (home logins). For those enrolled in traditional therapy, in-house sessions involve completing therapy tasks while a clinician researcher is present. For those enrolled in the strategy training group, in-house sessions focus on limiting cue use in order to maximize lexical retrieval attempts and naming opportunities. The strategy paradigm is based on the principle that retrieval attempts may foster long-term naming gains. Data have been collected from 7 participants with aphasia (3 in the traditional therapy group, 4 in the strategy training group). We examine cue use, latency of responses and accuracy through the course of therapy, comparing results across group and setting (in-house sessions vs. home logins).Keywords: aphasia, speech-language pathology, traumatic brain injury, language
Procedia PDF Downloads 2045149 Exploring the Role of Humorous Dialogues in Advertisements of Pakistani Network Companies: Analysis of Discourses through Multi-Modal Critical Approach
Authors: Jane E. Alam Solangi
Abstract:
The contribution of the study is to explore the important part of humorous dialogues in cellular network advertisements. This promotes the message of valuable construction and promotion of network companies in Pakistan that employ different and broad techniques to give promotion to selling products. It merely instigates the consumers to buy it. The results of the study after analysis of its collected data gives a vision that advertisers of network advertisements use humorous dialogues as a significant device to the greater level. The source of entertainment in the advertisement is accompanied by the texts and humorous discourses to influence buying decisions of the consumers. Therefore, it tends to neutralize personal and social based values. The earlier contribution of scholars presented that the technical employment of humorous devices leads to the successful market of the relevant products. In order to analyze the humorous discourse devices, the approach of multi-modality of Fairclough (1989) is used. It is accompanied by the framework of Kress and van Leeuwen’s (1996). It analyzes the visual graph of the grammar. The overall findings in the study verified the role of humorous devices in the captivation of consumers’ decision to buy the product that interests them. Therefore, the role of humor acts as a breaker of the monotonous rhythm of advertisements.Keywords: advertisements, devices, humorous, multi-modality, networks, Pakistan
Procedia PDF Downloads 1065148 The SEMONT Monitoring and Risk Assessment of Environmental EMF Pollution
Authors: Dragan Kljajic, Nikola Djuric, Karolina Kasas-Lazetic, Danka Antic
Abstract:
Wireless communications have been expanded very fast in recent decades. This technology relies on an extensive network of base stations and antennas, using radio frequency signals to transmit information. Devices that use wireless communication, while offering various services, basically act as sources of non-ionizing electromagnetic fields (EMF). Such devices are permanently present in the human vicinity and almost constantly radiate, causing EMF pollution of the environment. This fact has initiated development of modern systems for observation of the EMF pollution, as well as for risk assessment. This paper presents the Serbian electromagnetic field monitoring network – SEMONT, designed for automated, remote and continuous broadband monitoring of EMF in the environment. Measurement results of the SEMONT monitoring at one of the test locations, within the main campus of the University of Novi Sad, are presented and discussed, along with corresponding exposure assessment of the general population, regarding the Serbian legislation.Keywords: EMF monitoring, exposure assessment, sensor nodes, wireless network
Procedia PDF Downloads 2645147 Predictors of Lost to Follow-Up among HIV Patients Attending Anti-Retroviral Therapy Treatment Centers in Nigeria
Authors: Oluwasina Folajinmi, Kate Ssamulla, Penninah Lutung, Daniel Reijer
Abstract:
Background: Despite of well-verified benefits of anti-retroviral therapy (ART) in prolonging life expectancy being lost to follow-up (LTFU) presents a challenge to the success of ART programs in resource limited countries like Nigeria. In several studies of ART programs in developing countries, researchers have reported that there has been a high rate of LTFU among patients receiving care and treatment at ART treatment centers. This study seeks to determine the cause of LTFU among HIV clients. Method: A descriptive cross sectional study focused on a population of 9,280 persons living with HIV/AIDS who were enrolled in nine treatment centers in Nigeria (both pre-ART and ART patients were included). Out of the total population, 1752 (18.9%) were found to be LTFU. Of this group we randomly selected 1200 clients (68.5%) their d patients’ information was generated through a database. Data on demographics and CD4 counts, causes of LTFU were analyzed and summarized. Results: Out of 1200 LTFU clients selected, 462 (38.5%) were on ART; 341 clients (73.8%) had CD4 level < 500cell/µL and 738 (61.5%) on pre-ART had CD4 level >500/µL. In our records we found telephone number for 675 (56.1%) of these clients. 675 (56.1%) were owners of a phone. The majority of the client’s 731 (60.9%) were living at not more than 25km away from the ART center. A majority were females (926 or 77.2%) while 274 (22.8%) were male. 675 (56.1%) clients were reported traced via telephone and home address. 326 (27.2%) of clients phone numbers were not reachable; 173 (14.4%) of telephone numbers were incomplete. 71 (5.9%) had relocated due to communal crises and expert client trackers reported that some patient could not afford transportation to ART centers. Conclusion: This study shows that, low health education levels, poverty, relocations and lack of reliable phone contact were major predictors of LTFU. Periodic updates of home addresses, telephone contacts including at least two next of kin, phone text messages and home visits may improve follow up. Early and consistent tracking of missed appointments is crucial. Creation of more ART decentralized centres are needed to avoid long distances.Keywords: anti-retroviral therapy, HIV/AIDS, predictors, lost to follow up
