Search results for: dilute solution
4710 Of an 80 Gbps Passive Optical Network Using Time and Wavelength Division Multiplexing
Authors: Malik Muhammad Arslan, Muneeb Ullah, Dai Shihan, Faizan Khan, Xiaodong Yang
Abstract:
Internet Service Providers are driving endless demands for higher bandwidth and data throughput as new services and applications require higher bandwidth. Users want immediate and accurate data delivery. This article focuses on converting old conventional networks into passive optical networks based on time division and wavelength division multiplexing. The main focus of this research is to use a hybrid of time-division multiplexing and wavelength-division multiplexing to improve network efficiency and performance. In this paper, we design an 80 Gbps Passive Optical Network (PON), which meets the need of the Next Generation PON Stage 2 (NGPON2) proposed in this paper. The hybrid of the Time and Wavelength division multiplexing (TWDM) is said to be the best solution for the implementation of NGPON2, according to Full-Service Access Network (FSAN). To co-exist with or replace the current PON technologies, many wavelengths of the TWDM can be implemented simultaneously. By utilizing 8 pairs of wavelengths that are multiplexed and then transmitted over optical fiber for 40 Kms and on the receiving side, they are distributed among 256 users, which shows that the solution is reliable for implementation with an acceptable data rate. From the results, it can be concluded that the overall performance, Quality Factor, and bandwidth of the network are increased, and the Bit Error rate is minimized by the integration of this approach.Keywords: bit error rate, fiber to the home, passive optical network, time and wavelength division multiplexing
Procedia PDF Downloads 704709 Use of AI for the Evaluation of the Effects of Steel Corrosion in Mining Environments
Authors: Maria Luisa de la Torre, Javier Aroba, Jose Miguel Davila, Aguasanta M. Sarmiento
Abstract:
Steel is one of the most widely used materials in polymetallic sulfide mining installations. One of the main problems suffered by these facilities is the economic losses due to the corrosion of this material, which is accelerated and aggravated by the contact with acid waters generated in these mines when sulfides come into contact with oxygen and water. This generation of acidic water, in turn, is accelerated by the presence of acidophilic bacteria. In order to gain a more detailed understanding of this corrosion process and the interaction between steel and acidic water, a laboratory experiment was carried out in which carbon steel plates were introduced into four different solutions for 27 days: distilled water (BK), which tried to assimilate the effect produced by rain on this material, an acid solution from a mine with a high Fe2+/Fe3+ (PO) content, another acid solution of water from another mine with a high Fe3+/Fe2+ (PH) content and, finally, one that reproduced the acid mine water with a high Fe2+/Fe3+ content but in which there were no bacteria (ST). Every 24 hours, physicochemical parameters were measured and water samples were taken to carry out an analysis of the dissolved elements. The results of these measurements were processed using an explainable AI model based on fuzzy logic. It could be seen that, in all cases, there was an increase in pH, as well as in the concentrations of Fe and, in particular, Fe(II), as a consequence of the oxidation of the steel plates. Proportionally, the increase in Fe concentration was higher in PO and ST than in PH because Fe precipitates were produced in the latter. The rise of Fe(II) was proportionally much higher in PH and, especially in the first hours of exposure, because it started from a lower initial concentration of this ion. Although to a lesser extent than in PH, the greater increase in Fe(II) also occurred faster in PO than in ST, a consequence of the action of the catalytic bacteria. On the other hand, Cu concentrations decreased throughout the experiment (with the exception of distilled water, which initially had no Cu, as a result of an electrochemical process that generates a precipitation of Cu together with Fe hydroxides. This decrease is lower in PH because the high total acidity keeps it in solution for a longer time. With the application of an artificial intelligence tool, it has been possible to evaluate the effects of steel corrosion in mining environments, corroborating and extending what was obtained by means of classical statistics. Acknowledgments: This work has been supported by MCIU/AEI/10.13039/501100011033/FEDER, UE, throughout the project PID2021-123130OB-I00.Keywords: carbon steel, corrosion, acid mine drainage, artificial intelligence, fuzzy logic
Procedia PDF Downloads 204708 Magneto-Thermo-Mechanical Analysis of Electromagnetic Devices Using the Finite Element Method
Authors: Michael G. Pantelyat
Abstract:
Fundamental basics of pure and applied research in the area of magneto-thermo-mechanical numerical analysis and design of innovative electromagnetic devices (modern induction heaters, novel thermoelastic actuators, rotating electrical machines, induction cookers, electrophysical devices) are elaborated. Thus, mathematical models of magneto-thermo-mechanical processes in electromagnetic devices taking into account main interactions of interrelated phenomena are developed. In addition, graphical representation of coupled (multiphysics) phenomena under consideration is proposed. Besides, numerical techniques for nonlinear problems solution are developed. On this base, effective numerical algorithms for solution of actual problems of practical interest are proposed, validated and implemented in applied 2D and 3D computer codes developed. Many applied problems of practical interest regarding modern electrical engineering devices are numerically solved. Investigations of the influences of various interrelated physical phenomena (temperature dependences of material properties, thermal radiation, conditions of convective heat transfer, contact phenomena, etc.) on the accuracy of the electromagnetic, thermal and structural analyses are conducted. Important practical recommendations on the choice of rational structures, materials and operation modes of electromagnetic devices under consideration are proposed and implemented in industry.Keywords: electromagnetic devices, multiphysics, numerical analysis, simulation and design
Procedia PDF Downloads 3864707 State Estimator Performance Enhancement: Methods for Identifying Errors in Modelling and Telemetry
Authors: M. Ananthakrishnan, Sunil K Patil, Koti Naveen, Inuganti Hemanth Kumar
Abstract:
State estimation output of EMS forms the base case for all other advanced applications used in real time by a power system operator. Ensuring tuning of state estimator is a repeated process and cannot be left once a good solution is obtained. This paper attempts to demonstrate methods to improve state estimator solution by identifying incorrect modelling and telemetry inputs to the application. In this work, identification of database topology modelling error by plotting static network using node-to-node connection details is demonstrated with examples. Analytical methods to identify wrong transmission parameters, incorrect limits and mistakes in pseudo load and generator modelling are explained with various cases observed. Further, methods used for active and reactive power tuning using bus summation display, reactive power absorption summary, and transformer tap correction are also described. In a large power system, verifying all network static data and modelling parameter on regular basis is difficult .The proposed tuning methods can be easily used by operators to quickly identify errors to obtain the best possible state estimation performance. This, in turn, can lead to improved decision-support capabilities, ultimately enhancing the safety and reliability of the power grid.Keywords: active power tuning, database modelling, reactive power, state estimator
Procedia PDF Downloads 74706 Chemical Modifications of Three Underutilized Vegetable Fibres for Improved Composite Value Addition and Dye Absorption Performance
Authors: Abayomi O. Adetuyi, Jamiu M. Jabar, Samuel O. Afolabi
Abstract:
Vegetable fibres are classes of fibres of low density, biodegradable and non-abrasive that are largely abundant fibre materials with specific properties and mostly found/ obtained in plants on earth surface. They are classified into three categories, depending on the part of the plant from which they are gotten from namely: fruit, Blast and Leaf fibre. Ever since four/five millennium B.C, attention has been focussing on the commonest and highly utilized cotton fibre obtained from the fruit of cotton plants (Gossypium spp), for the production of cotton fabric used in every home today. The present study, therefore, focused on the ability of three underutilized vegetable (fruit) fibres namely: coir fiber (Eleas coniferus), palm kernel fiber and empty fruit bunch fiber (Elias guinensis) through chemical modifications for better composite value addition performance to polyurethane form and dye adsorption. These fibres were sourced from their parents’ plants, identified and cleansed with 2% hot detergent solution 1:100, rinsed in distilled water and oven-dried to constant weight, before been chemically modified through alkali bleaching, mercerization and acetylation. The alkali bleaching involves treating 0.5g of each fiber material with 100 mL of 2% H2O2 in 25 % NaOH solution with refluxing for 2 h. While that of mercerization and acetylation involves the use of 5% sodium hydroxide NaOH solution for 2 h and 10% acetic acid- acetic anhydride 1:1 (v/v) (CH3COOH) / (CH3CO)2O solution with conc. H2SO4 as catalyst for 1 h, respectively on the fibres. All were subsequently washed thoroughly with distilled water and oven dried at 105 0C for 1 h. These modified fibres were incorporated as composite into polyurethane form and used in dye adsorption study of indigo. The first two treatments led to fiber weight reduction, while the acidified acetic anhydride treatment gave the fibers weight increment. All the treated fibers were found to be of less hydrophilic nature, better mechanical properties, higher thermal stabilities as well as better adsorption surfaces/capacities than the untreated ones. These were confirmed by gravimetric analysis, Instron Universal Testing Machine, Thermogravimetric Analyser and the Scanning Electron Microscope (SEM) respectively. The fiber morphology of the modified fibers showed smoother surfaces than unmodified fibres.The empty fruit bunch fibre and the coconut coir fibre are better than the palm kernel fibres as reinforcers for composites or as adsorbents for waste-water treatment. Acetylation and alkaline bleaching treatment improve the potentials of the fibres more than mercerization treatment. Conclusively, vegetable fibres, especially empty fruit bunch fibre and the coconut coir fibre, which are cheap, abundant and underutilized, can replace the very costly powdered activated carbon in wastewater treatment and as reinforcer in foam.Keywords: chemical modification, industrial application, value addition, vegetable fibre
Procedia PDF Downloads 3314705 Improving the Accuracy of Stress Intensity Factors Obtained by Scaled Boundary Finite Element Method on Hybrid Quadtree Meshes
Authors: Adrian W. Egger, Savvas P. Triantafyllou, Eleni N. Chatzi
Abstract:
The scaled boundary finite element method (SBFEM) is a semi-analytical numerical method, which introduces a scaling center in each element’s domain, thus transitioning from a Cartesian reference frame to one resembling polar coordinates. Consequently, an analytical solution is achieved in radial direction, implying that only the boundary need be discretized. The only limitation imposed on the resulting polygonal elements is that they remain star-convex. Further arbitrary p- or h-refinement may be applied locally in a mesh. The polygonal nature of SBFEM elements has been exploited in quadtree meshes to alleviate all issues conventionally associated with hanging nodes. Furthermore, since in 2D this results in only 16 possible cell configurations, these are precomputed in order to accelerate the forward analysis significantly. Any cells, which are clipped to accommodate the domain geometry, must be computed conventionally. However, since SBFEM permits polygonal elements, significantly coarser meshes at comparable accuracy levels are obtained when compared with conventional quadtree analysis, further increasing the computational efficiency of this scheme. The generalized stress intensity factors (gSIFs) are computed by exploiting the semi-analytical solution in radial direction. This is initiated by placing the scaling center of the element containing the crack at the crack tip. Taking an analytical limit of this element’s stress field as it approaches the crack tip, delivers an expression for the singular stress field. By applying the problem specific boundary conditions, the geometry correction factor is obtained, and the gSIFs are then evaluated based on their formal definition. Since the SBFEM solution is constructed as a power series, not unlike mode superposition in FEM, the two modes contributing to the singular response of the element can be easily identified in post-processing. Compared to the extended finite element method (XFEM) this approach is highly convenient, since neither enrichment terms nor a priori knowledge of the singularity is required. Computation of the gSIFs by SBFEM permits exceptional accuracy, however, when combined with hybrid quadtrees employing linear elements, this does not always hold. Nevertheless, it has been shown that crack propagation schemes are highly effective even given very coarse discretization since they only rely on the ratio of mode one to mode two gSIFs. The absolute values of the gSIFs may still be subject to large errors. Hence, we propose a post-processing scheme, which minimizes the error resulting from the approximation space of the cracked element, thus limiting the error in the gSIFs to the discretization error of the quadtree mesh. This is achieved by h- and/or p-refinement of the cracked element, which elevates the amount of modes present in the solution. The resulting numerical description of the element is highly accurate, with the main error source now stemming from its boundary displacement solution. Numerical examples show that this post-processing procedure can significantly improve the accuracy of the computed gSIFs with negligible computational cost even on coarse meshes resulting from hybrid quadtrees.Keywords: linear elastic fracture mechanics, generalized stress intensity factors, scaled finite element method, hybrid quadtrees
Procedia PDF Downloads 1464704 Robust Batch Process Scheduling in Pharmaceutical Industries: A Case Study
Authors: Tommaso Adamo, Gianpaolo Ghiani, Antonio Domenico Grieco, Emanuela Guerriero
Abstract:
Batch production plants provide a wide range of scheduling problems. In pharmaceutical industries a batch process is usually described by a recipe, consisting of an ordering of tasks to produce the desired product. In this research work we focused on pharmaceutical production processes requiring the culture of a microorganism population (i.e. bacteria, yeasts or antibiotics). Several sources of uncertainty may influence the yield of the culture processes, including (i) low performance and quality of the cultured microorganism population or (ii) microbial contamination. For these reasons, robustness is a valuable property for the considered application context. In particular, a robust schedule will not collapse immediately when a cell of microorganisms has to be thrown away due to a microbial contamination. Indeed, a robust schedule should change locally in small proportions and the overall performance measure (i.e. makespan, lateness) should change a little if at all. In this research work we formulated a constraint programming optimization (COP) model for the robust planning of antibiotics production. We developed a discrete-time model with a multi-criteria objective, ordering the different criteria and performing a lexicographic optimization. A feasible solution of the proposed COP model is a schedule of a given set of tasks onto available resources. The schedule has to satisfy tasks precedence constraints, resource capacity constraints and time constraints. In particular time constraints model tasks duedates and resource availability time windows constraints. To improve the schedule robustness, we modeled the concept of (a, b) super-solutions, where (a, b) are input parameters of the COP model. An (a, b) super-solution is one in which if a variables (i.e. the completion times of a culture tasks) lose their values (i.e. cultures are contaminated), the solution can be repaired by assigning these variables values with a new values (i.e. the completion times of a backup culture tasks) and at most b other variables (i.e. delaying the completion of at most b other tasks). The efficiency and applicability of the proposed model is demonstrated by solving instances taken from Sanofi Aventis, a French pharmaceutical company. Computational results showed that the determined super-solutions are near-optimal.Keywords: constraint programming, super-solutions, robust scheduling, batch process, pharmaceutical industries
Procedia PDF Downloads 6184703 Mixed Matrix Membranes Based on [M₂(DOBDC)] (M = Mg, Co, Ni) and Polydimethylsiloxane for CO₂/N₂ Separation
Authors: Hyunuk Kim, Yang No Yun, Muhammad Sohail, Jong-Ho Moon, Young Cheol Park
Abstract:
Metal-organic frameworks (MOFs), which are emerging absorbents assembled from metal ions and organic ligands, have attracted attention for their permanent porosity and design of tunable pore size. These microporous materials showed interesting properties for CO₂ storage and separation. In particular, MOFs with high surface area and open metal sites showed the remarkable adsorption capacity and selectivity for CO₂. [Mg₂ (DOBDC)] (DOBDC = 2,5-dioxidobenzene-1,4-dicarboxylate) (MOF-74 or CPO-27) is a well-known absorbent showing an exceptionally high CO₂ sorption capacity at low partial pressure and room temperature. In this work, we synthesized [M₂(DOBDC)(DMF)₂] (M = Mg, Co, Ni) and determined their single-crystal structures by X-ray crystallography. The removal of coordinated guest molecules generates Lewis acidic sites and showed high CO₂ adsorption affinity. Both CO₂ adsorption capacity and surface area are much higher than reported values in literature. To fabricate MMMs, microcrystalline [M₂ (DOBDC)(DMF)₂] was synthesized by microwave reaction and dispersed in PDMS solution. The MMMs with a various amount of [M₂ (DOBDC)(DMF) ₂] in PDMS were fabricated by a solution casting method. [M₂ (DOBDC)(DMF)₂]@PDMS membrane showed higher CO2 permeability and CO₂/N₂ selectivity than those of PDMS. Therefore, we believe that MMMs combining polymer and MOFs provide new materials for CO₂ separation technology.Keywords: metal-organic frameworks, mixed matrix membrane, CO2/N2 separation, polydimethylsiloxane (PDMS)
Procedia PDF Downloads 2064702 Student Project on Using a Spreadsheet for Solving Differential Equations by Euler's Method
Authors: Andriy Didenko, Zanin Kavazovic
Abstract:
Engineering students often have certain difficulties in mastering major theoretical concepts in mathematical courses such as differential equations. Student projects were proposed to motivate students’ learning and can be used as a tool to promote students’ interest in the material. Authors propose a student project that includes the use of Microsoft Excel. This instructional tool is often overlooked by both educators and students. An integral component of the experimental part of such a project is the exploration of an interactive spreadsheet. The aim is to assist engineering students in better understanding of Euler’s method. This method is employed to numerically solve first order differential equations. At first, students are invited to select classic equations from a list presented in a form of a drop-down menu. For each of these equations, students can select and modify certain key parameters and observe the influence of initial condition on the solution. This will give students an insight into the behavior of the method in different configurations as solutions to equations are given in numerical and graphical forms. Further, students could also create their own equations by providing functions of their own choice and a variety of initial conditions. Moreover, they can visualize and explore the impact of the length of the time step on the convergence of a sequence of numerical solutions to the exact solution of the equation. As a final stage of the project, students are encouraged to develop their own spreadsheets for other numerical methods and other types of equations. Such projects promote students’ interest in mathematical applications and further improve their mathematical and programming skills.Keywords: student project, Euler's method, spreadsheet, engineering education
Procedia PDF Downloads 1344701 Information Communication Technology Based Road Traffic Accidents’ Identification, and Related Smart Solution Utilizing Big Data
Authors: Ghulam Haider Haidaree, Nsenda Lukumwena
Abstract:
Today the world of research enjoys abundant data, available in virtually any field, technology, science, and business, politics, etc. This is commonly referred to as big data. This offers a great deal of precision and accuracy, supportive of an in-depth look at any decision-making process. When and if well used, Big Data affords its users with the opportunity to produce substantially well supported and good results. This paper leans extensively on big data to investigate possible smart solutions to urban mobility and related issues, namely road traffic accidents, its casualties, and fatalities based on multiple factors, including age, gender, location occurrences of accidents, etc. Multiple technologies were used in combination to produce an Information Communication Technology (ICT) based solution with embedded technology. Those technologies include principally Geographic Information System (GIS), Orange Data Mining Software, Bayesian Statistics, to name a few. The study uses the Leeds accident 2016 to illustrate the thinking process and extracts thereof a model that can be tested, evaluated, and replicated. The authors optimistically believe that the proposed model will significantly and smartly help to flatten the curve of road traffic accidents in the fast-growing population densities, which increases considerably motor-based mobility.Keywords: accident factors, geographic information system, information communication technology, mobility
Procedia PDF Downloads 2084700 Mitigating Acid Mine Drainage Pollution: A Case Study In the Witwatersrand Area of South Africa
Authors: Elkington Sibusiso Mnguni
Abstract:
In South Africa, mining has been a key economic sector since the discovery of gold in 1886 in the Witwatersrand region, where the city of Johannesburg is located. However, some mines have since been decommissioned, and the continuous pumping of acid mine drainage (AMD) also stopped causing the AMD to rise towards the ground surface. This posed a serious environmental risk to the groundwater resources and river systems in the region. This paper documents the development and extent of the environmental damage as well as the measures implemented by the government to alleviate such damage. The study will add to the body of knowledge on the subject of AMD treatment to prevent environmental degradation. The method used to gather and collate relevant data and information was the desktop study. The key findings include the social and environmental impact of the AMD, which include the pollution of water sources for domestic use leading to skin and other health problems and the loss of biodiversity in some areas. It was also found that the technical intervention of constructing a plant to pump and treat the AMD using the high-density sludge technology was the most effective short-term solution available while a long-term solution was being explored. Some successes and challenges experienced during the implementation of the project are also highlighted. The study will be a useful record of the current status of the AMD treatment interventions in the region.Keywords: acid mine drainage, groundwater resources, pollution, river systems, technical intervention, high density sludge