Procedia PDF Downloads 3045146 Impact of Combined Heat and Power (CHP) Generation Technology on Distribution Network Development
Authors: Sreto Boljevic
Abstract:
In the absence of considerable investment in electricity generation, transmission and distribution network (DN) capacity, the demand for electrical energy will quickly strain the capacity of the existing electrical power network. With anticipated growth and proliferation of Electric vehicles (EVs) and Heat pump (HPs) identified the likelihood that the additional load from EV changing and the HPs operation will require capital investment in the DN. While an area-wide implementation of EVs and HPs will contribute to the decarbonization of the energy system, they represent new challenges for the existing low-voltage (LV) network. Distributed energy resources (DER), operating both as part of the DN and in the off-network mode, have been offered as a means to meet growing electricity demand while maintaining and ever-improving DN reliability, resiliency and power quality. DN planning has traditionally been done by forecasting future growth in demand and estimating peak load that the network should meet. However, new problems are arising. These problems are associated with a high degree of proliferation of EVs and HPs as load imposes on DN. In addition to that, the promotion of electricity generation from renewable energy sources (RES). High distributed generation (DG) penetration and a large increase in load proliferation at low-voltage DNs may have numerous impacts on DNs that create issues that include energy losses, voltage control, fault levels, reliability, resiliency and power quality. To mitigate negative impacts and at a same time enhance positive impacts regarding the new operational state of DN, CHP system integration can be seen as best action to postpone/reduce capital investment needed to facilitate promotion and maximize benefits of EVs, HPs and RES integration in low-voltage DN. The aim of this paper is to generate an algorithm by using an analytical approach. Algorithm implementation will provide a way for optimal placement of the CHP system in the DN in order to maximize the integration of RES and increase in proliferation of EVs and HPs.Keywords: combined heat & power (CHP), distribution networks, EVs, HPs, RES
Procedia PDF Downloads 2035145 Proposing a Boundary Coverage Algorithm for Underwater Sensor Network
Authors: Seyed Mohsen Jameii
Abstract:
Wireless underwater sensor networks are a type of sensor networks that are located in underwater environments and linked together by acoustic waves. The application of these kinds of network includes monitoring of pollutants (chemical, biological, and nuclear), oil fields detection, prediction of the likelihood of a tsunami in coastal areas, the use of wireless sensor nodes to monitor the passing submarines, and determination of appropriate locations for anchoring ships. This paper proposes a boundary coverage algorithm for intrusion detection in underwater sensor networks. In the first phase of the proposed algorithm, optimal deployment of nodes is done in the water. In the second phase, after the employment of nodes at the proper depth, clustering is executed to reduce the exchanges of messages between the sensors. In the third phase, the algorithm of "divide and conquer" is used to save energy and increase network efficiency. The simulation results demonstrate the efficiency of the proposed algorithm.Keywords: boundary coverage, clustering, divide and conquer, underwater sensor nodes
Procedia PDF Downloads 3435144 Guidelines of Elderly Care Businesses in Chiang Mai, Thailand
Authors: Nattanon Peerapen, Wanwisa Insang, Lanlalin Khumman, Wipada Juanprajak, Sikan Na Chiangmai, Wacharin Suksanan, Thanasak Tantinakom
Abstract:
This research was intended to study guidelines from elderly care businesses that are continuously growing and rapidly benefitting because these businesses respond to the needs of those who cannot find time to in take care of their elderly people, including intimate care services from the caregivers, thus rapidly expanding elderly care businesses to have recently become interesting domestically and internationally. Chiang Mai is a popular choice for the businesses because of excellent weathers and simple and peaceful ways of living, thus making the businesses grow rapidly and continuously. The sample group consisted of 5 persons, executives and staff, from each of the 4 businesses that provide elderly cares chosen to interview by the researches, which were Vivo Bene Village, Baan Donsuk, PT Nursing Home, and PD Nursing Home. The interviews indicated that most elderly care businesses are located in rural areas with moving traffics, shady environments, and far from crowded urban areas since elderly people need peacefulness and clean environments that will affect their physical and mental health directly. The sections within the businesses are distinctly divided with definite duties assigned to each personnel, including welfares, remunerations, uniforms, accommodations, food and social occasions, such as birthdays or New Year festivities.Keywords: elderly, elderly care, business strategy, success factors
Procedia PDF Downloads 3735143 Research on Online Consumption of College Students in China with Stimulate-Organism-Reaction Driven Model
Authors: Wei Lu
Abstract:
With the development of information technology in China, network consumption is becoming more and more popular. As a special group, college students have a high degree of education and distinct opinions and personalities. In the future, the key groups of network consumption have gradually become the focus groups of network consumption. Studying college students’ online consumption behavior has important theoretical significance and practical value. Based on the Stimulus-Organism-Response (SOR) driving model and the structural equation model, this paper establishes the influencing factors model of College students’ online consumption behavior, evaluates and amends the model by using SPSS and AMOS software, analyses and determines the positive factors of marketing college students’ consumption, and provides an effective basis for guiding and promoting college student consumption.Keywords: college students, online consumption, stimulate-organism-reaction driving model, structural equation model
Procedia PDF Downloads 1535142 Model and Algorithm for Dynamic Wireless Electric Vehicle Charging Network Design
Authors: Trung Hieu Tran, Jesse O'Hanley, Russell Fowler
Abstract:
When in-wheel wireless charging technology for electric vehicles becomes mature, a need for such integrated charging stations network development is essential. In this paper, we thus investigate the optimisation problem of in-wheel wireless electric vehicle charging network design. A mixed-integer linear programming model is formulated to solve into optimality the problem. In addition, a meta-heuristic algorithm is proposed for efficiently solving large-sized instances within a reasonable computation time. A parallel computing strategy is integrated into the algorithm to speed up its computation time. Experimental results carried out on the benchmark instances show that our model and algorithm can find the optimal solutions and their potential for practical applications.Keywords: electric vehicle, wireless charging station, mathematical programming, meta-heuristic algorithm, parallel computing
Procedia PDF Downloads 825141 Numerical Investigation of Wastewater Rheological Characteristics on Flow Field Inside a Sewage Network
Authors: Seyed-Mohammad-Kazem Emami, Behrang Saki, Majid Mohammadian
Abstract:
The wastewater flow field inside a sewage network including pipe and manhole was investigated using a Computational Fluid Dynamics (CFD) model. The numerical model is developed by incorporating a rheological model to calculate the viscosity of wastewater fluid by means of open source toolbox OpenFOAM. The rheological properties of prepared wastewater fluid suspensions are first measured using a BrookField LVDVII Pro+ viscometer with an enhanced UL adapter and then correlated the suitable rheological viscosity model values from the measured rheological properties. The results show the significant effects of rheological characteristics of wastewater fluid on the flow domain of sewer system. Results were compared and discussed with the commonly used Newtonian model to evaluate the differences for velocity profile, pressure and shear stress. Keywords: Non-Newtonian flows, Wastewater, Numerical simulation, Rheology, Sewage Network
Procedia PDF Downloads 1325140 Assessment of Planet Image for Land Cover Mapping Using Soft and Hard Classifiers
Authors: Lamyaa Gamal El-Deen Taha, Ashraf Sharawi
Abstract:
Planet image is a new data source from planet lab. This research is concerned with the assessment of Planet image for land cover mapping. Two pixel based classifiers and one subpixel based classifier were compared. Firstly, rectification of Planet image was performed. Secondly, a comparison between minimum distance, maximum likelihood and neural network classifications for classification of Planet image was performed. Thirdly, the overall accuracy of classification and kappa coefficient were calculated. Results indicate that neural network classification is best followed by maximum likelihood classifier then minimum distance classification for land cover mapping.Keywords: planet image, land cover mapping, rectification, neural network classification, multilayer perceptron, soft classifiers, hard classifiers
Procedia PDF Downloads 1885139 An Inverse Optimal Control Approach for the Nonlinear System Design Using ANN
Authors: M. P. Nanda Kumar, K. Dheeraj
Abstract:
The design of a feedback controller, so as to minimize a given performance criterion, for a general non-linear dynamical system is difficult; if not impossible. But for a large class of non-linear dynamical systems, the open loop control that minimizes a performance criterion can be obtained using calculus of variations and Pontryagin’s minimum principle. In this paper, the open loop optimal trajectories, that minimizes a given performance measure, is used to train the neural network whose inputs are state variables of non-linear dynamical systems and the open loop optimal control as the desired output. This trained neural network is used as the feedback controller. In other words, attempts are made here to solve the “inverse optimal control problem” by using the state and control trajectories that are optimal in an open loop sense.Keywords: inverse optimal control, radial basis function, neural network, controller design
Procedia PDF Downloads 5545138 Positive Bias and Length Bias in Deep Neural Networks for Premises Selection
Authors: Jiaqi Huang, Yuheng Wang
Abstract:
Premises selection, the task of selecting a set of axioms for proving a given conjecture, is a major bottleneck in automated theorem proving. An array of deep-learning-based methods has been established for premises selection, but a perfect performance remains challenging. Our study examines the inaccuracy of deep neural networks in premises selection. Through training network models using encoded conjecture and axiom pairs from the Mizar Mathematical Library, two potential biases are found: the network models classify more premises as necessary than unnecessary, referred to as the ‘positive bias’, and the network models perform better in proving conjectures that paired with more axioms, referred to as ‘length bias’. The ‘positive bias’ and ‘length bias’ discovered could inform the limitation of existing deep neural networks.Keywords: automated theorem proving, premises selection, deep learning, interpreting deep learning