Procedia PDF Downloads 1864699 A Uniformly Convergent Numerical Scheme for a Singularly Perturbed Volterra Integrodifferential Equation
Authors: Nana Adjoah Mbroh, Suares Clovis Oukouomi Noutchie
Abstract:
Singularly perturbed problems are parameter dependent problems, and they play major roles in the modelling of real-life situational problems in applied sciences. Thus, designing efficient numerical schemes to solve these problems is of much interest since the exact solutions of such problems may not even exist. Generally, singularly perturbed problems are identified by a small parameter multiplying at least the highest derivative in the equation. The presence of this parameter causes the solution of these problems to be characterized by rapid oscillations. This unique feature renders classical numerical schemes inefficient since they are unable to capture the behaviour of the exact solution in the part of the domain where the rapid oscillations are present. In this paper, a numerical scheme is proposed to solve a singularly perturbed Volterra Integro-differential equation. The scheme is based on the midpoint rule and employs the non-standard finite difference scheme to solve the differential part whilst the composite trapezoidal rule is used for the integral part. A fully fledged error estimate is performed, and Richardson extrapolation is applied to accelerate the convergence of the scheme. Numerical simulations are conducted to confirm the theoretical findings before and after extrapolation.Keywords: midpoint rule, non-standard finite difference schemes, Richardson extrapolation, singularly perturbed problems, trapezoidal rule, uniform convergence
Procedia PDF Downloads 1254698 The Virtual Container Yard: Identifying the Persuasive Factors in Container Interchange
Authors: L. Edirisinghe, Zhihong Jin, A. W. Wijeratne, R. Mudunkotuwa
Abstract:
The virtual container yard is an effective solution to the container inventory imbalance problem which is a global issue. It causes substantial cost to carriers, which inadvertently adds to the prices of consumer goods. The virtual container yard is rooted in the fundamentals of container interchange between carriers. If carriers opt to interchange their excess containers with those who are deficit, a substantial part of the empty reposition cost could be eliminated. Unlike in other types of ships, cargo cannot be directly loaded to a container ship. Slots and containers are supplementary components; thus, without containers, a carrier cannot ship cargo if the containers are not available and vice versa. Few decades ago, carriers recognized slot (the unit of space in a container ship) interchange as a viable solution for the imbalance of shipping space. Carriers interchange slots among them and it also increases the advantage of scale of economies in container shipping. Some of these service agreements between mega carriers have provisions to interchange containers too. However, the interchange mechanism is still not popular among carriers for containers. This is the paradox that prevails in the liner shipping industry. At present, carriers reposition their excess empty containers to areas where they are in demand. This research applied factor analysis statistical method. The paper reveals that five major components may influence the virtual container yard namely organisation, practice and culture, legal and environment, international nature, and marketing. There are 12 variables that may impact the virtual container yard, and these are explained in the paper.Keywords: virtual container yard, shipping, imbalance, management, inventory
Procedia PDF Downloads 1964697 Numerical Solution of Space Fractional Order Linear/Nonlinear Reaction-Advection Diffusion Equation Using Jacobi Polynomial
Authors: Shubham Jaiswal
Abstract:
During modelling of many physical problems and engineering processes, fractional calculus plays an important role. Those are greatly described by fractional differential equations (FDEs). So a reliable and efficient technique to solve such types of FDEs is needed. In this article, a numerical solution of a class of fractional differential equations namely space fractional order reaction-advection dispersion equations subject to initial and boundary conditions is derived. In the proposed approach shifted Jacobi polynomials are used to approximate the solutions together with shifted Jacobi operational matrix of fractional order and spectral collocation method. The main advantage of this approach is that it converts such problems in the systems of algebraic equations which are easier to be solved. The proposed approach is effective to solve the linear as well as non-linear FDEs. To show the reliability, validity and high accuracy of proposed approach, the numerical results of some illustrative examples are reported, which are compared with the existing analytical results already reported in the literature. The error analysis for each case exhibited through graphs and tables confirms the exponential convergence rate of the proposed method.Keywords: space fractional order linear/nonlinear reaction-advection diffusion equation, shifted Jacobi polynomials, operational matrix, collocation method, Caputo derivative
Procedia PDF Downloads 4454696 Assessing Influence of End-Boundary Conditions on Stability and Second-Order Lateral Stiffness of Beam-Column Elements Embedded in Non-Homogeneous Soil
Authors: Carlos A. Vega-Posada, Jeisson Alejandro Higuita-Villa, Julio C. Saldarriaga-Molina
Abstract:
This paper presents a simplified analytical approach to conduct elastic stability and second-order lateral stiffness analyses of beam-column elements (i.e., piles) with generalized end-boundary conditions embedded on a homogeneous or non-homogeneous Pasternak foundation. The solution is derived using the well-known Differential Transformation Method (DTM), and it consists simply of solving a system of two linear algebraic equations. Using other conventional approaches to solve the governing differential equation of the proposed element can be cumbersome and the solution challenging to implement, especially when the non-homogeneity of the soil is considered. The proposed formulation includes the effects of i) any rotational or lateral transverse spring at the ends of the pile, ii) any external transverse load acting along the pile, iii) soil non-homogeneity, and iv) the second-parameter of the elastic foundation (i.e., shear layer connecting the springs at the top). A parametric study is conducted to investigate the effects of different modulus of subgrade reactions, degrees of non-homogeneities, and intermediate end-boundary conditions on the pile response. The same set of equations can be used to conduct both elastic stability and static analyses. Comprehensive examples are presented to show the simplicity and practicability of the proposed method.Keywords: elastic stability, second-order lateral stiffness, soil-non-homogeneity, pile analysis
Procedia PDF Downloads 2094695 An Efficient Backward Semi-Lagrangian Scheme for Nonlinear Advection-Diffusion Equation
Authors: Soyoon Bak, Sunyoung Bu, Philsu Kim
Abstract:
In this paper, a backward semi-Lagrangian scheme combined with the second-order backward difference formula is designed to calculate the numerical solutions of nonlinear advection-diffusion equations. The primary aims of this paper are to remove any iteration process and to get an efficient algorithm with the convergence order of accuracy 2 in time. In order to achieve these objects, we use the second-order central finite difference and the B-spline approximations of degree 2 and 3 in order to approximate the diffusion term and the spatial discretization, respectively. For the temporal discretization, the second order backward difference formula is applied. To calculate the numerical solution of the starting point of the characteristic curves, we use the error correction methodology developed by the authors recently. The proposed algorithm turns out to be completely iteration-free, which resolves the main weakness of the conventional backward semi-Lagrangian method. Also, the adaptability of the proposed method is indicated by numerical simulations for Burgers’ equations. Throughout these numerical simulations, it is shown that the numerical results are in good agreement with the analytic solution and the present scheme offer better accuracy in comparison with other existing numerical schemes. Semi-Lagrangian method, iteration-free method, nonlinear advection-diffusion equation, second-order backward difference formulaKeywords: Semi-Lagrangian method, iteration free method, nonlinear advection-diffusion equation, second-order backward difference formula
Procedia PDF Downloads 3214694 Partially Aminated Polyacrylamide Hydrogel: A Novel Approach for Temporary Oil and Gas Well Abandonment
Authors: Hamed Movahedi, Nicolas Bovet, Henning Friis Poulsen
Abstract:
Following the advent of the Industrial Revolution, there has been a significant increase in the extraction and utilization of hydrocarbon and fossil fuel resources. However, a new era has emerged, characterized by a shift towards sustainable practices, namely the reduction of carbon emissions and the promotion of renewable energy generation. Given the substantial number of mature oil and gas wells that have been developed inside the petroleum reservoir domain, it is imperative to establish an environmental strategy and adopt appropriate measures to effectively seal and decommission these wells. In general, the cement plug serves as a material for plugging purposes. Nevertheless, there exist some scenarios in which the durability of such a plug is compromised, leading to the potential escape of hydrocarbons via fissures and fractures within cement plugs. Furthermore, cement is often not considered a practical solution for temporary plugging, particularly in the case of well sites that have the potential for future gas storage or CO2 injection. The Danish oil and gas industry has promising potential as a prospective candidate for future carbon dioxide (CO2) injection, hence contributing to the implementation of carbon capture strategies within Europe. The primary reservoir component consists of chalk, a rock characterized by limited permeability. This work focuses on the development and characterization of a novel hydrogel variant. The hydrogel is designed to be injected via a low-permeability reservoir and afterward undergoes a transformation into a high-viscosity gel. The primary objective of this research is to explore the potential of this hydrogel as a new solution for effectively plugging well flow. Initially, the synthesis of polyacrylamide was carried out using radical polymerization inside the confines of the reaction flask. Subsequently, with the application of the Hoffman rearrangement, the polymer chain undergoes partial amination, facilitating its subsequent reaction with the crosslinker and enabling the formation of a hydrogel in the subsequent stage. The organic crosslinker, glutaraldehyde, was employed in the experiment to facilitate the formation of a gel. This gel formation occurred when the polymeric solution was subjected to heat within a specified range of reservoir temperatures. Additionally, a rheological survey and gel time measurements were conducted on several polymeric solutions to determine the optimal concentration. The findings indicate that the gel duration is contingent upon the starting concentration and exhibits a range of 4 to 20 hours, hence allowing for manipulation to accommodate diverse injection strategies. Moreover, the findings indicate that the gel may be generated in environments characterized by acidity and high salinity. This property ensures the suitability of this substance for application in challenging reservoir conditions. The rheological investigation indicates that the polymeric solution exhibits the characteristics of a Herschel-Bulkley fluid with somewhat elevated yield stress prior to solidification.Keywords: polyacrylamide, hofmann rearrangement, rheology, gel time
Procedia PDF Downloads 774693 Optical and Surface Characteristics of Direct Composite, Polished and Glazed Ceramic Materials After Exposure to Tooth Brush Abrasion and Staining Solution
Authors: Maryam Firouzmandi, Moosa Miri
Abstract:
Aim and background: esthetic and structural reconstruction of anterior teeth may require the application of different restoration material. In this regard combination of direct composite veneer and ceramic crown is a common treatment option. Despite the initial matching, their long term harmony in term of optical and surface characteristics is a matter of concern. The purpose of this study is to evaluate and compare optical and surface characteristic of direct composite polished and glazed ceramic materials after exposure to tooth brush abrasion and staining solution. Materials and Methods: ten 2 mm thick disk shape specimens were prepared from IPS empress direct composite and twenty specimens from IPS e.max CAD blocks. Composite specimens and ten ceramic specimens were polished by using D&Z composite and ceramic polishing kit. The other ten specimens of ceramic were glazed with glazing liquid. Baseline measurement of roughness, CIElab coordinate, and luminance were recorded. Then the specimens underwent thermocycling, tooth brushing, and coffee staining. Afterword, the final measurements were recorded. Color coordinate were used to calculate ΔE76, ΔE00, translucency parameter, and contrast ratio. Data were analyzed by One-way ANOVA and post hoc LSD test. Results: baseline and final roughness of the study group were not different. At baseline, the order of roughness for the study group were as follows: composite < glazed ceramic < polished ceramic, but after aging, no difference. Between ceramic groups was not detected. The comparison of baseline and final luminance was similar to roughness but in reverse order. Unlike differential roughness which was comparable between the groups, changes in luminance of the glazed ceramic group was higher than other groups. ΔE76 and ΔE00 in the composite group were 18.35 and 12.84, in the glazed ceramic group were 1.3 and 0.79, and in polished ceramic were 1.26 and 0.85. These values for the composite group were significantly different from ceramic groups. Translucency of composite at baseline was significantly higher than final, but there was no significant difference between these values in ceramic groups. Composite was more translucency than ceramic at baseline and final measurement. Conclusion: Glazed ceramic surface was smoother than polished ceramic. Aging did not change the roughness. Optical properties (color and translucency) of the composite were influenced by aging. Luminance of composite, glazed ceramic, and polished ceramic decreased after aging, but the reduction in glazed ceramic was more pronounced.Keywords: ceramic, tooth-brush abrasion, staining solution, composite resin
Procedia PDF Downloads 1854692 Investigation of the Effect of Plasticization Temperature on Polymer Thin Film Stability through Spin Coating Process
Authors: Bilge Bozdogan, Selda T. Sendogdular, Levent Sendogdular