Procedia PDF Downloads 1845137 Integrating Artificial Neural Network and Taguchi Method on Constructing the Real Estate Appraisal Model
Authors: Mu-Yen Chen, Min-Hsuan Fan, Chia-Chen Chen, Siang-Yu Jhong
Abstract:
In recent years, real estate prediction or valuation has been a topic of discussion in many developed countries. Improper hype created by investors leads to fluctuating prices of real estate, affecting many consumers to purchase their own homes. Therefore, scholars from various countries have conducted research in real estate valuation and prediction. With the back-propagation neural network that has been popular in recent years and the orthogonal array in the Taguchi method, this study aimed to find the optimal parameter combination at different levels of orthogonal array after the system presented different parameter combinations, so that the artificial neural network obtained the most accurate results. The experimental results also demonstrated that the method presented in the study had a better result than traditional machine learning. Finally, it also showed that the model proposed in this study had the optimal predictive effect, and could significantly reduce the cost of time in simulation operation. The best predictive results could be found with a fewer number of experiments more efficiently. Thus users could predict a real estate transaction price that is not far from the current actual prices.Keywords: artificial neural network, Taguchi method, real estate valuation model, investors
Procedia PDF Downloads 4905136 Technical and Economic Evaluation of Harmonic Mitigation from Offshore Wind Power Plants by Transmission Owners
Authors: A. Prajapati, K. L. Koo, F. Ghassemi, M. Mulimakwenda
Abstract:
In the UK, as the volume of non-linear loads connected to transmission grid continues to rise steeply, the harmonic distortion levels on transmission network are becoming a serious concern for the network owners and system operators. This paper outlines the findings of the study conducted to verify the proposal that the harmonic mitigation could be optimized and can be managed economically and effectively at the transmission network level by the Transmission Owner (TO) instead of the individual polluter connected to the grid. Harmonic mitigation studies were conducted on selected regions of the transmission network in England for recently connected offshore wind power plants to strategize and optimize selected harmonic filter options. The results – filter volume and capacity – were then compared against the mitigation measures adopted by the individual connections. Estimation ratios were developed based on the actual installed and optimal proposed filters. These estimation ratios were then used to derive harmonic filter requirements for future contracted connections. The study has concluded that a saving of 37% in the filter volume/capacity could be achieved if the TO is to centrally manage the harmonic mitigation instead of individual polluter installing their own mitigation solution.Keywords: C-type filter, harmonics, optimization, offshore wind farms, interconnectors, HVDC, renewable energy, transmission owner
Procedia PDF Downloads 1595135 Water Resources Green Efficiency in China: Evaluation, Spatial Association Network Structure Analysis, and Influencing Factors
Authors: Tingyu Zhang
Abstract:
This paper utilizes the Super-SBM model to assess water resources green efficiency (WRGE) among provinces in China and investigate its spatial and temporal features, based on the characteristic framework of “economy-environment-society.” The social network analysis is employed to examine the network pattern and spatial interaction of WRGE. Further, the quadratic assignment procedure method is utilized for examining the influencing factors of the spatial association of WRGE regarding “relationship.” The study reveals that: (1) the spatial distribution of WRGE demonstrates a distribution pattern of Eastern>Western>Central; (2) a remarkable spatial association exists among provinces; however, no strict hierarchical structure is observed. The internal structure of the WRGE network is characterized by the feature of "Eastern strong and Western weak". The block model analysis discovers that the members of the “net spillover” and “two-way spillover” blocks are mostly in the eastern and central provinces; “broker” block, which plays an intermediary role, is mostly in the central provinces; and members of the “net beneficiary” block are mostly in the western region. (3) Differences in economic development, degree of urbanization, water use environment, and water management have significant impacts on the spatial connection of WRGE. This study is dedicated to the realization of regional linkages and synergistic enhancement of WRGE, which provides a meaningful basis for building a harmonious society of human and water coexistence.Keywords: water resources green efficiency, super-SBM model, social network analysis, quadratic assignment procedure
Procedia PDF Downloads 645134 Research on Resilience-Oriented Disintegration in System-of-System
Authors: Hang Yang, Jiahao Liu, Jichao Li, Kewei Yang, Minghao Li, Bingfeng Ge
Abstract:
The system-of-systems (SoS) are utilized to characterize networks formed by integrating individual complex systems that demonstrate interdependence and interconnectedness. Research on the disintegration issue in SoS is significant in improving network survivability, maintaining network security, and optimizing SoS architecture. Accordingly, this study proposes an integrated framework called resilience-oriented disintegration in SoS (SoSRD), for modeling and solving the issue of SoS disintegration. Firstly, a SoS disintegration index (SoSDI) is presented to evaluate the disintegration effect of SoS. This index provides a practical description of the disintegration process and is the first integration of the network disintegration model and resilience models. Subsequently, we propose a resilience-oriented disintegration method based on reinforcement learning (RDRL) to enhance the efficiency of SoS disintegration. This method is not restricted by the problem scenario as well as considering the coexistence of disintegration (node/link removal) and recovery (node/link addition) during the process of SoS disintegration. Finally, the effectiveness and superiority of the proposed SoSRD are demonstrated through a case study. We demonstrate that our proposed framework outperforms existing indexes and methods in both node and link disintegration scenarios, providing a fresh perspective on network disintegration. The findings provide crucial insights into dismantling harmful SoS and designing a more resilient SoS.Keywords: system-of-systems, disintegration index, resilience, reinforcement learning
Procedia PDF Downloads 185133 Local Image Features Emerging from Brain Inspired Multi-Layer Neural Network
Authors: Hui Wei, Zheng Dong
Abstract:
Object recognition has long been a challenging task in computer vision. Yet the human brain, with the ability to rapidly and accurately recognize visual stimuli, manages this task effortlessly. In the past decades, advances in neuroscience have revealed some neural mechanisms underlying visual processing. In this paper, we present a novel model inspired by the visual pathway in primate brains. This multi-layer neural network model imitates the hierarchical convergent processing mechanism in the visual pathway. We show that local image features generated by this model exhibit robust discrimination and even better generalization ability compared with some existing image descriptors. We also demonstrate the application of this model in an object recognition task on image data sets. The result provides strong support for the potential of this model.Keywords: biological model, feature extraction, multi-layer neural network, object recognition
Procedia PDF Downloads 5445132 Effect of Filler Size and Shape on Positive Temperature Coefficient Effect
Authors: Eric Asare, Jamie Evans, Mark Newton, Emiliano Bilotti
Abstract:
Two types of filler shapes (sphere and flakes) and three different sizes are employed to study the size effect on PTC. The composite is prepared using a mini-extruder with high-density polyethylene (HDPE) as the matrix. A computer modelling is used to fit the experimental results. The percolation threshold decreases with decreasing filler size and this was observed for both the spherical particles as well as the flakes. This was caused by the decrease in interparticle distance with decreasing filler size. The 100 µm particles showed a larger PTC intensity compared to the 5 µm particles for the metal coated glass sphere and flake. The small particles have a large surface area and agglomeration and this makes it difficult for the conductive network to e disturbed. Increasing the filler content decreased the PTC intensity and this is due to an increase in the conductive network within the polymer matrix hence more energy is needed to disrupt the network.Keywords: positive temperature coefficient (PTC) effect, conductive polymer composite (CPC), electrical conductivity
Procedia PDF Downloads 4295131 Resilience-Based Emergency Bridge Inspection Routing and Repair Scheduling under Uncertainty
Authors: Zhenyu Zhang, Hsi-Hsien Wei
Abstract:
Highway network systems play a vital role in disaster response for disaster-damaged areas. Damaged bridges in such network systems can impede disaster response by disrupting transportation of rescue teams or humanitarian supplies. Therefore, emergency inspection and repair of bridges to quickly collect damage information of bridges and recover the functionality of highway networks is of paramount importance to disaster response. A widely used measure of a network’s capability to recover from disasters is resilience. To enhance highway network resilience, plenty of studies have developed various repair scheduling methods for the prioritization of bridge-repair tasks. These methods assume that repair activities are performed after the damage to a highway network is fully understood via inspection, although inspecting all bridges in a regional highway network may take days, leading to the significant delay in repairing bridges. In reality, emergency repair activities can be commenced as soon as the damage data of some bridges that are crucial to emergency response are obtained. Given that emergency bridge inspection and repair (EBIR) activities are executed simultaneously in the response phase, the real-time interactions between these activities can occur – the blockage of highways due to repair activities can affect inspection routes which in turn have an impact on emergency repair scheduling by providing real-time information on bridge damages. However, the impact of such interactions on the optimal emergency inspection routes (EIR) and emergency repair schedules (ERS) has not been discussed in prior studies. To overcome the aforementioned deficiencies, this study develops a routing and scheduling model for EBIR while accounting for real-time inspection-repair interactions to maximize highway network resilience. A stochastic, time-dependent integer program is proposed for the complex and real-time interacting EBIR problem given multiple inspection and repair teams at locations as set post-disaster. A hybrid genetic algorithm that integrates a heuristic approach into a traditional genetic algorithm to accelerate the evolution process is developed. Computational tests are performed using data from the 2008 Wenchuan