Abstract:
We report a technique to control chain conformation during the plasticization process to achieve homogeneous and stable thin films, which allows to reduce post-process annealing times along with enhanced properties like controlled irreversible adsorbed layer (Guiselin brushes) formation. In this study, spin coating temperature was considered as a parameter; hence, all equipment, including the spin coater, substrate, vials, and the solution, was kept inside the same heated fume hood where solution was spin-coated after the temperature was stabilized at a desired value. AFM and SEM results revealed severe difference for solid and air interface between ambient and temperature-controlled samples, which suggest that enthalpic contribution dynamically helps to control film stability in a way where chain entanglements and conformational restrictions are avoided before film growing and allowing to control grafting density through spin coating temperature. The adsorbed layer was also characterized with SEM and Raman-spectroscopy technique right after seeding the adsorbed layer with gold nanoparticles. Stabilized gold nanoparticles and their surface distribution manifest the existence of a controllable polymer brush structure. Acknowledgments: This study was funded by Erciyes University Scientific Research Projects (BAP) Funding(Project ID:10058)Keywords: chain stability, Guiselin brushes, polymer thin film, spin coating temperature
Procedia PDF Downloads 2144691 Thermomechanical Behavior of Asphalt Modified with Thermoplastic Polymer and Nanoclay Dellite 43B
Authors: L. F. Tamele Jr., G. Buonocore, H. F. Muiambo
Abstract:
Asphalt binders play an essential role in the performance and properties of asphalt mixtures. The increase in heavy loads, greater traffic volume, and high tire pressure, combined with a substantial variation in daily and seasonal pavement temperatures, are the main responsible for the failure of asphalt pavements. To avoid or mitigate these failures, the present research proposes the use of thermoplastic polymers, HDPE and LLDPE, and nanoclay Dellite 43B for modification of asphalt in order to improve its thermomechanical and rheological properties. The nanocomposites were prepared by the solution intercalation method in a high shear mixer for a mixing time of 2 h, at 180℃ and 5000 rpm. The addition of Dellite 43B improved the physical, rheological, and thermal properties of asphalt, either separated or in the form of polymer/bitumen blends. The results of the physical characterization showed a decrease in penetration and an increase in softening point, thermal susceptibility, viscosity, and stiffness. On the other hand, thermal characterization showed that the nanocomposites have greater stability at higher temperatures by exhibiting greater amounts of residues and improved initial and final decomposition temperatures. Thus, the modification of asphalt by polymers and nanoclays seems to be a suitable solution for road pavement in countries which experiment with high temperatures combined with long heavy rain seasons.Keywords: asphalt, nanoclay dellite 43B, polymer modified asphalt, thermal and rheological properties
Procedia PDF Downloads 1474690 Experimental Investigation to Produce an Optimum Mix Ratio of Micro-Concrete
Authors: Shofiq Ahmed, Rakibul Hassan, Raquib Ahsan
Abstract:
Concrete is one of the basic elements of RCC structure and also the most crucial one. In recent years, a lot of researches have been conducted to develop special types of concrete for special purposes. Micro-concrete is one of them which has high compressive strength and is mainly used for retrofitting. Micro-concrete is a cementitious based composition formulated for use in repairs of areas where the concrete is damaged & the area is confined in movement making the placement of conventional concrete difficult. According to recent statistics, a large number of structures in the major cities of Bangladesh are vulnerable to collapse. Retrofitting may thus be required for a sustainable solution, and for this purpose, the utilization of micro-concrete can be considered as the most effective solution. For that reason, the aim of this study was to produce micro-concrete using indigenous materials in low cost. Following this aim, the experimental data were observed for five mix ratios with varied amount of cement, fine aggregate, coarse aggregate, water, and admixture. The investigation criteria were a compressive strength, tensile strength, slump and the cost of different mix ratios. Finally, for a mix ratio of 1:1:1.5, the compressive strength was achieved as 7820 psi indicating highest strength among all the samples with the reasonable tensile strength of 1215 psi. The slump of 6.9 inches was also found for this specimen indicating it’s high flowability and making it’s convenient to use as micro-concrete. Moreover, comparing with the cost of foreign products of micro-concrete, it was observed that foreign products were almost four to five times costlier than this local product.Keywords: indigenous, micro-concrete, retrofitting, vulnerable
Procedia PDF Downloads 3274689 Fabrication of Electrospun Carbon Nanofibers-Reinforced Chitosan-Based Hydrogel for Environmental Applications
Authors: Badr M. Thamer
Abstract:
The use of hydrogels as adsorbents for pollutants removal from wastewater is limited due to their high swelling properties and the difficulty in recovering them after the adsorption process. To overcome these problems, a new hydrogel nanocomposite based on chitosan-g-polyacrylic acid/oxidized electrospun carbon nanofibers (CT-g-PAA/O-ECNFs) was prepared by in-situ grafting polymerization process. The prepared hydrogel nanocomposite was used as a novel effective and highly reusable adsorbent for the removal of methylene blue (MB) from polluted water with low cost. The morphology and the structure of CT-g-PAA/O-ECNFs were investigated by numerous techniques. The effect of incorporating O-ECNFs on the swelling capability of the prepared hydrogel was explored in distillated water and MB solution at normal pH. The effect of parameters including the ratio of O-ECNFs, contact time, pH, initial concentration, and temperature on the adsorption process were explored. The adsorption isotherm and kinetic were studied by numerous non-linear models. The obtained results confirmed that the incorporation of O-ECNFs into the hydrogel network improved its ability towards MB dye removal with decreasing their swelling capacity. The adsorption process depends on the pH value of the dye solution. Additionally, the adsorption and kinetic results were fitted using the Freundlich isotherm model and pseudo second order model (PSO), respectively. Moreover, the new adsorbents can be recycled for at least five cycles keeping its adsorption capacity and can be easily recovered without loss in its initial weight.Keywords: carbon nanofibers, hydrogels, nanocomposites, water treatment
Procedia PDF Downloads 1474688 Optimal 3D Deployment and Path Planning of Multiple Uavs for Maximum Coverage and Autonomy
Authors: Indu Chandran, Shubham Sharma, Rohan Mehta, Vipin Kizheppatt
Abstract:
Unmanned aerial vehicles are increasingly being explored as the most promising solution to disaster monitoring, assessment, and recovery. Current relief operations heavily rely on intelligent robot swarms to capture the damage caused, provide timely rescue, and create road maps for the victims. To perform these time-critical missions, efficient path planning that ensures quick coverage of the area is vital. This study aims to develop a technically balanced approach to provide maximum coverage of the affected area in a minimum time using the optimal number of UAVs. A coverage trajectory is designed through area decomposition and task assignment. To perform efficient and autonomous coverage mission, solution to a TSP-based optimization problem using meta-heuristic approaches is designed to allocate waypoints to the UAVs of different flight capacities. The study exploits multi-agent simulations like PX4-SITL and QGroundcontrol through the ROS framework and visualizes the dynamics of UAV deployment to different search paths in a 3D Gazebo environment. Through detailed theoretical analysis and simulation tests, we illustrate the optimality and efficiency of the proposed methodologies.Keywords: area coverage, coverage path planning, heuristic algorithm, mission monitoring, optimization, task assignment, unmanned aerial vehicles