earthquake, based on a regional highway network in Sichuan, China, consisting of 168 highway bridges on 36 highways connecting 25 cities/towns. The results show that the simultaneous implementation of bridge inspection and repair activities can significantly improve the highway network resilience. Moreover, the deployment of inspection and repair teams should match each other, and the network resilience will not be improved once the unilateral increase in inspection teams or repair teams exceeds a certain level. This study contributes to both knowledge and practice. First, the developed mathematical model makes it possible for capturing the impact of real-time inspection-repair interactions on inspection routing and repair scheduling and efficiently deriving optimal EIR and ERS on a large and complex highway network. Moreover, this study contributes to the organizational dimension of highway network resilience by providing optimal strategies for highway bridge management. With the decision support tool, disaster managers are able to identify the most critical bridges for disaster management and make decisions on proper inspection and repair strategies to improve highway network resilience.Keywords: disaster management, emergency bridge inspection and repair, highway network, resilience, uncertainty
Procedia PDF Downloads 1115130 The Effectiveness of Group Spiritual Therapy on Increasing the Life Expectancy and Mental Health in Elderlies
Authors: Seyed Reza Mirmahdi, Seyedeh Maryam Hashemi Jabali
Abstract:
This research was conducted to evaluate the effects of group spiritual therapy on increasing the life expectancy and mental health among the elderlies. This was a quasi-experimental research using a pretest-posttest design with a control group conducted over a population including all the elderly people of Tehran in 2012-13. A randomized sampling method was used to select 30 elderly people living in Parham nursing home that were then randomly assigned into two control and experimental groups of 15 people each. The instruments used were Miller’s life expectancy and mental health test (SCL.90.R) standard questionnaires. Individuals in experimental group received 12 sessions of group spiritual therapy while those in control group did not receive any kind of therapy. The tests were performed again for all the subjects (30 individuals) at the end of the experiment. To test the hypotheses, the data collected by questionnaires were analyzed using descriptive methods through relevant tables and charts and also inferential methods through the analysis of covariance using the SPSS software. Results showed that group spiritual therapy leads to a significant increase in both mental health and life expectancy in the experimental group of elderlies living in Parham nursing home compared to those in the control group.Keywords: spiritual therapy, life expectancy, mental health, elderlies
Procedia PDF Downloads 5775129 A Framework for Security Risk Level Measures Using CVSS for Vulnerability Categories
Authors: Umesh Kumar Singh, Chanchala Joshi
Abstract:
With increasing dependency on IT infrastructure, the main objective of a system administrator is to maintain a stable and secure network, with ensuring that the network is robust enough against malicious network users like attackers and intruders. Security risk management provides a way to manage the growing threats to infrastructures or system. This paper proposes a framework for risk level estimation which uses vulnerability database National Institute of Standards and Technology (NIST) National Vulnerability Database (NVD) and the Common Vulnerability Scoring System (CVSS). The proposed framework measures the frequency of vulnerability exploitation; converges this measured frequency with standard CVSS score and estimates the security risk level which helps in automated and reasonable security management. In this paper equation for the Temporal score calculation with respect to availability of remediation plan is derived and further, frequency of exploitation is calculated with determined temporal score. The frequency of exploitation along with CVSS score is used to calculate the security risk level of the system. The proposed framework uses the CVSS vectors for risk level estimation and measures the security level of specific network environment, which assists system administrator for assessment of security risks and making decision related to mitigation of security risks.Keywords: CVSS score, risk level, security measurement, vulnerability category
Procedia PDF Downloads 3225128 A Distributed Mobile Agent Based on Intrusion Detection System for MANET
Authors: Maad Kamal Al-Anni
Abstract:
This study is about an algorithmic dependence of Artificial Neural Network on Multilayer Perceptron (MPL) pertaining to the classification and clustering presentations for Mobile Adhoc Network vulnerabilities. Moreover, mobile ad hoc network (MANET) is ubiquitous intelligent internetworking devices in which it has the ability to detect their environment using an autonomous system of mobile nodes that are connected via wireless links. Security affairs are the most important subject in MANET due to the easy penetrative scenarios occurred in such an auto configuration network. One of the powerful techniques used for inspecting the network packets is Intrusion Detection System (IDS); in this article, we are going to show the effectiveness of artificial neural networks used as a machine learning along with stochastic approach (information gain) to classify the malicious behaviors in simulated network with respect to different IDS techniques. The monitoring agent is responsible for detection inference engine, the audit data is collected from collecting agent by simulating the node attack and contrasted outputs with normal behaviors of the framework, whenever. In the event that there is any deviation from the ordinary