Procedia PDF Downloads 2154687 Influence of Surface Wettability on Imbibition Dynamics of Protein Solution in Microwells
Authors: Himani Sharma, Amit Agrawal
Abstract:
Stability of the Cassie and Wenzel wetting states depends on intrinsic contact angle and geometric features on a surface that was exploited in capturing biofluids in microwells. However, the mechanism of imbibition of biofluids in the microwells is not well implied in terms of wettability of a substrate. In this work, we experimentally demonstrated filling dynamics in hydrophilic and hydrophobic microwells by protein solutions. Towards this, we utilized lotus leaf as a mold to fabricate microwells on a Polydimethylsiloxane (PDMS) surface. Lotus leaf containing micrometer-sized blunt-conical shaped pillars with a height of 8-15 µm and diameter of 3-8 µm were transferred on to PDMS. Furthermore, PDMS surface was treated with oxygen plasma to render the hydrophilic nature. A 10µL droplets containing fluorescein isothiocyanate (FITC) - labelled bovine serum albumin (BSA) were rested on both hydrophobic (θa = 108o, where θa is the apparent contact angle) and hydrophilic (θa = 60o) PDMS surfaces. A time-dependent fluorescence microscopy was conducted on these modified PDMS surfaces by recording the fluorescent intensity over a 5 minute period. It was observed that, initially (at t=1 min) FITC-BSA was accumulated on the periphery of both hydrophilic and hydrophobic microwells due to incomplete penetration of liquid-gas meniscus. This deposition of FITC-BSA on periphery of microwell was not changed with time for hydrophobic surfaces, whereas, a complete filling was occurred in hydrophilic microwells (at t=5 mins). This attributes to a gradual movement of three-phase contact line along the vertical surface of the hydrophilic microwells as compared to stable pinning in the hydrophobic microwells as confirmed by Surface Evolver simulations. In addition, if the cavities are presented on hydrophobic surfaces, air bubbles will be trapped inside the cavities once the aqueous solution is placed over these surfaces, resulting in the Cassie-Baxter wetting state. This condition hinders trapping of proteins inside the microwells. Thus, it is necessary to impart hydrophilicity to the microwell surfaces so as to induce the Wenzel state, such that, an entire solution will be fully in contact with the walls of microwells. Imbibition of microwells by protein solutions was analyzed in terms fluorescent intensity versus time. The present work underlines the importance of geometry of microwells and surface wettability of substrate in wetting and effective capturing of solid sub-phases in biofluids.Keywords: BSA, microwells, surface evolver, wettability
Procedia PDF Downloads 1984686 An Inverse Approach for Determining Creep Properties from a Miniature Thin Plate Specimen under Bending
Authors: Yang Zheng, Wei Sun
Abstract:
This paper describes a new approach which can be used to interpret the experimental creep deformation data obtained from miniaturized thin plate bending specimen test to the corresponding uniaxial data based on an inversed application of the reference stress method. The geometry of the thin plate is fully defined by the span of the support, l, the width, b, and the thickness, d. Firstly, analytical solutions for the steady-state, load-line creep deformation rate of the thin plates for a Norton’s power law under plane stress (b → 0) and plane strain (b → ∞) conditions were obtained, from which it can be seen that the load-line deformation rate of the thin plate under plane-stress conditions is much higher than that under the plane-strain conditions. Since analytical solution is not available for the plates with random b-values, finite element (FE) analyses are used to obtain the solutions. Based on the FE results obtained for various b/l ratios and creep exponent, n, as well as the analytical solutions under plane stress and plane strain conditions, an approximate, numerical solutions for the deformation rate are obtained by curve fitting. Using these solutions, a reference stress method is utilised to establish the conversion relationships between the applied load and the equivalent uniaxial stress and between the creep deformations of thin plate and the equivalent uniaxial creep strains. Finally, the accuracy of the empirical solution was assessed by using a set of “theoretical” experimental data.Keywords: bending, creep, thin plate, materials engineering
Procedia PDF Downloads 4744685 Impact of Lifestyle and User Expectations on the Demand of Compact Living Spaces in the Home Interiors in Indian Cities
Authors: Velly Kapadia, Reenu Singh
Abstract:
This report identifies the long-term driving forces behind urbanization and the impact of compact living on both society and the home and proposes a concept to create smarter and more sustainable homes. Compact living has been trending across India as a sustainable housing solution, and the reality is that India is currently facing a housing shortage in urban areas of around 10 million units. With the rising demand for housing, urban land prices have been rising and the cost of homes. The paper explores how and why the interior design of the homes can be improved to relieve the housing demand in an environmentally, socially and economically sustainable manner. A questionnaire survey was conducted to determine living patterns, area requirements, ecological footprints, energy consumption, purchasing patterns, and various pro-environmental behaviors of people who downsize to compact homes. Quantitative research explores sustainable material choices, durability, functionality, cost, and reusability of furniture. Besides addressing the need for smart and sustainable designed compact homes, a conceptual model is proposed, including options of ideal schematic layouts for homes in urban areas. In the conclusions, suggestions to improve space planning and suitable interior entities have been made to support the fact that compact homes are an eminently practical and sensible solution for the urban citizen.Keywords: compact living, housing shortage, lifestyle, sustainable interior design
Procedia PDF Downloads 2024684 A Case Study on Evaluating and Selecting Soil /Pipeline Interaction Analysis Software for the Oil and Gas Industry
Authors: Abdinasir Mohamed, Ashraf El-Hamalawi, Steven Yeomans, Matthew Frost, Andy Connell
Abstract:
The evaluation and selection of appropriate software solutions to meet with an organisation’s inherent business requirements can be a problematic software engineering process that if done incorrectly can have a significant, costly and adverse effect on the business and its processes. The aim of this paper is to show the process and evaluation criteria followed to select the right engineering solution for the identified business requirement. The research adopted an action research method within an organisation in the oil and gas industry, which required a solution suitable for conducting stress analysis for soil-pipeline interaction analysis (SPIA). Through the use of the presented software selection and evaluation approach, to capture and measure key requirements, it was possible to determine a suitable software for the organisation. This paper investigates methodologies for selecting software packages, software evaluation techniques, and software evaluation criteria in evaluating software packages before providing an explanation of the developed methodology adopted. The key findings of the study are: (1) that there is a need to create a framework for software selection methodologies, (2) there are no universal selection criteria in the engineering industry, and (3) there is a need to validate the findings by creating an application based on the evaluation technique and evaluation criteria for selecting software packages for the engineering industry. The findings of the study are offered to support organisations in the oil and gas sector improve software selection methodologies for SPIA.Keywords: software evaluation, end user programs, soil pipeline analysis, software selection