behaviors then the monitoring agent is considered this event as an attack , in this article we are going to demonstrate the signature-based IDS approach in a MANET by implementing the back propagation algorithm over ensemble-based Traffic Table (TT), thus the signature of malicious behaviors or undesirable activities are often significantly prognosticated and efficiently figured out, by increasing the parametric set-up of Back propagation algorithm during the experimental results which empirically shown its effectiveness for the ratio of detection index up to 98.6 percentage. Consequently it is proved in empirical results in this article, the performance matrices are also being included in this article with Xgraph screen show by different through puts like Packet Delivery Ratio (PDR), Through Put(TP), and Average Delay(AD).Keywords: Intrusion Detection System (IDS), Mobile Adhoc Networks (MANET), Back Propagation Algorithm (BPA), Neural Networks (NN)
Procedia PDF Downloads 1955127 Maximizing Coverage with Mobile Crime Cameras in a Stochastic Spatiotemporal Bipartite Network
Authors: (Ted) Edward Holmberg, Mahdi Abdelguerfi, Elias Ioup
Abstract:
This research details a coverage measure for evaluating the effectiveness of observer node placements in a spatial bipartite network. This coverage measure can be used to optimize the configuration of stationary or mobile spatially oriented observer nodes, or a hybrid of the two, over time in order to fully utilize their capabilities. To demonstrate the practical application of this approach, we construct a SpatioTemporal Bipartite Network (STBN) using real-time crime center (RTCC) camera nodes and NOPD calls for service (CFS) event nodes from New Orleans, La (NOLA). We use the coverage measure to identify optimal placements for moving mobile RTCC camera vans to improve coverage of vulnerable areas based on temporal patterns.Keywords: coverage measure, mobile node dynamics, Monte Carlo simulation, observer nodes, observable nodes, spatiotemporal bipartite knowledge graph, temporal spatial analysis
Procedia PDF Downloads 1165126 Review on Application of DVR in Compensation of Voltage Harmonics in Power Systems
Authors: S. Sudhharani
Abstract:
Energy distribution networks are the main link between the energy industry and consumers and are subject to the most scrutiny and testing of any category. As a result, it is important to monitor energy levels during the distribution phase. Power distribution networks, on the other hand, remain subject to common problems, including voltage breakdown, power outages, harmonics, and capacitor switching, all of which disrupt sinusoidal waveforms and reduce the quality and power of the network. Using power appliances in the form of custom power appliances is one way to deal with energy quality issues. Dynamic Voltage Restorer (DVR), integrated with network and distribution networks, is one of these devices. At the same time, by injecting voltage into the system, it can adjust the voltage amplitude and phase in the network. In the form of injections and three-phase syncing, it is used to compensate for the difficulty of energy quality. This article examines the recent use of DVR for power compensation and provides data on the control of each DVR in distribution networks.Keywords: dynamic voltage restorer (DVR), power quality, distribution networks, control systems(PWM)
Procedia PDF Downloads 1385125 Woman, House, Identity: The Study of the Role of House in Constructing the Contemporary Dong Minority Woman’s Identity
Authors: Sze Wai Veera Fung, Peter W. Ferretto
Abstract:
Similar to most ethnic groups in China, men of the Dong minority hold the primary position in policymaking, moral authority, social values, and the control of the property. As the spatial embodiment of the patriarchal ideals, the house plays a significant role in producing and reproducing the distinctive gender status within the Dong society. Nevertheless, Dong women do not see their home as a cage of confinement, nor do they see themselves as a victim of oppression. For these women with reference to their productive identity, a house is a dwelling place with manifold meanings, including a proof of identity, an economic instrument, and a public resource operating on the community level. This paper examines the role of the house as a central site for identity construction and maintenance for the southern dialect Dong minority women in Hunan, China. Drawing on recent interviews with the Dong women, this study argues that women as productive individuals have a strong influence on the form of their house and the immediate environment, regardless of the male-dominated social construct of the Dong society. The aim of this study is not to produce a definitive relationship between women, house, and identity. Rather, it seeks to offer an alternative lens into the complexity and diversity of gender dynamics operating in and beyond the boundary of the house in the context of contemporary rural China.Keywords: conception of home, Dong minority, house, rural China, woman’s identity
Procedia PDF Downloads 1415124 A Mechanical Diagnosis Method Based on Vibration Fault Signal down-Sampling and the Improved One-Dimensional Convolutional Neural Network
Authors: Bowei Yuan, Shi Li, Liuyang Song, Huaqing Wang, Lingli Cui
Abstract:
Convolutional neural networks (CNN) have received extensive attention in the field of fault diagnosis. Many fault diagnosis methods use CNN for fault type identification. However, when the amount of raw data collected by sensors is massive, the neural network needs to perform a time-consuming classification task. In this paper, a mechanical fault diagnosis method based on vibration signal down-sampling and the improved one-dimensional convolutional neural network is proposed. Through the robust principal component analysis, the low-rank feature matrix of a large amount of raw data can be separated, and then down-sampling is realized to reduce the subsequent calculation amount. In the improved one-dimensional CNN, a smaller convolution kernel is used to reduce the number of parameters and computational complexity, and regularization is introduced before the fully connected layer to prevent overfitting. In addition, the multi-connected layers can better generalize classification results without cumbersome parameter adjustments. The effectiveness of the method is verified by monitoring the signal of the centrifugal pump test bench, and the average test accuracy is above 98%. When compared with the traditional deep belief network (DBN) and support vector machine (SVM) methods, this method has better performance.Keywords: fault diagnosis, vibration signal down-sampling, 1D-CNN
Procedia PDF Downloads 1335123 Activation-TV® to Reduce Elderly Loneliness and Insecurity
Authors: Hannele Laaksonen, Seija Nyqvist, Kari Nurmes
Abstract:
Objectives: In the year 2011 the City of Vaasa started to develop know-how in the technology and the introduction of services for aging people in cooperation with the Polytechnic Novia University of Applied Sciences and VAMK, University of Applied Sciences. The project´s targets included: to help elderly people to maintain their ability to function, to provide them social and physical activities, to prevent their social exclusion, to decrease their feelings of loneliness and insecurity and to develop their technical know-how. Methods: The project was built based on open source code, tailor-made service system and user interface for the elderly living at home and their families, based on the users´ expectations and experiences of services. Activation-TV®-project vas carried out 1.4.2011-31.3.2014. A pilot group of eight elderly persons, who were living at home, were selected to the project. All necessary technical means as well as guidance and teaching equipment were provided to the pilot group. The students of University of Applied Sciences (VAMK, Novia) and employees of Center of Ageing were made all programs to the Activation-TV®. The project group were interviewed after and before intervention. The data were evaluated both qualitatively and quantitatively. Results: The built service includes a video library, a group room for interactive programs and a personal room for bilateral meetings and direct shipment. The program is bilingual and produced in both national languages. The Activation TV® reduced elderly peoples´ (n=8) feelings of emptiness, added mental well-being and quality of life with social contacts. Relatives felt, that they were able to get in to older peoples´ everyday life with Activation TV®. Discussion: The built application was tailored to the model that has not been developed elsewhere in Finland. This model can be copied from one server to another and thus transferred to other municipalities but the program requires its own personnel system management and maintenance as well as program production cooperation between the different actors. This service can be used for the elderly who are living at home without dementia.Keywords: mental well-being, quality of life, elderly people, Finland
Procedia PDF Downloads 3445122 Classification of IoT Traffic Security Attacks Using Deep Learning
Authors: Anum Ali, Kashaf ad Dooja, Asif Saleem
Abstract:
The future smart cities trend will be towards Internet of Things (IoT); IoT creates dynamic connections in a ubiquitous manner. Smart cities offer ease and flexibility for daily life matters. By using small devices that are connected to cloud servers based on IoT, network traffic between these devices is growing exponentially, whose security is a concerned issue, since ratio of cyber attack may make the network traffic vulnerable. This paper discusses the latest machine learning approaches in related work further to tackle the increasing rate of cyber attacks, machine learning algorithm is applied to IoT-based network traffic data. The proposed algorithm train itself on data and identify different sections of devices interaction by using supervised learning which is considered as a classifier related to a specific IoT device class. The simulation results clearly identify the attacks and produce fewer false detections.Keywords: IoT, traffic security, deep learning, classification
Procedia PDF Downloads 1545121 Neural Network Based Fluctuation Frequency Control in PV-Diesel Hybrid Power System
Authors: Heri Suryoatmojo, Adi Kurniawan, Feby A. Pamuji, Nursalim, Syaffaruddin, Herbert Innah
Abstract:
Photovoltaic (PV) system hybrid with diesel system is utilized widely for electrification in remote area. PV output power fluctuates due to uncertainty condition of temperature and sun irradiance. When the penetration of PV power is large, the reliability of the power utility will be disturbed and seriously impact the unstable frequency of system. Therefore, designing a robust frequency controller in PV-diesel hybrid power system is very important. This paper proposes new method of frequency control application in hybrid PV-diesel system based on artificial neural network (ANN). This method can minimize the frequency deviation without smoothing PV output power that controlled by maximum power point tracking (MPPT) method. The neural network algorithm controller considers average irradiance, change of irradiance and frequency deviation. In order the show the effectiveness of proposed algorithm, the addition of battery as energy storage system is also presented. To validate the proposed method, the results of proposed system are compared with the results of similar system using MPPT only. The simulation results show that the proposed method able to suppress frequency deviation smaller compared to the results of system using MPPT only.Keywords: energy storage system, frequency deviation, hybrid power generation, neural network algorithm
Procedia PDF Downloads 504