Procedia PDF Downloads 1924683 Water Resources Crisis in Saudi Arabia, Challenges and Possible Management Options: An Analytic Review
Authors: A. A. Ghanim
Abstract:
The Kingdom of Saudi Arabia (KSA) is heading towards a severe and rapidly expanding water crisis, which can have negative impacts on the country’s environment and economy. Of the total water consumption in KSA, the agricultural sector accounts for nearly 87% of the total water use and, therefore, any attempt that overlooks this sector will not help in improving the sustainability of the country’s water resources. KSA Vision 2030 gives priority of water use in the agriculture sector for the regions that have natural renewable water resources. It means that there is little concern for making reuse of municipal wastewater for irrigation purposes in any region in general and in water-scarce regions in particular. The use of treated wastewater is very limited in Saudi Arabia, but it has very considerable potential for future expansion due its numerous beneficial uses. This study reviews the current situation of water resources in Saudi Arabia, providing more highlights on agriculture and wastewater reuse. The reviewed study is proposing some corrective measures for development and better management of water resources in the Kingdom. Suggestions also include consideration of treated water as an alternative source for irrigation in some regions of the country. The study concluded that a sustainable solution for the water crisis in KSA requires implementation of multiple measures in an integrated manner. The integrated solution plan should focus on two main directions: first, improving the current management practices of the existing water resources; second, developing new water supplies from both conventional and non-conventional sources.Keywords: Saudia Arabia, water resources, water crises, wastewater reuse
Procedia PDF Downloads 1704682 Raman Spectroscopic Detection of the Diminishing Toxic Effect of Renal Waste Creatinine by Its in vitro Reaction with Drugs N-Acetylcysteine and Taurine
Authors: Debraj Gangopadhyay, Moumita Das, Ranjan K. Singh, Poonam Tandon
Abstract:
Creatinine is a toxic chemical waste generated from muscle metabolism. Abnormally high levels of creatinine in the body fluid indicate possible malfunction or failure of the kidneys. This leads to a condition termed as creatinine induced nephrotoxicity. N-acetylcysteine is an antioxidant drug which is capable of preventing creatinine induced nephrotoxicity and is helpful to treat renal failure in its early stages. Taurine is another antioxidant drug which serves similar purpose. The kidneys have a natural power that whenever reactive oxygen species radicals increase in the human body, the kidneys make an antioxidant shell so that these radicals cannot harm the kidney function. Taurine plays a vital role in increasing the power of that shell such that the glomerular filtration rate can remain in its normal level. Thus taurine protects the kidneys against several diseases. However, taurine also has some negative effects on the body as its chloramine derivative is a weak oxidant by nature. N-acetylcysteine is capable of inhibiting the residual oxidative property of taurine chloramine. Therefore, N-acetylcysteine is given to a patient along with taurine and this combination is capable of suppressing the negative effect of taurine. Both N-acetylcysteine and taurine being affordable, safe, and widely available medicines, knowledge of the mechanism of their combined effect on creatinine, the favored route of administration, and the proper dose may be highly useful in their use for treating renal patients. Raman spectroscopy is a precise technique to observe minor structural changes taking place when two or more molecules interact. The possibility of formation of a complex between a drug molecule and an analyte molecule in solution can be explored by analyzing the changes in the Raman spectra. The formation of a stable complex of creatinine with N-acetylcysteinein vitroin aqueous solution has been observed with the help of Raman spectroscopic technique. From the Raman spectra of the mixtures of aqueous solutions of creatinine and N-acetylcysteinein different molar ratios, it is observed that the most stable complex is formed at 1:1 ratio of creatinine andN-acetylcysteine. Upon drying, the complex obtained is gel-like in appearance and reddish yellow in color. The complex is hygroscopic and has much better water solubility compared to creatinine. This highlights that N-acetylcysteineplays an effective role in reducing the toxic effect of creatinine by forming this water soluble complex which can be removed through urine. Since the drug taurine is also known to be useful in reducing nephrotoxicity caused by creatinine, the aqueous solution of taurine with those of creatinine and N-acetylcysteinewere mixed in different molar ratios and were investigated by Raman spectroscopic technique. It is understood that taurine itself does not undergo complexation with creatinine as no additional changes are observed in the Raman spectra of creatinine when it is mixed with taurine. However, when creatinine, N-acetylcysteine and taurine are mixed in aqueous solution in molar ratio 1:1:3, several changes occurring in the Raman spectra of creatinine suggest the diminishing toxic effect of creatinine in the presence ofantioxidant drugs N-acetylcysteine and taurine.Keywords: creatinine, creatinine induced nephrotoxicity, N-acetylcysteine, taurine
Procedia PDF Downloads 1514681 Predicting the Compressive Strength of Geopolymer Concrete Using Machine Learning Algorithms: Impact of Chemical Composition and Curing Conditions
Authors: Aya Belal, Ahmed Maher Eltair, Maggie Ahmed Mashaly
Abstract:
Geopolymer concrete is gaining recognition as a sustainable alternative to conventional Portland Cement concrete due to its environmentally friendly nature, which is a key goal for Smart City initiatives. It has demonstrated its potential as a reliable material for the design of structural elements. However, the production of Geopolymer concrete is hindered by batch-to-batch variations, which presents a significant challenge to the widespread adoption of Geopolymer concrete. To date, Machine learning has had a profound impact on various fields by enabling models to learn from large datasets and predict outputs accurately. This paper proposes an integration between the current drift to Artificial Intelligence and the composition of Geopolymer mixtures to predict their mechanical properties. This study employs Python software to develop machine learning model in specific Decision Trees. The research uses the percentage oxides and the chemical composition of the Alkali Solution along with the curing conditions as the input independent parameters, irrespective of the waste products used in the mixture yielding the compressive strength of the mix as the output parameter. The results showed 90 % agreement of the predicted values to the actual values having the ratio of the Sodium Silicate to the Sodium Hydroxide solution being the dominant parameter in the mixture.Keywords: decision trees, geopolymer concrete, machine learning, smart cities, sustainability
Procedia PDF Downloads 88